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Abstract Friction stir welding (FSW) process has gained
attention in recent years because of its advantages over the
conventional fusion welding process. These advantages
include the absence of heat formation in the affected zone
and the absence of large distortion, porosity, oxidation, and
cracking. Experimental investigations are necessary to
understand the physical behavior that causes the high
tensile strength of welded joints of different metals and
alloys. Existing literature indicates that tensile properties
exhibit strong dependence on the rotational speed, traverse
speed, and axial force of the tool that was used. Therefore,
this study introduces the experimental procedure for
measuring tensile properties, namely, ultimate tensile
strength (UTS) and tensile elongation of the welded AA
7020 Al alloy. Experimental findings suggest that a welded
part with high UTS can be achieved at a lower heat input
compared with the high heat input condition. A numerical
approach based on genetic programming is employed to
produce the functional relationships between tensile
properties and the three inputs (rotational speed, traverse
speed, and axial force) of the FSW process. The formulated

models were validated based on the experimental data,
using the statistical metrics. The effect of the three inputs
on the tensile properties was investigated using 2D and 3D
analyses. A high UTS was achieved, including a rotational
speed of 1050 r/min and traverse speed of 95 mm/min. The
results also indicate that 8 kN axial force should be set
prior to the FSW process.

Keywords tensile properties, ultimate tensile strength,
tensile elongation, friction stir welding, tool rotational
speed, genetic programming, welding speed

1 Introduction

The use of non-conventional welding such as friction stir
welding (FSW) (Fig. 1) has gained attention in recent
years; this method works by using a third body tool to join
two facing surfaces (metals/alloys) [1–3]. Unlike conven-
tional welding processes, FSW does not cause welding
defects, such as distortion, heat-affected zone, cracking,
porosity, and other defects [4–8]. Given these advantages,
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Fig. 1 Mechanism of the FSW process at the top and bottom
sheets
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FSW has become a popular solid-state welding process
with high tensile properties when joining two welded
elements that comprise metals/alloys [9,10]. The func-
tional performance and reliability of the final product rely
on the properties of welded elements. These properties also
depend on several process parameters, such as the speed of
the welding process, the tool, the tool profile, and forces
(axial) from the FSW process [11,12].
Literature [13–16] indicates that experiments and

statistical modeling tools have been used to characterize
and optimize friction stir welded metals. Several authors
explored the mechanical, microstructure, and fractography
properties of weldment by deploying instruments such as
scanning electron microscope (SEM) [14–18]. In numer-
ical modeling, response surface methodology (RSM) was
used to determine the relation between the parameters of
FSW process and to identify appropriate settings that
optimize the properties of welded joints [3,13]. For
instance, the properties of Al 6061-T6 alloy were
evaluated, such as grain size, ultimate tensile strength
(UTS), and hardness. The optimum settings of the inputs
were determined using RSM [17]. Findings show that the
maximum UTS of the welded joint is obtained at a
rotational speed of 1100 r/min, a welding speed of 80 mm/
min, and tool hardness of 45 HRC. In another study, the
mechanical properties of the welded AA 2219 Al alloy
were optimized using the Hooke and Jeeves methodology
[18]. The mechanical properties of welded Cu plates with
varying thickness were predicted and optimized by RSM
using the statistical design expert platform [19]. The
applied RSM methodology is based on the assumption of
the model structure and subsequent identification of
significant inputs using analysis of variance. The mechan-
ism of the FSW process is complex and involves heat
mechanisms [20,21]; therefore, the assumption of the
model structure induces ambiguity in the extrapolation
ability of the model. An alternative route is to apply
advanced optimization tools [22], such as artificial neural
networks and its variants [23–25], genetic programming
(GP) and its variants [26,27], hybrid optimization methods
of GP [28,29], and molecular dynamics [30,31]. These
methods complement the limitations of RSM. Among the
several optimization tools, evolutionary approach based on
GP can be a potential alternative because it automatically
evolves the functional expressions of process parameters
[32–37]. Previous studies [38–39] have proven the ability
of the applications of GP in modeling and the optimization
of complex manufacturing processes.
Existing literature also suggested that Al alloys

(category of 5xxx) were often used instead of steel in the
marine industry because they have good corrosion
resistance and lightweight properties. For materials with
high mechanical strength, category 7xxx Al alloy can be
used. The weldability of Al alloys is high. However,
conventional welding methods result in low mechanical

properties. Therefore, non-conventional FSW seems a
suitable alternative. To the best of the author’s knowledge,
limited studies based on experimental and numerical
investigation have been conducted to characterize the
mechanical and microstructural properties of FSW-welded
Al alloys [17,18].
This study introduces the experimental setup for

the measurement of tensile properties (UTS and tensile
elongation (EL)) followed by the microstructural
characterization of welded AA 7020 Al alloy. To study
the effect of the process parameters on tensile properties,
the models are formulated (functional expressions)
based on the evolutionary framework of GP. The models
are validated based on experimental data using the
statistical error metrics. To measure the nature of the
effect of inputs on tensile properties, 2D and 3D analyses
are conducted; these analyses validate the experiment
discussed in Section 2. The complete procedure of the
experimental and numerical investigation is shown in
Fig. 2.

2 Experimental setup of the FSW process

The experimental study used in this work is based on
Heidarzadeh et al. [40]. The material used in the
experimental setup of FSW is an Al alloy (AA 7020)
plate with a thickness of 4 mm and the following
designated tensile properties: UTS of 400 MPa and 15%
EL. The composition and microstructure of the Al alloy
comprises Al (85.44%), Ti (0.08%), Zn (4.70%), Cu
(0.10%), Cr (0.14%), Fe (0.35%), Mn (0.24%), Mg
(1.30%), and others (7.65%).
The tool used for FSW is made of H13 steel with the

following dimensions: 12 mm shoulder, cylindrical pin
with a 4 mm diameter, 3.8 mm length, and 2.5° tilt against
the work pieces that were used [40].
The joints were fabricated by perpendicular movement

of the tool to the rolling of the plates. Varying the rotational
speed of the tool (x1), welding traverse speed (x2), and axial
force (x3) (Table 1) enabled the measurement of the UTS
and EL of the welded AA 7020 Al alloy. The assumptions
and settings used in this study are also discussed in Ref.
[40].
Data that comprise 46 samples were collected from the

experimental analysis, as shown in Table 2. The variation
of each data sample for UTS and EL is shown in Figs. 3(a)
and 3(b). The figures clearly show that the variation of each
tensile property with respect to the rotational speed,
traverse speed, and axial force of the tool is highly
nonlinear.
An optical microscope was used to analyze the

microstructure of welded joints. The grain of the welded
element is smaller when low heat is applied to the process
compared with when high input is used. Fine grain size
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Table 1 Inputs used for the experimental set-up of FSW

x1/(r$min–1) x2/(mm$min–1) x3/kN

Minimum 47.00 58.00 5.32

Mean 944.69 94.15 6.76

Maximum 1200.00 125.00 8.00

Fig. 2 Procedure of the experimental and numerical investigation of the tensile properties of FSW-welded joints

Table 2 Uniform experiment design for the measurement of tensile properties

No. x1/(r$min–1) x2/(mm$min–1) x3/kN UTS/MPa EL/%

1 1200 75 8.00 273.0508 7.689788

2 800 125 8.00 260.7020 4.634279

3 1200 125 8.00 265.2557 7.689788

4 664 100 7.00 243.8742 6.836077

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

15 664 100 7.00 243.8742 6.836077

16 1000 58 7.00 249.4299 6.018916
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results in high UTS, whereas coarse grain results in low
UTS [40].
The 46 samples (Table 2) are sufficient for training the

GP approach. Thirty-one samples are fed into the GP
framework for training and the formulation of the models
for the two tensile properties, namely, UTS and tensile
elongation. The remaining 15 samples are used to test the
extrapolation ability of the two models.

3 Numerical modeling of tensile properties

A numerical approach based on evolutionary GP [41] is
introduced in this study to model the FSW process. The
process includes the three inputs and the two outputs. On
the basis of the complex nature of the process, the
algorithm can capture the hidden patterns in the process
and generate the explicit functions of the two outputs. The
algorithms function based on the principles of biological
evolution and natural selection. The implementation (Fig.
4) of the algorithms relies extensively on the settings of the
following parameters in ascending order:

1) Functional and terminal set: The elements in
these two sets include air thematic operations and the
three inputs. This study chose sets with a wide range
of elements {F = (addition, multiply, subtraction, log,
cosine, sin, exponential, etc.) and T = (three inputs of
FSW)} to accommodate the large varieties/structures of the
models.
2) Population size: Population size is determined

based on the number of models in the initial population.
This parameter is assumed constant in the entire
iterations/runs. A population size of 200 is chosen in this
study.
3) Initial generation: The generation (first) is repre-

sented by population size. The performance of the evolved
models is evaluated in this stage.
4)Objective function: The objective function is defined

to evaluate the performance of the models. The objective
function used is structural risk minimization [42] because
of its ability to generalize the process behavior in past
studies [43].
5) Next generation: The models for the next generation

are generated based on the objective values of the models

(Continued)
No. x1/(r$min–1) x2/(mm$min–1) x3/kN UTS/MPa EL/%

17 1000 58 7.00 249.4299 6.018916

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

39 900 100 8.00 299.2947 5.171500

40 1200 75 6.00 269.9894 7.689788

41 800 125 6.00 230.6714 4.634279

42 1200 125 6.00 262.1943 7.689788

43 1000 100 7.00 305.1451 6.018916

44 900 58 5.32 207.3690 5.171500

45 664 100 7.00 243.8742 6.836077

46 664 100 7.00 243.8742 6.836077

Fig. 3 Line graph showing the nature of (a) ultimate tensile strength, and (b) tensile elongation
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in first generation. These models are generated by applying
certain operations, such as genetic mutation and genetic
crossover; few models evolved based on reproduction.
Crossover is set at a high rate of 85% followed by mutation
(12%) and reproduction (3%).
6) Iterations/runs: This parameter comprises the

number of iterations required to terminate the algorithm.
One iteration/run corresponds to the total number of
generations. A total of 20 iterations are computed in this
study.
Simulations are performed in MATLAB (2010b) based

on the GPTIPS box developed by Searson et al. [44]. The
best GP models (Eqs. (A1) and (A2) in the Appendix) for
the two tensile properties are selected based on the
minimum mean absolute percentage error (MAPE) value
in all runs. Experimental validation with 2D and 3D
analyses is discussed in Section 4.

MAPE ¼ 1

n

X

i

Ai –Mi

Ai

����

����� 100%; (1)

where Ai is the actual value, Mi is the predicted value

from the model, and n is the number of training
samples.

4 Performance analysis of UTS and EL
models

The models are statistically evaluated using three metrics,
namely, coefficient of determination (R2), root mean square
error (RMSE), and MAPE. These metrics reflect the
deviations of the actual values from the predicted values.
The mathematical representation of these metrics is
provided in Vijayaraghavan et al. [35]. Table 3 shows
that the values for R2, RMSE, and MAPE are low for the
GP models in the training and testing data sets for the two
tensile properties (UTS and EL). Table 4 and Fig. 5 show
that the actual values and the numerical values of the
GP models are close with great accuracy. Thus, the
analysis indicates that the GP models can be used to
accurately generalize the FSW outputs with low deviation
values.

Fig. 4 GP approach for modeling tensile properties
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5 2D and 3D surface analyses for the
proposed models

Surface analysis is performed based on the parametric and
sensitivity analysis of the two GP models (UTS and EL).
Details of the procedures for analysis are given in Garg
et al. [43]. The main effects of each input on the tensile
properties of the GP models are estimated using 2D

analysis. As shown in Fig. 6(a), 2D analysis demonstrates
that UTS increases linearly with the increased rotational
speed values of the tool to a certain point before it starts to
decrease. The behavior of UTS with respect to traverse
speed is similar to that of the rotational speed of the tool
(Fig. 6(b)). The UTS of the welded Al alloy element
increases nonlinearly with an increase in axial force value
(Fig. 6(c)). The effect of axial force on the EL of welded Al

Fig. 5 Curve fitting of the tensile properties models on the data set. (a) Ultimate tensile strength; (b) tensile elongation

Table 4 Actual and model values for two tensile properties obtained from the models

No. Actual UTS /MPa Predicted UTS /MPa Actual EL/% Predicted EL/%

1 276.5059 274.8061 6.943182 6.943139

2 273.0508 273.2518 7.689788 7.689746

3 260.7020 261.8811 4.634279 4.634237

4 265.2557 267.1045 7.689788 7.689746

5 243.8742 243.0871 6.836077 6.836035

6 243.8742 243.0871 6.836077 6.836035

7 305.1451 305.2267 6.018916 6.018874

8 207.3690 211.4123 5.171500 5.171457

9 275.9505 275.0003 5.171500 5.171457

10 299.2947 297.4679 5.171500 5.171457

11 269.9894 268.1412 7.689788 7.689746

12 230.6714 232.8499 4.634279 4.634237

13 262.1943 261.9938 7.689788 7.689746

14 305.1451 305.2267 6.018916 6.018874

15 207.3690 211.4123 5.171500 5.171457

Table 3 Statistical metrics of the models for two tensile properties

Models R2 RMSE/% MAPE/%

Training phase Testing phase Training phase Testing phase Training phase Testing phase

GP (UTS) 0.98 0.96 1.31 1.91 0.39 0.60

GP (EL) 0.97 0.96 0.42 0.45 0.73 0.81
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alloy element was hardly noticed, as shown in Fig. 6(d).
With respect to rotational speed, EL initially decreases to a
certain point and then increases. The effect of the
interaction between the two inputs on two tensile proper-
ties is estimated using 3D analysis. The 3D surface plots
(Fig. 7) show the combined effect of inputs (rotational
speed and traverse speed, traverse speed and axial force,
rotational speed and axial force) on the UTS of the welded
Al alloy joints. Similarly, Fig. 8 shows the combined effect
of inputs (rotational speed and axial force, rotational speed
and traverse speed) on the EL of the welded Al alloy joints.
Sensitivity analysis (Fig. 9) is conducted based on
parametric analysis. The sensitivity of each input is
determined by calculating the maximum and minimum in
the 2D and 3D plots. Figures 9(a) and 9(b) show that the
rotational speed of the tool has the strongest influence on
UTS and EL. UTS is arranged according to rotational
speed followed by traverse speed and axial force. Axial
force and traverse speed have no effect on EL. These plots

show that achieving a high UTS requires a rotational speed
of 1050 r/min, a traverse speed of 95 mm/min, and an axial
force of 8 kN, which should be set prior to the FSW
process.

6 Conclusions

Experimental procedure and microscopic characterization
are conducted in this study to measure the tensile
properties (UTS and EL) of Al alloy (AA 7020) joints
welded through FSW. Experimental findings suggest that a
high UTS for the welded part of Al alloy (AA 7020) can be
achieved at a low heat input condition than at a high heat
input condition. An optimization framework based on GP
is used to produce the functional expressions of the two
tensile properties. Performance analysis of the GP models
based on statistical error metrics suggests that the models
can extrapolate the UTS and EL values beyond the given

Fig. 6 2D plots showing the relationships of (a) ultimate tensile strength and rotational speed, (b) ultimate tensile strength and traverse
speed, (c) ultimate tensile strength and axial force, and (d) tensile elongation and rotational speed
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range of inputs (axial force, rotational speed, and traverse
speed). The functional expressions can be used offline to
accurately determine the tensile properties of the welded
part of Al alloy. The model analysis shows that the
dominant input for achieving high UTS and EL is the
rotational speed of the tool. EL initially decrease and then
increase with an increase in the rotational speed values of
the tool. Parametric procedure based on the 2D and 3D plot
analyses shows a high nonlinear interaction effect between
the rotational speed and traverse speed on the two tensile
properties. Future work should include additional para-
meters, such as tool pin profile, shoulder diameter, and tool
hardness. Future work should also investigate the effect of
these parameters on the two tensile properties of the
welded part of the Al alloy to evaluate any differences from
this study.

Fig. 7 3D plots showing the relationships of ultimate
tensile strength and (a) rotational speed and traverse speed,
(b) traverse speed and axial force, and (c) rotational speed
and axial force

Fig. 8 3D plots showing the relationships of tensile elongation
based on (a) rotational speed and axial force, (b) rotational speed
and traverse speed
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Appendix:

Ultimate tensile strengthGP= 89.187+ 0.51586�[x2‒sin
(tan(x1+ x3))]+ 12.8573�sin[x1+ cos(exp(plog(x3)))]+
tanh[tanh(sin(‒9.354553�sinx3))]+ 8.3616�plog(sinx1)+
20.7737�sinx3‒27.0493�sin(exp(x2))‒4.009�tan(plog
(sinx1))+ 0.1097�x1 (A1)
Tensile elongationGP= 0.057974+ 0.057974�tanhx2‒
0.046896�cos2.513109 + 0�plog(tanhx2)‒1.2146�
(sinx1‒tanhx1)+ 0.53143�9.166777+ 1.2896�cosx1+
0.057974�tanhx2 (A2)
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