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Abstract The reliability-based optimization, the relia-
bility-based sensitivity analysis and robust design method
are employed to propose an effective approach for
reliability-based robust design optimization of vehicle
components in Part I. Applications of the method are
further discussed for reliability-based robust optimization
of vehicle components in this paper. Examples of axles,
torsion bar, coil and composite springs are illustrated for
numerical investigations. Results have shown the proposed
method is an efficient method for reliability-based robust
design optimization of vehicle components.

Keywords vehicle axles and springs, reliability-based
design optimization, reliability-based sensitivity analysis,
multi-objective optimization, robust design

1 Introduction

Reliability of vehicle component is a significant research
field in engineering design. In order to achieve the desired
level of reliability, an effective method for reliability-based
robust design optimization has proposed in Part I [1].
Uncertainty is one of inherent characteristics of vehicle
components. A probabilistic method is desired by both of
engineering and academic communities to account for the
uncertainty.
Tough and hard materials are usually employed to resist

stress, wear and fatigue of structural component. Medium
carbon alloys that contain elements such as nickel,
chromium and molybdenum are a proper choice for such
a circumstance. Material selected for springs must be
capable of withstanding high level of stress and fatigue.
High-carbon steel in early design stage of vehicle

component has moved forward to low-percentage of
carbon alloys such as silicon manganese.
This paper presents reliability-based robust design

optimization of vehicle components. An effective
approach for reliability-based robust design optimization
of vehicle components, including of semi-axle, fore-axle,
rear-axle housing, torsion bar, coil spring and leaf spring, is
proposed. The method is easily to be integrated with
commercial software for reliability-based robust design
optimization of complex vehicle components.

2 Reliability-based robust design
optimization of semi-axle

Axle shafts are divided into three categories according to
the external load (Fig. 1), i.e., fully floating, semi-floating,
and three-quarter floating. Fully floating shaft is generally
fitted on commercial vehicles where torque and axle loads
are primary loads. The construction of fully floating
consists of an independently mounted hub that rotates on
two bearings widely spaced on the axle housing. This
arrangement relieves all loads except torsion. The strength
of the shaft is strong. Studs connecting the shaft to the hub
transmit the drive. When the nuts on these studs are
removed, the shaft may be withdrawn without jacking up
the vehicle. The semi-floating shaft is suitable for light
cars. A single bearing at the hub end is fitted between the
shaft and the housing, so the shaft will have to resist in all
stresses previously mentioned. To reduce the risk of
fracture at the hub end which would allow the wheel to fall
off, the shaft diameter is increased. However, any increase
must be gradual, since a sudden change in cross-sectional
areas would produce a stress-raiser and increase the risk of
failure due to fatigue. Three-quarter floating shaft is
defined by the fully floating and the semi-floating shaft
between which any alternative may be regarded as a
construction which has a single bearing mounted between
hub and housing. The main shear stress on the shaft is
relieved, but all other stresses still have to be resisted.

Received January 30, 2015; accepted February 20, 2015

Yimin ZHANG (✉)
School of Mechanical Engineering and Automation, Northeastern
University, Shenyang 110004, China
E-mail: ymzhang@mail.neu.edu.cn

Front. Mech. Eng. 2015, 10(2): 145–153
DOI 10.1007/s11465-015-0334-1



Shear and bending stresses of a semi-axle are separately
defined as

τ ¼ 16T

πd3
, (1)

� ¼ 32M

πd3
, (2)

where T is torque, M is bending moment, d is diameter of
the semi-axle section.
The state function for shearing fail of the semi-axle is

defined as|

gðXÞ ¼ r – τ, (3)

where r is material strength, X is the vector of random
variables.
While considering both of torque and bending moment,

the total stress is represented as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 3τ2

p
¼ 16

πd3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þ 3T2

p
, (4)

as well as the state equation:

gðXÞ ¼ r – s: (5)

The random vector X is defined as X =(r, T, d)T or X =(r,
T, M, d)T, respectively.
1) Probabilistic characteristics of random variables are

assumed as (�T ,�T )=(11760, 980) N$m, (�r,�r)=(1050,
40) MPa, (�d,�d)=(42, 0.21) mm, in which μ( ) and σ( )

represent mean-value and standard deviation, respectively.
Reliability index β, reliability R and the reliability-based

sensitivity DR=Dx are computed as

β¼ 3:047335,  R¼ 0:998846, 

DR=Dx ¼ ∂R
∂d

¼ 2:797� 10 – 3:

Objective functions for robust optimization are

f1ðxÞ ¼
π
4
x21, (6)

f2ðxÞ ¼
∂R
∂x1

����
����, (7)

where the design variables are x = x1= d.
Assume target reliability is R0= 0.999. One has the

following reliability constraint:

�g –Φ
– 1ðR0Þ�g³0: (8)

With initial value d = 45 mm, the optimum is determined
as d = 43.1242 mm, as well as the reliability index and the
reliability-based sensitivity coefficient:

β¼ 4:051936,  R¼ 0:999974, 

DR=Dx ¼ ∂R
∂d

¼ 7:539� 10 – 5:

2) Torque T is (�T ,�T )=(113500, 9200) N$mm, and the
bending momentM is(�M ,�M )=(14300, 1300) N$mm. The
diameter d of the risk section (�d ,�d)=(11.7, 0.0585) mm.
The material strength r is (�r,�r)=(820, 32) MPa.
The reliability index β, the reliability R and the reliability

sensitivity DR=Dx of the semi-axle are computed as

β¼ 3:125381,  R¼ 0:999112, 

DR=Dx ¼ ∂R
∂d

¼ 8:116� 10 – 3:

Define the objective functions:

f1ðxÞ ¼
π
4
x21, (9)

f2ðxÞ ¼
∂R
∂x1

����
����, (10)

as well as the reliability constraint:

Fig. 1 Semi-axle structure
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�g –Φ
– 1ðR0Þ�g³0, (11)

where R0 is the target reliability R0= 0.999.
With initial value of d = 15 mm, one determines the

optimum of design variable as d = 12.1031 mm. Reliability
index β and the reliability-based sensitivity DR=Dx are
further verified as

β¼ 4:442173,  R¼ 0:999995, 

DR=Dx ¼ ∂R
∂d

¼ 5:217� 10 – 5:

On the basis of the above results, the bigger the
reliability index β and the reliability R are, the less the
values of the reliability sensitivities DR=DxT are, the more
robust the reliability of the semi-axle is.

3 Reliability-based robust design
optimization of fore-axle

An I section fore-axle in Fig. 2 is considered in this
example for reliability-based robust design optimization of
vehicle component.
The sectional coefficient of the axle is represented as

Wx ¼
aðh – 2tÞ3

6h
þ b

6h
½h3 – ðh – 2tÞ3�, (12)

W� ¼ 0:8bt2 þ 0:4ðh – 2tÞa3
t

: (13)

Therefore, the maximal normal and shearing stresses are
defined as

s ¼ M

Wx
, (14)

τ ¼ T

W�

, (15)

where M and T are torsion moment and bending moment,
respectively. The complex stress of the fore-axle is
represented as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 3τ2

p
, (16)

which determines state function of the fore-axle as

gðXÞ ¼ r –�: (17)

Random variables are X = (r, M, T, a, t, h, b)T, in which
mean-value and standard deviation of random variables are
assumed as (�T ,�T )=(3026710, 245160) N$mm, (�M ,�M )
=(3517220, 319715) N$mm, (�a,�a)=(6.3164, 0.031582)
mm, (�t,�t)=(13.7916, 0.068958) mm, (�h,�h)=(81.4675,
0.4073375) mm, (�b,�b)=(64.6425, 0.3232125) mm, and
(�r,�r)=(667, 25.3) MPa.
Reliability index β and the reliability-based sensitivity

index are computed as

β¼ 3:09033,  R¼ 0:9990004, 

∂R
∂a

∂R
∂t

∂R
∂h

∂R
∂b

� �
¼

6:469� 10 – 4

4:780� 10 – 3

3:576� 10 – 5

5:321� 10 – 4

2
666664

3
777775

T

:

Define the objective functions:

f1ðxÞ ¼ x1ðx3 – 2x2Þ þ 2x4x2, (18)

f2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

∂R
∂xi

� �2
vuut , (19)

and the reliability-based constraint:

Fig. 2 Fore-axle structure
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�g –Φ
– 1ðR0Þ�g³0, (20)

x2 – x1³2, (21)

where x =(x1, x2, x3, x4)
T=(a, t, h, b)T are design variables,

and R0= 0.999.
With initial values a = 12 mm, t = 14 mm, h = 85 mm

and b = 65mm, optimum solution of design variables is
determined as

a ¼ 11:1434 mm,  t ¼ 13:1437 mm,  h ¼ 83:6931 mm, 

  b ¼ 63:1607 mm:

One can further verify the reliability and the reliability-
based sensitivity index of example as

β¼ 4:214802,  R¼ 0:999987, 

DR=DxT ¼ ∂R
∂a

∂R
∂t

∂R
∂h

∂R
∂b

� �
¼

3:311� 10 – 5

5:422� 10 – 5

2:331� 10 – 6

7:173� 10 – 6

2
666664

3
777775

T

:

On the basis of the above results, the bigger the
reliability index β and the reliability R are, the less the
values of the reliability sensitivities DR=DxT are, the more
robust the reliability of the fore-axle is.

4 Reliability-based robust design
optimization of rear-axle

The example considers reliability-based robust design
optimization of a rear horsing axle as shown in Fig. 3. A
tubular section of the rear-axle is considered. Shear stress
and bending stress of the component are defined as

s ¼ 32DM

πðD4 – d4Þ, (22)

τ ¼ 16DT

πðD4 – d4Þ, (23)

where T and M are external moments, while D and d are
outside and inside diameters of the housing rear-axle.
Stress of the structure is represented as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 3τ2

p
¼ 32D

πðD4 – d4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 0:75T2

p
: (24)

In case of the quadrate section containing a hole, stress
of the housing rear-axle is defined as

� ¼ M

Wn
, (25)

where Wn is the sectional coefficient:

Wn ¼
bh2

6
1 – 0:59

d4

bh3

� �
, (26)

where d is the inside diameter, b and h are side lengths of
the quadrate section.
State equation for reliability analysis of the housing rear-

axle is defined as

gðXÞ ¼ r –�: (27)

1) Circular section
Mean-value and standard deviation of X are assumed as

(�T ,�T )=(4472475, 362270) N$mm, (�M ,�M )=(6432658,
584729) N$mm, (�d,�d)=(90.97, 0.45485) mm, (�D,�D)
=(98.22, 0.4911) mm and (�r,�r)=(443, 27.5) MPa.
Reliability index and reliability-based sensitivity coeffi-

cients are determined as

β¼ 3:094426,  R¼ 0:999014, 

Fig. 3 Structure of rear-axle housing
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DR=DxT ¼ ∂R
∂D

∂R
∂d

� �
¼

3:293� 10 – 3

– 2:802� 10 – 3

" #T

:

Define the objective function for reliability-based robust
design optimization:

f1ðxÞ ¼
π

4
ðx21 – x22Þ, (28)

f2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
i¼1

∂R
∂xi

� �2
vuut , (29)

and constraint functions:

�g –Φ
– 1ðR0Þ�g³0, (30)

0£x1£100, (31)

0£x2£100, (32)

x1 – x2³0, (33)

where the target reliability R0= 0.999.
Given the initial values of d = 85mm and D = 95 mm,

one can harvest optimum results as

d ¼ 92:8014 mm, D ¼ 99:9996 mm,

as well as reliability of the structure:

β¼ 3:338399,  R¼ 0:999579, 

DR=DxT ¼ ∂R
∂D

∂R
∂d

� �
¼

1:478� 10 – 3

– 1:263� 10 – 3

" #T

:

2) Quadrate section
Probability information of the component is assumed as

(�M ,�M )=(106742122.26, 9702858.912) N$mm, (�d ,�d)
=(102.92, 0.5146) mm, (�b,�b)=(122.92, 0.6146) mm,
(�r,�r)=(433, 27.5) MPa and (�h,�h)=(143.33, 0.71665)
mm, respectively. Reliability of the housing rear-axle with
quadrate section can be determined as

β¼ 3:341242,  R¼ 0:999583, 

DR=DxT ¼ ∂R
∂b

∂R
∂h

∂R
∂d

� �
¼

1:170� 10 – 4

2:190� 10 – 4

– 1:022� 10 – 4

2
664

3
775
T

:

Objective functions for reliability-based robust design
optimization are defined as

f1ðxÞ ¼ x1x2 –
π
4
x23, (34)

f2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

∂R
∂xi

� �2
vuut , (35)

where the design variables are x =(x1, x2, x3)
T=(b, h, d)T.

Optimization constraints are

�g –Φ
– 1ðR0Þ�g³0, (36)

x1 – x3³10, (37)

x2 – x3³10, (38)

x2 – x1³0: (39)

With initial values b = 160 mm, h = 164 mm and d = 120
mm, one determines the design result as b ¼123:5748 mm,
h ¼ 152:4063 mm,  d ¼ 113:5747 mm, and the reliability-
based sensitivity coefficients of the component:

β¼ 4:060122,  R¼ 0:999975, 

DR=DxT ¼ ∂R
∂b

∂R
∂h

∂R
∂d

� �
¼

8:242� 10 – 6

1:486� 10 – 5

– 8:049� 10 – 6

2
664

3
775
T

:

On the basis of the above results, the bigger the
reliability index β and the reliability R are, the less the
values of the reliability sensitivities DR=DxT are, the more
robust the reliability of the rear-axle housing is.

5 Reliability-based robust design
optimization of torsion bar

The example considers reliability-based robust design
optimization of a bar subjected to torque moment (Fig. 4).
Shear stress of the bar is defined as

τ ¼ 16DT

πðD4 – d4Þ, (40)

where T is external moment, D is outside diameter and d is
inside diameter of the tubular section (for circular section d
= 0).
Limit state function is defined as

gðXÞ ¼ r –
16DT

πðD4 – d4Þ, (41)
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where r is material strength. Random variable X is defined
as X =(r, T, D, d)T where mean-value and standard
deviation are (�T ,�T )=(677400, 8891.28) N$mm, (�r,�r)
=(686.9, 35.8) MPa, (�d,�d)=(27.87, 0.13935) mm and
(�D,�D)=(30, 0.15) mm, respectively.
The reliability index β, the reliability R and the reliability

sensitivity DR=DxT of the torsion bar, therefore, are
computed as

β¼ 3:132776,  R¼ 0:999134, 

DR=DxT ¼ ∂R
∂D

∂R
∂d

� �
¼

1:216� 10 – 2

– 1:042� 10 – 2

" #T

:

Define the objective functions:

f1ðxÞ ¼
π
4
ðx21 – x22Þ, (42)

f2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
i¼1

∂R
∂xi

� �2
vuut , (43)

and the constraint functions:

�g –Φ
– 1ðR0Þ�g³0, (44)

0£x1£30, (45)

0£x2£30, (46)

x1 – x2³0: (47)

With initial values d = 20 mm and D = 30 mm, one
harvests the optimum design variables as

d¼ 16:8542 mm, D¼ 21:8537 mm,

as well as the reliability and the reliability-based sensitivity
coefficients:

β¼ 4:477526,  R¼ 0:999996, 

DR=DxT ¼ ∂R
∂D

∂R
∂d

� �
¼

5:483� 10 – 5

– 3:000� 10 – 5

" #T

:

On the basis of the above results, the bigger the
reliability index β and the reliability R are, the less the
values of the reliability sensitivities DR=DxT are, the more
robust the reliability of the torsion bar is.

6 Reliability-based robust design
optimization of coil spring

Helical spring (Fig. 5) is normally used in conjunction with
independent suspensions. The maximum stress of a coil
spring occurs at the inner wall of the spring, namely,

τ ¼ ð1þ d=2DÞdGy
πD2n

, (48)

where d is the diameter, D is the median diameter, G is the
elastic modulus in shear, n is the number of active coils, y
is deformation of the spring.

Limit state function of the coil spring is defined as

gðXÞ ¼ r – τ, (49)

where r is material strength. Random variables are X = (r,
d,D,G, n, y)T, where mean-value and standard deviation of
X are listed in Table 1.
Reliability index β, reliability R and reliability sensitiv-

ity DR=DxT are computed as

β¼ 3:344368,  R¼ 0:999588, 

Fig. 5 Coil spring structure

Fig. 4 Torsion bar structure

150 Front. Mech. Eng. 2015, 10(2): 145–153



DR=DxT ¼ ∂R
∂d

∂R
∂D

∂R
∂n

� �
¼

– 1:673� 10 – 3

5:031� 10 – 4

3:121� 10 – 3

2
664

3
775
T

:

Define objective functions:

f1ðxÞ ¼
π2

4
x21x2x3, (50)

f2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

∂R
∂xi

� �2
vuut , (51)

where the design variables are x =(x1, x2, x3)
T=(d, D, n)T.

Constraint functions of the problem are

�g –Φ
– 1ðR0Þ�g³0, (52)

0£x1£25, (53)

100£x2£150, (54)

4£
x2
x1
£10, (55)

4£x3£15, (56)

H0 – δmax ³Hb, (57)

where, R0= 0.999, H0 is free height of the spring, H0= nt+

1.5d, δmax ¼
8FmaxD

3n

Gd4
. Solid height of the coil spring

Hb&(n+ 1.5)d.

b ¼ H0

D
¼ nt þ 1:5d

D
¼ 0:5x3 þ 1:5

x1
x2

� �
£bc, (58)

where bc is critical proportion of free height and median
diameter. If double ends are fixed, bc= 5.3.

f£0:5fr, (59)

where f is natural frequency of coil spring. If double ends

are fixed, f ¼ d

2πD2n

ffiffiffiffiffiffiffi
Gg

2γ

r
. fr is excitation frequency,

which is assume as fr= 127.8 Hz. γ is the density of wire
material, γ = 7.4872�10–5 N/mm3.
With initial values, d = 13.5 mm, D = 109.5 mm and n =

6.5, the optimized solutions of d, D and n are

d¼ 10:823 mm, D¼ 108:232 mm,  n¼ 5:241:

And the reliability, the reliability index β, and the
reliability-based sensitivity are determined as

β¼ 7:696796,  R¼ 1:000000, 

DR=DxT ¼ ∂R
∂d

∂R
∂D

∂R
∂n

� �
¼

– 5:947� 10 – 14

1:162� 10 – 14

1:228� 10 – 14

2
664

3
775
T

:

On the basis of the above results, the bigger the
reliability index β and the reliability R are, the less the
values of the reliability sensitivities DR=DxT are, the more
robust the reliability of the coil spring is.

7 Reliability-based robust design
optimization of composite springs

The example considers reliability-based robust design
optimization of a composite spring as depicted in Fig. 6.
Stress of the composite springs is computed as

Table 1 Random variable for robust design optimization of a coil spring

r/MPa d/mm D/mm G/MPa n y/mm

�r �r �d �d �D �D �G �G �n �n �y �y

1714.02 83.202 14 0.07 90 0.45 79250 1585 7 0.0833 208 4.16

Fig. 6 Structure of composite springs
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� ¼ 3Pl

2b
$

hi
n1h

3
1 þ n2h

3
2 þ :::þ nmh

3
m
, (60)

which determines the maximal stress as

�max ¼ 3Pl

2b
$

hmax

n1h
3
1 þ n2h

3
2 þ :::þ nmh

3
m
, (61)

in which, P is external load, hi is the height of an ith panel,
and ni is the number of panels of with thickness hi.
Limit state equation for reliability analysis of the

composite spring is defined as

gðXÞ ¼ r –�max , (62)

where r is material strength. Random vector is defined as
X = (r, P, l, b, hmax)

T, where mean-value and standard
deviation of X are (�b,�b)=(89, 0.445) mm, (�l,�l)=(1475,
7.375) mm, (�h1 ,�h1 )=(10, 0.05) mm, (�h2 ,�h2 )=(9.3,
0.0465) mm, (�h3 ,�h3)=(8.3, 0.0415) mm, (�P,�P)
=(16503.2, 825.16) N and (�r,�r)=(614, 45.8) MPa. The
numbers of panels are n1= 2, n2= 6 and n3= 4.
Define the objection function as

f1ðxÞ ¼ x1ðn1x2 þ n2x3 þ n3x4Þ, (63)

f2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

∂R
∂xi

� �2
vuut , (64)

as well as the constraint functions:

�g –Φ
– 1ðR0Þ�g³0, (65)

x2 – x3³1:0, (66)

x3 – x4³1:0, (67)

x1 – 80³0, (68)

where design variables are x =(x1, x2, x3, x4)
T=(b, h1, h2,

h3)
T, and target reliability R0= 0.9999.
With initial values b = 90 mm, h1= 11 mm, h2= 10 mm

and h3= 9 mm, the optimum solution for b, h1, h2, h3 are

b ¼ 80:0009 mm,  h1 ¼ 11:8283 mm, 

h2 ¼ 10:8277 mm,  h3 ¼ 8:4690 mm,

and the reliability R, the reliability-based sensitivity DR=
DxT of the composite springs:

β¼ 4:15909,  R¼ 0:9999839, 

DR=DxT ¼ ∂R
∂b

∂R
∂h1

∂R
∂h2

∂R
∂h3

� �
¼

7:006� 10 – 6

9:477� 10 – 5

8:856� 10 – 5

3:612� 10 – 5

2
666664

3
777775

T

:

On the basis of the above results, the bigger the
reliability index β and the reliability R are, the less the
values of the reliability sensitivities DR=DxT are, the more
robust the reliability of the composite springs is.

8 Conclusions

An effective method for reliability-based robust design
optimization of vehicle components has been proposed in
Ref. [1]. Application of the method is further illustrated by
several examples for robust design optimization of vehicle
components. Numerical results have further confirmed the
high efficiency and accuracy of the proposed method.

Nomenclature

τ Torsional stress

T Torsional moment

d Diameter of circular section, inside diameter

σ Stress

M Bending moment

X =(X1, X2, …, Xn)
T Vector of original random parameters

g(X) State function

r Material strength

s Complex stress

E( ) Mean value

Var( ) Variance

β Reliability index

μ( ) Mean value of ()

σ( ) Standard deviation of ()

R Reliability

DR=DxT Reliability-based sensitivity index

b Width

t Pitch

h Thickness of a connecting rod

W( ) Sectional coefficient

D Outside diameter

n Active number of a coil spring

G Elastic modulus

y Deformation

H0 Free height of a coil spring
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δmax Maximal deformation of a spring

Fmax Maximal load

bc Critical proportion of free height, the medium diameter

f Natural frequency of coil spring

fr Excitation frequency

hi Thickness of plate

ni The numbers of panels with thickness hi

Hb Solid height of a coil spring

P External load of composite spring

γ Density of steel

l Span of composite spring
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