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Abstract The present work studies and identifies the
different variables that affect the output parameters
involved in a single cylinder direct injection compression
ignition (CI) engine using jatropha biodiesel. Response
surface methodology based on Central composite design
(CCD) is used to design the experiments. Mathematical
models are developed for combustion parameters (Brake
specific fuel consumption (BSFC) and peak cylinder
pressure (Pmax)), performance parameter brake thermal
efficiency (BTE) and emission parameters (CO, NOx,
unburnt HC and smoke) using regression techniques.
These regression equations are further utilized for
simultaneous optimization of combustion (BSFC, Pmax),
performance (BTE) and emission (CO, NOx, HC, smoke)
parameters. As the objective is to maximize BTE and
minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi-
objective optimization problem is formulated. Non-
dominated sorting genetic algorithm-II is used in predict-
ing the Pareto optimal sets of solution. Experiments are
performed at suitable optimal solutions for predicting the
combustion, performance and emission parameters to
check the adequacy of the proposed model. The Pareto
optimal sets of solution can be used as guidelines for the
end users to select optimal combination of engine output

and emission parameters depending upon their own
requirements.

Keywords jatropha biodiesel, fuel properties, response
surface methodology, multi-objective optimization, non-
dominated sorting genetic algorithm-II

1 Introduction

The predicted shortage of petroleum and its products have
increased the search for the substitute of petroleum
derivatives. Energy is the most important input for the
growth of every sector including industrial sector, transport
services, agriculture etc. Around the world, the demand for
energy is increasing exponentially, specifically based on
petroleum. Fossil fuels are non-renewable source of energy
and will be depleted one day due to its limited supply. The
International Energy Agency (2007) suggested that the
global energy demand will grow by more than 50% from
the current consumption by 2030 with China and India
alone making up 45% of the anticipating demand [1]. The
search for petroleum derivative results an alternative fuel
known as “Biodiesel”. It derives from animal fats,
vegetable oils and using waste cooking oil including
triglycerides. The serious global concern is on the
availability of energy in future and climate change due to
global warming. Greenhouse gases are the main cause of
global warming which are produced or emitted by the
combustion of petroleum and its products. Recent data
confirmed that consumption of fossil fuels accounts for the
majority of global anthropogenic Green House Gases
emissions. Emissions continue to grow and CO2 concen-
trations had increased to over 390 ppm (parts per million)
or 39% above preindustrial levels by the end of 2010 [2].
India has maintained a high growth rate during the last
decade resulting in increase in energy demand and
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consumption. Use of renewable and alternate sources of
energy like bio-fuels especially based on non-edible oils is
being promoted to overcome energy demand.
Jatropha Curcas plants are found in almost every part of

developing countries like India, Brazil, Germany etc. Oil
extracted from the seeds of these plants is used for the
production of its biodiesel. Methods like trans-esterifica-
tion, pyrolysis, ultrasonic cavitation etc [3–6]. have been
used for the production of biodiesel. Among these trans-
esterification is a significant method for biodiesel produc-
tion. It is the process of reacting oil (Edible/Non-edible)
with alcohol (Methanol/Ethanol) in the presence of catalyst
(KOH/NaOH). Fatty acid alkyl ester (Biodiesel) and
glycerol along with other by-products are produced. The
production of biodiesels from various edible and non-
edible oils is being enhanced by using different optimiza-
tion techniques like taguchi, response surface methodology
(RSM), artificial neural network (ANN), genetic algorithm
(GA) etc. RSM and GA have been applied successfully for
predicting optimum reaction conditions for maximum
production of Jatropha and Karanja biodiesel by Dhingra
et al. [3,4]. One of the reasons for using biodiesel is the
emissions reduction. Bojan et al. [5] predicted the optimum
value of biodiesel yield at a particular combination of
reaction variables using RSM.
The performance tests of biodiesels from edible and

non-edible oils were conducted by various researchers [6–
20] for predicting the variation of BSFC, BTE, emission
parameters (CO, NOx, HC, smoke etc.) with load, speed
and injection timing. The multi-objective optimization
techniques like NSGA (Non-dominated sorting genetic
algorithm), MOGA (Multi-objective genetic algorithm),
Desirability approach etc.) have been applied for predict-
ing the optimal sets of solution [21–23]. Deb et al. [24]
proposed the modified version of NSGA in multi-objective

technique (NSGA-II) by evaluating the best optimal
solutions. Sharing parameter was then eliminated by the
modification of NSGA II as developed by Agrawal et al.
[25]. NSGA-II helps in predicting the different sets of
optimal solution for the process parameters involved [26].
It is found that no work has been carried out for the

evaluation of performance parameters in CI engine by
using the NSGA-II approach. Earlier the authors have used
RSM and GA techniques for optimizing the process
parameters for the production of biodiesel from Jatropha
and Karanja oils. This research paper focus on production
of Jatropha biodiesel, study of combustion (BSFC, Pmax),
performance (BTE) and emission (CO, NOx, HC and
Smoke) parameters behavior in CI engine with variation of
load, compression ratio and blending ratio using RSM.
Regression equations were predicted from analysis of
variance (ANOVA) for further use in NSGA-II developed
computer program in MATLAB ver. 7.11.0.584 (R2010b)
to predict optimal conditions of Jatropha biodiesel in a
single cylinder direct injection diesel engine.

2 Experimental set-up design and
methodology

The jatropha ethyl ester is produced from trans-esterifica-
tion process by Authors already predicted optimum
conditions by RSM approach [3]. The different fuel
properties of jatropha curcas, its biodiesel blends, diesel
fuel are shown in Table 1 along with American standard for
testing and materials (ASTM) standards of biodiesel. It has
been found that most of the important properties of
jatropha and its blends are closer to the standard values. A
diesel engine setup has been designed for predicting the
behavior of different combustion, performance and emis-

Table 1 Fuel properties of Jatropha oil, its biodiesel blends, diesel fuel and standard values of biodiesel

Fuel property Jatropha Diesel B11.25 B15.81 B22.5 B29.18 B33.75 B100 Biodiesel standards

Oil ASTM D6751-02 EN 14214

Density at 15°C
/(kg∙m–3)

865 866 867 868 869 871 872 873 – 860–900

Viscosity at 40°C
/(mm2∙s–1)

54 3.4 3.6 3.8 4 4.3 4.35 4.23 1.9 – 6.0 3.5 – 5.0

Calorific value /(kJ∙kg–1) 42275 43500 42305 42330 42450 42500 42525 42673 – –

Acid value
/ (mg KOH∙g–1)

2.5 0.07 0.08 0.17 0.19 0.21 0.225 0.25 < 0.8 < 0.50

Flash point/°C 220 71 95 125 146 156 153 148 < 130 > 120

Pour point/°C 3.1 1 – 3 0 1 2 2.5 4.2 – –

Water content/% 0.07 0.06 0.04 0.02 0.02 0.03 0.025 0.02 < 0.03 < 0.05

Ash content/% 0.75 0.01 0.012 0.014 0.014 0.014 0.013 0.015 < 0.02 < 0.02

Carbon residue 3.54 0.17 0.19 0.20 0.21 0.20 0.19 0.15 – < 0.3

Sulphur content/% 0.03 0.025 0.02 0.015 0.01 0.05 0.02 NIL 15 ppm max –
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sion parameters using jatropha biodiesel as fuel. The
specification of the setup is as shown in Table 2. The
schematic diagram of the testing engine with their different

components is as shown in Fig. 1. The variables affecting
the engine parameters are found from various research
articles [9–17]. Three significant variables blending ratio,
load torque and compression ratio with their limits to
perform the experiments are analyzed as shown in Table 3.
Provisions of all the factors (Three) variation were
provided in the engine setup at a constant injection timing,
fuel spray angle and speed. Experiments were designed on
the basis of input variables in the engine and corresponding
response was measured at a particular combination of
variables obtained from design expert version 6.0 stat ease
inc. USA as shown in Table 3. Following are the steps for
the measurement of different responses:
(1) The fuel consumption rate and brake thermal

efficiency is measured by the data acquisition system
using software (Engine soft) installed in it.
(2) Cylinder pressure measured using AVL GM12D

miniature pressure sensor.
(3) Concentration of exhaust gases (CO, NOx and HC)

are measured by AVL Di gas 4000 light analyzer.
(4) The smoke concentration is measured using flue gas

analyzer.
The individual response values were then entered in the

experimental design for the prediction of regression
models of all the responses and its behavior with regards
to input variables.

Fig. 1 Schematic diagram of the engine setup

Table 2 Engine Specification

Component Specification

Make type Kirloskar

Engine type Single Cylinder 4-Stroke, Water Cooled

Compression ratio Variable ranging from 12 to 18

Rated power 3.5 kW@1500 R.P.M

Stroke 110 mm

Bore 87.5 mm

Connecting rod length 234 mm

Loading device Eddy current dynamometer

Load indicator Digital, Range 0–50 Kg, Supply 230VAC

Load sensor Load cell, type strain gauge, range 0–50 Kg

Speed indicator Digital with non contact type speed sensor

Temperature sensor Thermocouple, Type K

Rotameter Engine cooling 40-400 LPH; Calorimeter

Injection pressure 220 bar

Injection timing 23° bTDC

Fuel spray angle 120°
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3 Behavior of engine parameters with input
variables using RSM

RSM is a group of statistical tools for predicting optimal
responses based on different input conditions. It is useful
for analyzing the problems in which a response is
influenced by several variables. The experimental design
is developed from the levels of variables affecting the
various responses. A Central composite rotatable design
(CCRD) is selected for predicting the behavior of engine
parameters with load, blending ratio and compression
ratio. Five levels of three factors are proposed in design
expert version 6.0 stat ease inc. USA along with their limits
to perform the experiments as shown in Table 3. A total of
20 experiments are performed by using full factorial
design. Engine parameters are measured from the standard
instruments mentioned above. The predicted model
response must be quadratic as represented by Eq. (1).

Y ¼ β0 þ
X

βixi þ
X

βiix
2
i þ

X
βijxixj (1)

3.1 Significance test from analysis of variance (ANOVA)
for different response terms and its precision

The various precision values of predicted models and
probability value of all the terms for response models are
shown in Table 5 and Table 6. The model terms are
significant for p-value less than 0.05 and insignificant for
value greater than 0.1. R2, Adjusted R2 and predicted R2 are
closer for all the response models which indicate that error
between actual and predicted responses are less. Adequate
precision measures the signal to noise ratio. A ratio greater
than 4 is desirable. It has been shown in Table 5 that all the
response models have adequate precision greater than 4.
So these models can be used to navigate the design space.
Moreover PRESS values of predicted models are smaller
that shows the model predictions closer to the experimental
values.

3.2 BSFC model

The most significant terms of BSFC model are X2, X1
2,

Table 3 Variable constraints in response surface methodology

Variables Symbol Unit Low High

1 Blending ratio X1 % V/V 11.25 33.75

2 Load torque X2 N-m 7.5 12.5

5 Compression ratio X5 V/V 13.5 16.5

Table 4 Experimental design for combination of input variables in the engine and their responses

Exp. No. Type X1 X2 X3 BSFCa) BTEb) c)Pmax Sqrt(CO)d) e) Sqrt(NOx) Log10 (HC)
f) Sqrt (Smoke)g)

1 Factorial 15.81 8.51 14.10 0.608 13.95 54 0.196 185 14.55 13.56

2 Factorial 29.18 8.51 14.10 0.572 17.63 53 0.234 185 14.86 13.97

3 Factorial 15.81 11.48 14.10 0.418 23.97 56 0.278 213.7 43.94 34.97

4 Factorial 29.18 11.48 14.10 0.437 25.68 53 0.272 210 45.61 38.74

5 Factorial 15.81 8.51 15.89 0.684 7.638 58 0.149 170.5 15.06 14.58

6 Factorial 29.18 8.51 15.89 0.583 16.86 61 0.219 185 15.75 14.94

7 Factorial 15.81 11.48 15.89 0.339 29.98 54 0.581 252.5 46.84 40.73

8 Factorial 29.18 11.48 15.89 0.369 25.95 56 0.351 208.6 48.92 41.72

9 Axial 11.25 10 15 0.495 22.54 51 0.265 185 11.74 24.58

10 Axial 33.75 10 15 0.478 22.76 53 0.26 185 12.73 24.95

11 Axial 22.5 7.5 15 0.785 7.5 53 0.5 279.6 15 7

12 Axial 22.5 12.5 15 0.295 32.94 52 0.65 308.5 65.54 46.53

13 Axial 22.5 10 13.5 0.503 24.57 52 0.294 214.5 13.06 20.74

14 Axial 22.5 10 16.5 0.522 25.98 66 0.317 213.8 13.75 23.85

15 Center 22.5 10 15 0.9 45 90 2.1 450 750 13.56

16 Center 22.5 10 15 0.9 45 90 2.1 450 750 13.56

17 Center 22.5 10 15 0.9 45 90 2.1 450 750 13.56

a) kg/kwh; b) N-m; c) bar; d) vol. %; e) parts per million (ppm); f) parts per million (ppm); g) vol.

84 Front. Mech. Eng. 2014, 9(1): 81–94



X2
2, X3

2, X1X2 and X2X3 as indicated from Table 6. Even
though X1 and X2 are not significant terms but their square
terms are significant since probability values are< 0.05.
Adequate precision of 32.89> 4 indicates that the model
prediction values are closer to the experimental values. A
lesser value of PRESS shows that error between experi-
mental and predicted values of the BSFC model is smaller
which further concludes the significance. Its regression
Eq. (2) of quadratic nature shows that there must be one
optimum point occurs at particular combination of input
variables. The three-dimensional surface behavior of
BSFC with blending ratio, load torque and compression
ratio has been shown in Figs. 2(a) and 2(b), respectively.
The constant contour lines in corresponding figures show
the lower BSFC has been attained by decreasing the
blending ratio, increasing the load torque and decreasing
the compression ratio. It can also be observed that BSFC
decreases when the load toque is increased at any given
blending ratio. However, BSFC increases when compres-
sion ratio is increased at any given blending ratio in engine
setup.

BSFC ¼ – 46:68493þ 0:13685*X1 þ 1:32378*X2

þ 5:31712*X3 – 3:21186
*10 – 3X2

1

– 0:056480*X2
2 – 0:16911

*X2
3

þ 2:33817*10 – 3X1X2 – 1:13137
*10 – 3X1X3

– 0:022062*X2X3 (2)

3.3 BTE model

It is seen from Table 6 that the significant model terms of
BTE model are load torque, square and interaction terms of
(blending ratio, load torque and compression ratio). The
response surface variations of BTE model at 1500 r$min–1

and 350 CAD are shown in Figs. 3(a) and 3(b),
respectively. It shows that as the load torque advances
BTE increases at a given blending ratio. This may be due to
the higher cetane number at a particular blending ratio
which leads to better combustible mixture of air and fuel.
Figure 3(b) indicates that when the compression ratio is
increased BTE initially increases and later it starts to

Table 5 Precision index values of different response models

Model
Precision index values

Adjusted-a)R2 Predicted R2 PRESSb) Adeq- precision

BSFC 0.9872 0.9477 0.046 32.891

BTE 0.9802 0.9127 272.56 28.845

Sqrt(Pmax) 0.9794 0.9180 436.21 23.227

Sqrt(CO) 0.9901 0.9580 0.15 33.556

Sqrt(NOx) 0.9789 0.9125 18.15 23.830

Log10HC 0.9533 0.8144 2.02 15.519

Sqrt(Smoke) 0.9951 0.9800 0.56 69.124

a) Coefficient of determination, b) Predicted residual sum of square

Table 6 Probability values (p-values) of different performance and emission parameter models by Analysis of variance (ANOVA)

Model terms
P a) - values

BSFC BTE Pmax Sqrt(CO) Sqrt(NOx) Log10 (HC) Sqrt (Smoke)

X1 0.2250 0.1316 0.6334 0.7095 0.5736 0.8430 0.1097

X2 < 0.0001 < 0.0001 0.3508 0.0005 0.0028 0.0005 < 0.0001

X3 0.7621 0.8210 0.0021 0.1210 0.7258 0.8264 0.0007

X1
2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

X2
2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

X3
2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

X1X2 0.0225 0.0138 0.6680 0.0335 0.1502 0.9891 0.2631

X1X3 0.4520 0.9695 0.2145 0.3338 0.5807 0.9782 0.3388

X2X3 0.0069 0.0257 0.1363 0.0108 0.2225 0.9698 0.0977

a) Significant for value< 0.05
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decrease at a constant blending ratio. This is due to poor
mixture formation at high compression ratio because of
unbalance mixture of air and fuel enters into the
combustion chamber. Also similar trends occur with the
advancement of blending ratio at a constant compression
ratio and load torque. The regression Eq. (3) of BTE model
has been predicted by the use of analysis of variance
(ANOVA).

BTE ¼ – 2400:88522þ 10:28829*X1 þ 71:43483*X2

þ 259:72937*X3 – 0:18203
*X2

1 – 4:07476
*X2

2

– 9:07056*X2
3 – 0:19143

*X1X2

– 4:19026*10 – 3X1X3 þ 1:26091*X2X3 (3)

3.4 Pmax model

The p-values of square of peak cylinder pressure are shown
in Table 6. For simplicity take square root of Pmax due to its
very low values. It is clear from the table that compression
ratio and square of individual terms are significant except
load torque, blending ratio and interaction terms. Also
precision index values of the Pmax model measure adeq.
Precision of 23.227 along with adj. R2 and pred. R2 values
which are found to be closer as shown in Table 5. Hence
predicted model can be used to measure the responses as
well. Also the mathematical Eq. (4) shows that Pmax is very
well predictor of optimum conditions at a given variables.
The surface plots in three dimensions are indicated in

Fig. 2 Surface variation of BSFC response model across blending ratio, load torque and compression ratio

Fig. 3 Surface variation of BTE response model across blending ratio, load torque and compression ratio
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Figs. 4(a) and 4(b). One can visualize from the variations
that as the load toque is advanced the Pmax starts increasing
and maximum at a particular load toque then starts
decreasing. Similar behaviors occur for the individual
variable of either blending ratio or compression ratio on
Pmax model. This is because of improved combustion
characteristics at higher compression ratio and load torque.

Pmax ¼ – 3669:50268þ 10:41183*X1 þ 129:71550*X2

þ 396:37136*X3 – 0:28479
*X2

1 – 5:68691
*X2

2

– 12:90809*X2
3 – 0:037712

*X1X2 þ 0:18856*X1X3

– 1:03709*X2X3 (4)

3.5 CO emission model

The precision values for CO model are found to be
significant as listed in Table 5. These values indicate that
the model can be employed to validate the response. Also
the probability values listed in Table 6 shows that the most
significant variable to influence CO model is load torque
along with the interaction terms. Equation (5) predicts the
variation of responses in relation to blending ratio, load
torque and compression ratio. The corresponding three
dimensional surface plots are shown in Figs. 5(a) and 5(b),
respectively. It can be observed from these figures that CO
emission levels are increased with the advancement of both
load torque and blending ratio. Similar trend occurs for the
enhancement of blending ratio and compression ratio. This
may be due to better combustion characteristics at higher
loads and compression ratio.

Sqrt COð Þ ¼ – 102:47076þ 0:41566*X1 þ 1:86746*X2

þ 11:94069*X3 – 7:55818
*10 – 3X2

1

– 0:11396*X2
2 – 0:40724

*X2
3

– 3:75222*10 – 3X1X2 – 2:57927
*10 – 3X1X3

þ 0:035673*X2X3 (5)

3.6 NOx emission model

The significant terms obtained from p-values for nitrogen
oxide model are load torque (X2), Interaction between all
the variables i.e. X1X2, X1X3 and X2X3 as listed in Table 6.
Its surface variation at 1500 r$min–1 and 350 CAD
injection timing are shown in Figs. 6(a) and 6(b),
respectively. It can be inferred from the figures that as
the load torque advances NO emission increases at a
constant blending ratio. Similarly as the compression ratio
increases NO emissions increases. The reason for this is
that as the load torque and compression ratio advances
premixed combustion phase occurs. The response pre-
dicted values of NO model are represented in Eq. (6) in
terms of blending ratio, load torque and compression ratio.

Sqrt NOxð Þ ¼ – 765:06345þ 3:33115*X1 þ 12:59961*X2

þ 91:17741*X3 – 0:062945
*X2

1

– 0:70774*X2
2 – 3:08084

*X2
3

– 0:026616*X1X2 – 0:016250
*X1X3

þ 0:16660*X2X3 (6)

Fig. 4 Surface variation of Pmax response model across blending ratio, load torque and compression ratio
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3.7 Un-burnt hydrocarbon (HC) emissions model

The reasons for un-burnt hydrocarbon emissions in engine
running on jatropha biodiesels are incomplete combustion
in the cylinder, improper mixing of fuel with air and
quenching of the oxidation process. The precision and p-
values of HC emissions model are represented in Tables 5
and 6. It has been observed that the model is very well
fitted to the actual values since all the precision parameters
lie in the range of significant values. The response
predictions of HC model can be represented by the Eq.

(7) and total of four terms (X2, X1X2, X1X3 and X2X3) are
significant in producing HC emissions as indicated in
Table 6. The three dimensional surface plots of HC model
at 1500 r$min–1 and 350 CAD are shown in Figs. 7(a) and 7
(b). As the load torque increases with the advancement of
blending ratio HC emission levels are increased due to the
inefficient combustion. Similarly as the compression ratio
advances with the increase in blending ratio un-burnt
hydrocarbon levels initially increases and at certain point it
starts decreasing. This might be due to under mixing in the
cylinder.

Fig. 6 Surface variation of Sqrt(NOx) response model across blending ratio, load torque and compression ratio

Fig. 5 Surface variation of Sqrt(CO) response model across blending ratio, load torque and compression ratio
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Log10 HCð Þ ¼ – 182:12527þ 0:57186*X1 þ 3:99162*X2

þ 21:03397*X3 – 0:012787
*X2

1

– 0:19348*X2
2 – 0:70153

*X2
3

þ8:11844*10 – 5X1X2þ2:71724*10 – 4*X1X3

þ 1:69324*10 – 3X2X3 (7)

3.8 Smoke emissions model

The ANOVA and precision results indicate that except
interaction terms X1X2, X1X3 remaining terms are
significant in the regression Eq. (8). This shows current
model is very well predictor of responses in relation to
input variables. The parameters involved in the precision
index are in range of significant values (Table 5). The three
dimensional surface plots of smoke model are shown in
Figs. 8(a) and 8(b), respectively. One can observed from
these figures that smoke density increases with the increase
in load torque and blending ratio. This may be due to the
lean mixture of fuel and air at higher load condition. Also
smoke emissions increases with the advancement of
compression ratio with corresponding increase in blending
ratio at a speed of 1500 r$min–1 and 350 CAD injection
timing. This is due to improper mixing of air fuel ratio at
higher compression ratio.

Sqrt Smokeð Þ ¼133:78384 – 0:22401*X1 – 3:48682
*X2

– 15:04873*X3 þ 0:010848*X2
1

þ 0:18082*X2
2 þ 0:49577*X2

3

þ3:59009*10 – 3X1X2–5:06832
*10 – 3X1X3

þ 0:041469*X2X3 (8)

It has been concluded from the above discussion that
response surface methodology is a competent approach in
predicted the behavior of multi-objective responses in
relation to significant input variables. Moreover the
mathematical equation developed from ANOVA result
helps for further evaluating the optimum solutions using
multi-objective optimization methods. So, there is need to
develop the multi-objective optimization code for further
selecting the solution that will fit to use in the diesel
engines.

4 Multi-objective optimization

The objective is to maximize BTE and minimize BSFC,
Pmax, CO, NOx, HC, smoke in a single cylinder direct
injection CI engine using jatropha biodiesel. Therefore a
multi-objective optimization problem is formulated. The
simultaneous optimization of BTE, BSFC, Pmax, CO, NOx,
HC, smoke has been carried out.
Non dominated sorting genetic algorithm (NSGA) is

criticized for its computational complexity and lack of
elitism. To get the equivalent solutions of various varieties,
NSGA is relied on the sharing concept. There must be a
requirement of sharing parameter σshare specifications
which is the major problem for using NSGA proposed
by Raghuvanshi et al. [22] To overcome the elitism and
sharing parameter chosen as priority, NSGA II is used
which is better sorting algorithm proposed by Deb et al.
[24] and a modified version is developed by Agarwal et al.
[25] NSGA-II code is used in MATLAB 7.11.0.584
(R2010b) for selecting the proposed optimum solutions.
The important steps/functions to run the computer program
are [21–26].

Fig. 7 Surface variation of Log10(HC) response model across blending ratio, load torque and compression ratio
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Step I. Population Initialization
A random population P is created initially which

depends upon the constraints and problem range, if any.
Step II. Non-dominated sorting
Based on the domination the initialized population is

sorted. In a non-dominated set with respect to all the
objectives, no member cannot be said to better than any
other member. For every solution two entities are
evaluated:
(a) Number of solutions (np) that dominate the solution p

and
(b) Solution sets (Sp) that dominate p.
If np= 0; it means out of all solution, no solution

dominates p and p lie in the first front which further given
1st rank to individual p i.e., irank= 1. This has been done for
all individuals’ population P. For every solution p with np=
0, visit each member q of its set Sp and reduced the
domination count to 1. If for any member of q, np becomes
zero, it must be put in a separate list Q. Members listed in
Q denotes second non-dominated front. This is continued
until identification of all the fronts has been done.
Step III. Crowding distance
It is defined as the sum of individual solution distance

values with respect to each objective. Also it is the average
distance of two solutions on the consecutive side of current
solution corresponding to each objective function. The
main requirement for crowding distance is population
sorting of each objective function value in increasing order
of magnitude for each front. Assign the infinite distance
values for the solutions with a minimum and maximum
function values for every objective function. Remaining
solutions are given a normalized difference in the function
values of two consecutive solutions.

Step IV. Selection
Two main criteria on the basis of which the solution is

selected: Non domination rank (irank) and crowding
distance (idistance). A solution is selected if (i) irank< jrank
or irank= jrank AND (idistance> jdistance). Hence between two
solutions of different ranks, better rank (Front) solution is
selected. And if the solutions are of same rank then
solution lie in less crowded distance is selected.
Step V. Genetic operators
Simulate Binary Crossover is used for reproduction. It is

worked on two parent solutions and creating an offspring.
It is simulated by the working principle of single point
crossover on binary strings. Two properties of SBX
operator are: Offspring difference is proportional to parent
solutions and near parent solutions are significantly chosen
as offspring than distant solutions from parents.
To keep the diversity of population, mutation is needed

and a random number is generated based on small mutation
probability pm. It is evaluated by 1/n, where n is the
number of input variables (n = 3 for the present work).
Multiply the generated number by difference of minimum
and maximum limits of parents for introducing the changes
in the offspring.
Step VI. Recombination and selection
Combine the offspring population with the current

generation population and the selection is done to assign
the individuals of next generation. Due to the inclusion of
previous and current populations in the new population,
elitism is ensured. Unless the population size exceeds the
current population size the newly developed generation is
filled by each front.
Simultaneous optimization of seven objectives are done

by considering regression Eqs. (2)–(8) with input variables

Fig. 8 Surface variation of Sqrt(Smoke) response model across blending ratio, load torque and compression ratio
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blending ratio (X1), load torque (X2) and compression ratio
(X3) along with their minimum and maximum values from
Table 4. The square root response of CO, NOx and smoke
is taken because their range of variation is small while the
logarithmic HC is taken due to the larger variation in range.
These predicted models are utilized in NSGA-II code as
fitness function. Figure 9 shows the flowchart of NSGA-II.
Table 7 shows the genetic algorithm parameters used in the
MATLAB program and pare to optimal front of 100
solutions are obtained after 500 generations. Out of these,
selection of solutions is done on the basis of rank and
crowding distance. Few optimal solutions are as shown in
Table 8. It is seen from the optimal solutions that no
solutions in the non-dominated sets are absolutely better
than any other. Any of these solutions are better in terms of
individual objective requirements.

Biodiesel has low value of brake thermal efficiency as
compared to commercial diesel when used in compression
ignition engine due to high viscosity and low density. The
combustion and emission parameters optimization has
been predicted with primary objective is to minimize them
except performance parameter (BTE) which is to be
maximized. So from the 100 solutions predicted the

variation of BTE with input variables (Blending ratio, load
and compression ratio) has been drawn as shown in
Figs. 10(a), 10(b) and 10(c). It has been found that
significant changes in the values of BTE are predicted as
compared to response surface methodology approach due
to the accuracy in the simultaneous optimization using
genetic algorithm code by varying the population and
generation.

Confirmatory experiments are done to check the
accuracy of the optimization results. Five solutions are

Fig. 9 NSGA-II flowchart

Fig. 10 (a) Variation of brake thermal efficiency against the
blending ratio. (b) Variation of brake thermal efficiency against the
compression ratio. (c) Variation of brake thermal efficiency against
load torque
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randomly chosen from Table 8 and they are at serial
number 4, 5, 6, 13, 21. Experiments have been performed
at these five optimal input variable combinations and the
responses have been measured. It is seen from Table 9 that

error between the actual and predicted value of responses
are less than 5%which shows the excellent reproduction of
results.

Table 7 NSGA-II operators used in MATLAB code

S. No Parameter Type Value/probability

1 Population size ——————————————— 100

2 Number of Generations ——————————————— 500

3 Crossover Simulated binary 0.9

4 Mutation Polynomial 0.166

5 Selection Non-dominated sorting and crowding
distance

———————

Table 8 Pareto optimum solution sets predicted by NSGA-II package

S. No X1 X2 X3 BSFC BTE Pmax CO NOx HC Smoke

1 11.25 12.5 13.5 0.43 13.46 8.7 1.27 7.12 15.8 126.11

2 11.89 12.28 13.76 0.197 0.44 9.76 0.33 43.42 2.13 112.14

3 12.51 7.8 14.91 0.55 7.9 33.39 10 106.2 2.04 42.77

4 17.35 8.88 14.96 0.85 28.34 75.13 1.09 331.13 128.96 49.44

5 18.51 7.98 14.92 0.8 14.55 62.23 0.58 272.08 36.89 48.27

6 19.08 11.62 15.8 0.43 36.11 63.17 0.91 313.08 100.32 104.82

7 19.15 11.62 15.92 0.39 34.56 60.69 0.78 293.37 73.11 107.76

8 19.16 11.88 15.9 0.31 32.71 55.54 0.66 279.27 55.64 115.64

9 21.37 10.88 14.76 0.77 44.87 83.49 1.83 429.03 609.49 84.78

10 21.57 9.15 15.02 0.93 37.78 85.91 1.76 414.56 386.23 61.064

11 21.62 10.7 15.63 0.73 43.03 82.6 1.65 398.49 384.56 87.87

12 21.64 11.18 15.72 0.6 41.07 75.57 1.87 369.14 252.03 100.54

13 21.93 9.23 15.04 0.93 38.95 86.92 1.82 421.34 430.7 63.02

14 21.95 11.09 15.89 0.58 39.24 73.8 1.18 343.32 175.85 102.83

15 21.97 10.95 15.72 0.66 41.83 78.83 1.47 378.58 293.42 96.17

16 22.02 10.87 15.85 0.64 40.25 77.34 1.31 357.42 218.41 96.96

17 22.28 10.26 15.02 0.87 45.94 89.4 2.11 452.66 777.53 77.06

18 22.49 10.38 14.99 0.85 46.17 88.85 2.1 451.96 783.83 79.71

19 22.5 10.16 15.04 0.88 45.68 89.75 2.11 452.36 766.72 76.36

20 22.52 10.56 15.04 0.83 46.32 87.89 2.06 449.4 770.67 83.35

21 22.63 10.98 15.64 0.67 42.64 79.88 1.55 389.39 347.2 98.44

22 22.64 9.95 15.11 0.9 44.71 90.08 2.09 448.34 707.6 73.99

23 28.63 10.58 15.5 0.65 37.63 75.68 1.08 320.41 175.38 123.43

24 30.66 11.45 16.13 0.192 20.04 44.89 0.06 139.94 8.70 184.41

25 30.69 12.25 16.34 0.15 7.17 19.93 0.06 70.04 1.288 229.82

26 31.47 12.21 16.35 0.18 4.994 17.39 0.12 56.7 1.07 237.16

27 32.662 12.47 16.5 0.423 6.68 1.42 0.67 15.84 6.41 276.22

28 33.75 7.5 13.5 0.16 23.9 19.64 0.96 6.2 81.28 158.5

29 33.75 7.5 13.6 0.112 21.37 14.73 0.75 11.56 48.97 154.5

30 33.75 12.5 16.5 0.5 11.7 8.53 1.04 5.38 13.8 294.46
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5 Conclusions

This research has applied multi-objective optimization of
performance and emission parameters in a single cylinder
four stroke direct injection diesel engine using RSM and
NSGA-II. Mathematical relations are predicted for com-
bustion parameters (BSFC and Pmax), performance para-
meters (BTE) and emission parameters (CO, NOx, unburnt
HC and smoke) using regression analysis. NSGA-II
algorithm is then used for multi-objective optimization of
performance and emission parameters. Based on the
findings of the work, following specific conclusions are
drawn:
(a) Empirical relation of BSFC, BTE, Pmax, CO, NOx,

unburnt HC and smoke are predicted by using response
surface methodology (RSM) approach.
(b) Three dimensional surface and contour plots of

performance and emission parameters are studied with
significant variation in relation to blending ratio, load
torque and compression ratio.
(c) Significant change in values of performance para-

meter (BTE) by NSGA-II is obtained in comparison to
response surface methodology approach.
(d) A non-dominated solution sets are obtained.

Confirmatory experiments are then conducted to verify
the predicted optimal sets of solution, to be useful for end
users in selecting the optimal combination of engine
combustion, performance and emission parameters. Any
one solution can be chosen depending upon the engineer’s
requirement.
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