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Abstract This work presents the existence of buckling
mode switching with respect to the radius of concentric
rigid ring support. The buckling mode may not be
axisymmetric as previously assumed. In general, the
plate may buckle in an axisymmetric mode but when the
radius of the ring support becomes small, the plate may
buckle in an asymmetric mode. The optimum radius of the
concentric rigid ring support for maximum buckling load is
also determined. Introducing internal rigid ring support,
when placed at an optimal position increases the elastic
buckling load capacity by 149.39 percent. The numerical
results obtained are in good agreement with the previously
published data.
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1 Introduction

Buckling of plates is an important topic in many
mechanical, civil, marine and aircraft structures. Their
buckling load capacities need to be determined in
situations where in-plane compressive of forces act on
the plates. In fact, the first theoretical examination of
buckling of plates was attributed to Bryan [1]. He
presented the buckling analysis for rectangular plates
under uniform uniaxial compression using the energy
criterion of stability. It should be noted that he was not only

the first to analyze the stability of plates, but also the first to
apply the energy criterion of stability to the buckling
problem of plate. The first event that highlighted the
importance of plate buckling was related to a series of tests
carried out in the labs of University of London on box
beams for Britannia Bridge in 1845 [2]. Many researchers
[3–6] have studied the elastic axisymmetric buckling
problems of circular and annular plates.
Exact analytical solutions are available for circular

plates without internal concentric ring support [7,8]. In
particular, circular plates with concentric ring supports find
applications in aeronautical (instrument mounting bases
for space vehicles), rocket launching pads, aircrafts and
naval vessels (instrument mounting bases). Based on the
Kirchhoff’s theory, the elastic buckling of thin circular
plates has been extensively studied by many authors after
the pioneering work published by Bryan [1]. Since then,
there have been extensive studies on the subject covering
various aspects such as different materials, boundary and
loading conditions. Also the buckling of circular plates
was studied by different authors [9,10]. However, these
sources only considered axisymmetric case, which may not
lead to the correct buckling load. Introducing an internal
ring support may increase the elastic buckling capacity of
in-plane loaded circular plates significantly. Laura et al. [6]
investigated the elastic buckling problem of the aforesaid
type of circular plates, who modeled the plate using the
classical thin plate theory. In their study only axisymmetric
modes are considered. The assumption of axisymmetric
buckling, however, does not necessarily lead to the desired
lowest critical load. Therefore, the asymmetric buckling
problems of circular and annular plates have also been
studied [11–13].
Although the circular symmetry of the problem allows

for its significant simplification, many difficulties very
often arise due to complexity and uncertainty of boundary
conditions. This uncertainty could be due to practical
applications where the edge of the plate does not fall into
the classical boundary conditions. It is an accepted fact that
the condition on a periphery often tends to be in between
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the classical boundary conditions (free, clamped and
simply supported) and may correspond more closely to
some form of elastic restraints, i.e., translational and
rotational restraints [14–17]. In a recent study, Wang and
Wang [4] showed that when the ring support has a small
radius, the buckling mode takes the asymmetric form. But
they have studied only the circular plate with ring support
and elastically restrained edge against rotation. Bhaskara
Rao and Kameswara Rao [17] studied the buckling of
circular plates with an internal elastic ring support and
elastically restrained edges against translation and rotation.
Wang and Wang [14] showed that the axisymmetric mode
assumed by the previous authors might not yield the
correct buckling load. In certain cases, an asymmetric
mode would yield a lower buckling load. But they have
studied only the circular plate with ring support and
elastically restrained edge against rotation. The purpose of
the present work is to complete the results of the buckling
of circular plates with an internal rigid ring support and
elastically restrained edges against translation and rotation
by including the asymmetric modes, thus correctly
determining the buckling loads.

2 Definition of the problem

Consider a thin circular plate of radius R, uniform
thickness h, Young’s modulus E and Poisson’s ratio �
and subjected to a uniform in-plane load, N along its
boundary, as shown in Fig. 1. The circular plate is also
assumed to be made of linearly elastic, homogeneous and
isotropic material. The edge of the circular plate is
elastically restrained edge against rotation and translation
and supported by an internal rigid ring support, as shown in
Fig. 1. The problem here is to determine the elastic critical
buckling load of a circular plate with concentric rigid ring
support and elastically restrained edge against rotation and
translation.

3 Formulation of the problem

The plate is elastically restrained against rotation and
translation at the edge of radius, R and supported on an

internal rigid ring of smaller radius bR as shown in Fig. 1.
Let subscript I denote the inner region 0£r£b and the
subscript II denote the outer region b£r£1. Where r is the
normalized radial distance with R. Here, all lengths are
normalized by R. Using classical (Kirchhoff’s) plate
theory, the following fourth order differential equation
for buckling in polar coordinatesðr,�Þ.

Dr4wþ Nr2w ¼ 0, (1)

where w is the lateral displacement, N is the uniform
compressive load at the edge. After normalizing the lengths
by the radius of the plate R, Eq. (1) can be written as

Dr4wþ k2r2w ¼ 0, (2)

where r2 ¼ ∂2

∂r2
þ 1

r

∂
∂r

þ 1

r2
∂2

∂�2
is the Laplace operator

in the polar coordinates r and �.
After normalization, the inner and outer radius para-

meters are b and 1 respectively. D ¼ Eh3=12ð1 – �2Þ is the
flexural rigidity, w ¼ w=R, is normalized transverse
displacement of the plate. k2 ¼ R2N=D is non-dimensional
load parameter. Suppose there are n nodal diameters. In
polar coordinates ðr,�Þ set

w r,�ð Þ ¼ uðrÞcosðn�Þ: (3)

Considering the boundness at the origin, the general
solution [16] for the two regions is

uI rð Þ ¼ C1Jn krð Þ þ C2Yn krð Þ þ C3r
n

þ C4
logr

r – n

� �
, (4)

uIIðrÞ ¼ C5Jn krð Þ þ C6r
n, (5)

where top form of the Eq. (4) is used for n ¼ 0
(Axisymmetric) and the bottom form is used for n≠0
(Asymmetric), C1,C2,C3,C4,C5 & C6 are constants, Jnð:Þ
&Ynð:Þ are the Bessel functions of the first and second kind
of order, n, respectively. Substituting Eq. (4) into Eq. (3),
gives the following

wI r,�ð Þ ¼   �C1Jn krð Þ þ C2Yn krð Þ þ C3r
n

þC4
logr

r – n

� �  �cos n�ð Þ, (6)

wII r,�ð Þ ¼ C5Jn krð Þ þ C6r
n½ �cosðn�Þ: (7)

The boundary conditions at outer region of the circular
plate in terms of rotational stiffness ðKR1Þ and translational
stiffness ðKT1Þ are given by the following expressions

Mr r,�ð Þ ¼ KR1
∂wI r,�ð Þ

∂r
, (8)

Fig. 1 Buckling of a circular plate with concentric rigid ring
support and elastically restrained edge against rotation and
translation
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Vr r,�ð Þ ¼ –KT1wI r,�ð Þ: (9)

From Eqs. (8) and (9) it can be easily seen that as KR1

and KT1 become equal to infinity, the slope and deflection
become zero and hence corresponds to the case of a
clamped end conditions. The translational spring stiffness
KT1 becomes very important in simulating practical cases
such as a guided end by making KR1 to be equal to infinity
and KT1 equal to zero.
The radial moment and the radial Kirchhoff shear at

outer edge are defined as follows

Mr r,�ð Þ

¼ –
D

R3

∂2wI r,�ð Þ
∂r2

þ �
1

r

∂wI r,�ð Þ
∂r

þ 1

r2
∂2wI r,�ð Þ

∂�2

� �� �
,

(10)

Vr r,�ð Þ ¼ –
D

R3

∂
∂r

r2wI r,�ð Þ þ ð1 – �Þ1
r

�

$
∂
∂�

1

r

∂2wI r,�ð Þ
∂r∂�

–
1

r2
∂wI r,�ð Þ

∂�
 ! #

: (11)

Equations (8) and (10) yield the following

∂2wI r,�ð Þ
∂r2

þ �
1

r

∂wI r,�ð Þ
∂r

þ 1

r2
∂2wI r,�ð Þ

∂�2

� �� �

¼ –R11
∂wI r,�ð Þ

∂r
:

(12)

From Eqs. (9) and (11) we get the following

∂
∂r

r2wI r,�ð Þþð1–�Þ1
r

∂
∂�

1

r

∂2wI r,�ð Þ
∂r∂�

–
1

r2
∂wI r,�ð Þ

∂�
 ! #"

¼ T11wI r,�ð Þ, (13)

where R11 ¼
KR1R

2

D
and T11 ¼

KT1R
3

D
.

Apart from the elastically restrained edge against
rotation and translation, there is an internal rigid ring
support constraint and the continuity requirements of slope
and curvature at the support, i.e., at r ¼ b

wIðb,�Þ ¼ 0, (14)

wIIðb,�Þ ¼ 0, (15)

w#I ðb,�Þ ¼ w#IIðb,�Þ, (16)

w$I ðb,�Þ ¼ w$II ðb,�Þ: (17)

The non-trivial solutions to Eq. (12), (13), (14)–(17) are
sought. The lowest value of k is the square root of the
normalized buckling load. From Eqs. (4), (5), (12), (13)

and (14)–(17) yields the following equations.

k2

4
P2 þ

k

2
� þ R11ð ÞP1 –

k2

2
þ �n2

� �
Jn kð Þ

� �
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4
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2
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þ n n – 1ð Þ 1 – �ð Þ þ R11ð Þ½ �C3

þ
� þ R11ð Þ – 1
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C4 ¼ 0, (18)
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8<
:

9=
;C4 ¼ 0, (19)

where

P1 ¼ Jn – 1ðkÞ – Jnþ1ðkÞ; P2 ¼ Jn – 2ðkÞ þ Jnþ2ðkÞ;
P3 ¼ Jn – 3ðkÞ – Jnþ3ðkÞ; Q1 ¼ Yn – 1ðkÞ – Ynþ1ðkÞ;
Q2 ¼ Yn – 2ðkÞ þ Ynþ2ðkÞ; Q3 ¼ Yn – 3ðkÞ – Ynþ3ðkÞ;

Jn kbð ÞC1 þ Yn kbð ÞC2 þ bnC3 þ
logb

b – n

( )
C4 ¼ 0, (20)

JnðkbÞC5 þ bnC6 ¼ 0, (21)

k

2
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k

2
Qí1 C2 þ nbn – 1C3

þ
1
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– nb – n – 1

8<
:

9=
;C4 –

k

2
Pí1 C5 – nb

n – 1C6 ¼ 0, (22)

k2

4
Pí2 – 2Jn kbð Þð ÞC1 þ

k2

4
Qí2 – 2Yn kbð Þð ÞC2

þn n – 1ð Þbn – 2C3 –

1

b2

n nþ 1ð Þb – n – 2

8<
:

9=
;C4

–
k2

4
Pí2 – 2Jn kbð Þð ÞC5 – n n – 1ð Þbn – 2C6 ¼ 0, (23)

where
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Pí1 ¼ Jn – 1ðkbÞ – Jnþ1ðkbÞ; Pí2 ¼ Jn – 2ðkbÞ þ Jnþ2ðkbÞ;
Qí1 ¼ Yn – 1ðkbÞ – Ynþ1ðkbÞ; Qí2 ¼ Yn – 2ðkbÞ þ Ynþ2ðkbÞ;
The coefficient of C4 has two values corresponding to

region I in Eqs. (18)–(23). Therefore, the top form of Eqs.
(18)–(23) corresponding to region, I is used for n ¼ 0
(axisymmetric buckling) and the bottom form is used for
n≠0 (asymmetric buckling). Therefore, the top form of
Eqs. (18)–(23) are used for n ¼ 0 (axisymmetric buckling)
and the bottom form is used for n≠0 (asymmetric
buckling).

4 Solution

For the given values of n,�,R11,T11, and b the above
set of equations, gives an exact characteristic
equation for non-trivial solutions of the coefficients
C1,C2,C3,C4,C5, and C6. Non-trivial solution, the deter-
minant of ½C�6x6 vanishes. The value of k, calculated from
the characteristic equation by a simple root search method.
Using Maple, computer software with symbolic capabil-
ities, solves this problem. Here, all equations have been
written in the format of the programming, which are
compatible with the maple computer software.

5 Results and discussion

Poisson’s ratio used in the calculations is 0.3. Buckling
load parameters for axisymmetric and asymmetric modes
and for various values of rotational and translational spring
stiffness parameters are determined. Figures 2–5 show the
variations of buckling load parameter k, with respect to the
internal rigid ring support radius b, for various values of
rotational and translational spring stiffness parameters. It is
observed from Figs. 2–5, that for a given value of
rotational and translational spring stiffness parameters,
the curve is composed of two segments. This is due to the
switching of buckling modes. For a smaller internal rigid
ring support radius b, the plate buckles in an asymmetric
mode (i.e., n≠0). In this segment (as shown by dotted
lines in Figs. 2–5) the buckling load decreases as b
decreases in value. For a larger internal rigid ring support
radius b, the plate buckles in an axisymmetric mode (i.e.,
n ¼ 0). In this segment (as shown by continuous lines in
Figs. 2–5) the buckling load increases as b decreases up to
a peak point corresponds to maximum buckling load and
thereafter decreases as b decreases in value as shown in
Figs. 2–5. The cross over radius i.e., mode switching for

various values of rotational and translational spring
stiffness parameters are presented in Table 1. Here, 1016

has been considered as infinity (1 ). As R11 & T11↕ ↓1,
the edge of the plate becomes clamped and as b↕ ↓1,
buckling solution for axisymmetric case is 3.83163, which
is in good agreement with that of Wang and Wang [14].
The optimum location of the ring support and the

corresponding buckling load parameters for various
rotational spring stiffness parameters (R11 ¼ 0:350 & 1)

Fig. 2 Buckling load parameter k, versus internal rigid ring
support radius b, for R11 ¼ 0:3 and T11 ¼ 100

Fig. 3 Buckling load parameter k, versus internal rigid ring
support radius b, for R11 ¼ 0:5 and T11 ¼ 1000

Table 1 The Cross over radius (switching of. buckling mode) of the rigid ring support for various values of rotational, R11 and translational stiffness,

T11 parameters when � ¼ 0:3

R11 ¼ 0:3, T11 ¼ 100 R11 ¼ 0:5, T11 ¼ 1000 R11 ¼ 50, T11 ¼ 1000 R11 ¼ T11 ¼ 1
b 0.1589 0.1102 0.1557 0.1523
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and translational spring stiffness parameters
(T11 ¼ 1001000 & 1) are presented in the Table 2. The

optimum location is the location of the ring support at
which the buckling load parameter k becomes maximum.
It is observed that the optimal rigid ring support radius
parameter decrease with increase in rotational spring
stiffness parameter and also the optimal buckling load
capacity increases with rotational spring stiffness para-
meter. Introducing internal rigid ring support, when placed
at an optimal position increases the elastic buckling
capacity significantly, and the percentage of increase in
buckling loads is presented in Table 2. The percentage
increase in buckling load is calculated by comparing the
buckling load parameter value obtained when the circular
plate is having the ring support with that of circular plate
without having the ring support. It is observed that the
percentage increase in buckling load parameter decreases
with increase in R11. This is due to the amount of increase
in buckling load without ring support with R11 is more than
that of increase in buckling load with rigid ring support
with R11.
The results of this kind were scarce in the literature.

However, the results are compared with the following
cases. Table 3, presents the buckling load parameters k, for
a circular plate with an internal rigid ring support and
elastically restrained edge against rotation, against those
obtained by Wang et al. [4], Laura et al. [6] and Wang et al.
[18]. Reference [4] is considered because the plate can be
considered as thin for τ ¼ h=R ¼ 0:001. It shows that the
present results are in good agreement. The buckling load
parameters k, for clamped and simply supported edges are
compared with those obtained byWang et al. [4] and Wang
et al. [18] as shown in Tables 3 and 4 respectively. The
buckling load parameters for rotational stiffness parameter
R11 ¼ 1 are shown in Table 5. Also the optimum location
of the rigid ring support and the corresponding buckling
load parameters for rotational spring stiffness parameter
0.3, 50 and 1 are calculated by substituting T11 ¼ 1 and
it is in good agreement with earlier results obtained by
Wang [13].

6 Conclusions

The fundamental buckling of thin circular plates with an
internal rigid ring support and elastically restrained edge
against rotation and translation is presented in this paper. It

Fig. 4 Buckling load parameter k, versus internal rigid ring
support radius b, for R11 ¼ 50 and T11 ¼ 1000

Fig. 5 Buckling load parameter k, versus internal rigid ring
support radius b, for R11 ¼ T11 ¼ 1016

Table 2 Optimum location of the rigid ring support; the corresponding buckling load parameters and percentage increase in buckling load

parameters

R11 0.3 50 1
T11 100 1000 1
bopt 0.3211 0.27022 0.2600

kopt 5.53449 6.87832 7.01485

age increase
in buckling load/%

149.39 83.11 83.07
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is observed that the buckling mode switches from
asymmetric mode to axisymmetric mode at a particular
rigid ring support radius. The cross over radius (switching
of mode) is determined for different values of rotational
and translational constraints. The optimal location of the

internal rigid ring support for maximum buckling load is
also found. The optimal location of internal rigid ring
support is affected by the rotational and translational
stiffness parameters. Also, it is observed that for T11 ¼ 0,
the symmetric buckling mode is independent of the

Table 3 Comparison of buckling load parameter k, with Laura et al. [6] and Wang et al. [18] for simply supported edge for rotational stiffness

parameter R11 ¼ 0 & � ¼ 0:3

Rigid ring support radius, b Wang et al. [4] Laura et al. [6] Wang et al. [18] Present

0.1 – 4.5244 4.5235 4.52341

0.2 4.7703 4.7718 4.7702 4.77018

0.3 5.0711 5.0725 5.0710 5.07091

0.4 5.3297 5.3301 5.3296 5.32964

0.5 5.3667 5.3666 5.3666 5.36659

0.6 5.1264 5.1284 5.1261 5.12606

0.7 4.7730 4.7789 4.7727 4.77266

0.8 4.4219 4.4249 4.4215 4.42141

0.9 4.1069 4.1122 4.1063 4.10629

Table 4 Comparison of buckling load parameter k, with Wang et al. [4] and Wang et al. [18] for clamped edge for rotational stiffness parameter

Rigid ring support radius, b Wang et al. [4] Wang et al. [18] Present

0.1 – 6.5009* 6.50095*

0.2 6.9559 6.9558 6.95582

0.3 6.9948 6.9947 6.99475

0.4 6.6627 6.6625 6.66248

0.5 6.0749 6.0745 6.07454

0.6 5.4760 5.4755 5.4755

0.7 4.9532 4.9526 4.95263

0.8 4.5134 4.5127 4.51266

0.9 4.1448 4.1436 4.14357

0.99 3.8667 3.8604 3.86061

* Asymmetric buckling load parameters

Table 5 Comparison of buckling load parameter k, with Laura et al. [6] for rotational stiffness parameter

Rigid ring support radius, b Laura et al. [6] Present

0.1 6.7720 6.50105

0.2 6.9649 6.95592

0.3 6.9964 6.99485

0.4 6.6693 6.66257

0.5 6.0852 6.07454

0.6 5.4845 5.47550

0.7 4.9588 4.95263

0.8 4.5277 4.51266

0.9 4.1509 4.14357
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internal elastic rigid ring support and gives a constant
buckling load. The percentage of increase in buckling load
capacity by introducing concentric rigid ring support,
when it is placed at an optimal position is also determined.
These exact solutions can be used to check numerical or
approximate results.

Nomenclature
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