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Abstract Additive manufacturing (AM) technology has
been researched and developed for more than 20 years.
Rather than removing materials, AM processes make
three-dimensional parts directly from CAD models by
adding materials layer by layer, offering the beneficial
ability to build parts with geometric and material complex-
ities that could not be produced by subtractive manufactur-
ing processes. Through intensive research over the past
two decades, significant progress has been made in the
development and commercialization of new and innova-
tive AM processes, as well as numerous practical
applications in aerospace, automotive, biomedical, energy
and other fields. This paper reviews the main processes,
materials and applications of the current AM technology
and presents future research needs for this technology.
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1 Introduction

The ASTM F42 Technical Committee defines additive
manufacturing (AM) as the “process of joining materials to
make objects from three-dimensional (3D) model data,
usually layer upon layer, as opposed to subtractive
manufacturing methodologies” [1]. It is also known as
additive fabrication, additive processes, direct digital
manufacturing, rapid prototyping, rapid manufacturing,
layer manufacturing and solid freeform fabrication. The
term AM describes additive fabrication processes in the
broadest way that includes AM of prototypes (for design
verification, form and fit checking), tools, patterns, and

concept parts, as well as functional parts with required
properties for direct industrial applications and services.
Since the late 1980s, AM processes have been

investigated, and some have been developed commer-
cially. They include, among others, Stereolithography
(SLA) [2], Fused Deposition Modeling (FDM) [3],
Selective Laser Sintering (SLS) [4], Laminated Objective
Manufacturing (LOM) [5], Three Dimensional Printing
(3DP) [6], and Laser Metal Deposition (LMD) [7]. The
materials used in these processes include photo-curable
resin, polyamide, wax, acrylonitrile-butadiene-styrene
(ABS), polycarbonate, metal/ceramic/polymer powders,
adhesive coated sheets, etc. Using AM technology, three-
dimensional parts are fabricated directly from CADmodels
and built in a layer-by-layer manner. AM technology
allows freeform fabrication of geometrically complex parts
without special fixtures as required in material removal
processes. AM processes significantly shorten the lead
time, are cost-effective for single parts and small batches,
and can build parts not possible with subtractive
manufacturing processes [8].
Over the past 20+ years, the research community has

developed novel AM processes and applied them in the
aerospace [9], automotive [10], biomedical [11,12] and
other fields (e.g., digital art and architectural design). The
driving force from industry also has changed AM
techniques from prototype fabrication to rapid tooling
and rapid manufacturing [13]. Popular applications of
these techniques in the early phases included visual aids,
form evaluation, fit assessment, etc. After intensive
research and development in the areas of materials,
processes, software and equipment, rapid tooling applica-
tions have been developed by directly or indirectly
employing AM technology in the fabrication of tools,
dies and molds. AM also has been used to produce
prototype parts with desired material properties for
evaluation and testing, as well as to manufacture small or
medium quantities of end-use products. Currently, the
direct fabrication of functional end-use products has
become the main trend of AM technology.
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Although AM techniques have progressed greatly, many
challenges remain to be addressed. These challenges
include the limited materials that can be used in AM
processes, relatively poor part accuracy caused by the
“stair-stepping” effect [14], poor repeatability and con-
sistency of the produced parts, and lack of standards for
AM processes. This paper reviews the existing AM
processes, their underlying techniques, commercial sys-
tems, materials used in AM fabrication, and applications in
the aerospace, automotive, biomedical, and energy fields.
Future research needs of AM technology also are
presented.

2 Additive manufacturing processes

Various AM processes have been introduced to the
commercial market by industrial companies [15], includ-
ing the Electro Optical Systems (EOS) in Germany, Arcam
in Sweden, MCP Tooling Technologies in the UK, and
Stratasys, 3D Systems, Optomec, and Z Corporation in the
United States, among others. There are several systems to
classify the AM processes, e.g., the one proposed by the
ASTM F42 Committee [1] classifies the AM processes into
seven areas. In this paper, according to the state of starting
material used, AM processes are divided into the following
four broad categories [16,17]: (1) liquid, (2) filament/paste,

(3) powder and (4) solid sheet. The working principles of
AM processes with the different states of material are
summarized in Table 1.

2.1 Liquid

Stereolithography (SLA) [2], the first commercially
available AM technology, is characterized by the conver-
sion of a liquid photosensitive resin to a solid state by
selective exposure of a resin vat to ultraviolet (UV) light.
In this process, a CAD model is sliced into layers, each of
which then is scanned by the UV light to cure the resin
selectively for each cross-section. After a layer is built, the
platform descends by one layer thickness. Then, a resin-
filled blade sweeps across the part’s cross-section, re-
coating it with one layer thickness of fresh resin. The
subsequent layer then is scanned, adhering to the previous
layer. Commercial SLA machine vendors include 3D
Systems (USA), EOS (Germany), and CMET (Japan). In
addition to the typical polymeric parts, variants of the SLA
process have been developed to fabricate ceramic and
metal parts by using suspensions of ceramic or metal
particles in a photo-curable monomer vat [18–20].
Researchers have also developed alternative processes
using digital mask generators, e.g., the digital micromirror
device (DMD), to build structures using photo-curable
polymers [21,22]. Compared to the UV-laser based SLA

Table 1 Working principles of AM processes

State of starting
material

Process Material preparation Layer creation technique Phase change Typical materials Applications

Liquid SLA Liquid resin in a vat Laser scanning/
light projection

Photopoly-merization UV curable resin,
ceramic suspension

Prototypes, casting
patterns, soft tooling

MJM Liquid polymer in jet Ink-jet printing Cooling & photopoly-
merization

UV curable acrylic
plastic, wax

Prototypes, casting
patterns

RFP Liquid droplet in nozzle On-demand droplet
deposition

Solidification
by freezing

Water Prototypes, casting
patterns

Filament/
Paste

FDM Filament melted
in nozzle

Continuous extrusion
and deposition

Solidification
by cooling

Thermoplastics,
waxes

Prototypes, casting
patterns

Robocasting Paste in nozzle Continuous extrusion – Ceramic paste Functional parts

FEF Paste in nozzle Continuous extrusion Solidification
by freezing

Ceramic paste Functional parts

Powder SLS Powder in bed Laser scanning Partial melting Thermoplastics,
waxes, metal

powder, ceramic
powder

Prototypes, casting
patterns, metal and

ceramic preforms (to be
sintered and infiltrated)

SLM Powder in bed Laser scanning Full melting Metal Tooling, functional parts

EBM Powder in bed Electron beam scanning Full melting Metal Tooling, functional parts

LMD Powder injection
through nozzle

On-demand powder
injection and
melted by laser

Full melting Metal Tooling, metal part
repair, functional parts

3DP Powder in bed Drop-on-demand
binder printing

– Polymer, Metal, ceramic,
other powders

Prototypes, casting
shells, tooling

Solid sheet LOM Laser cutting Feeding and binding of
sheets with adhesives

– Paper, plastic, metal Prototypes, casting
models
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process, the DMD based SLA process is cheaper due to the
elimination of an expensive laser system, and is much
faster because a whole layer is exposed at once instead of
scanning with a single laser beam.
Multi-Jet Modeling (MJM) [23] is an AM process using

a technique akin to ink-jet printing but using multiple
nozzles. The print head generates jets oriented in a linear
array. Each individual jet dispenses UV curable polymer
(or wax) on demand. The MJM head shuttles back and
forth to build each single layer, followed by a UV lamp
flashing to cure the deposited polymer. When one layer is
completed, the platform is descended by one layer
thickness and the next layer is built upon the previous
layer. This process is repeated until the entire part is built.
The advantages of the MJM process include cost-
effectiveness, shorter build time and office-friendliness.
The commercial manufacturer of the MJM equipment is
3D Systems. Another similar process, Jetted Photopoly-
mer, uses wide area inkjets to deposit layers of photo-
polymers to build parts. Jetted Photopolymer process was
developed by Objet (Israel), which recently was acquired
by Stratasys.
Rapid Freeze Prototyping (RFP) [24–28], is an interest-

ing but not yet commercialized AM process that builds ice
parts by selectively depositing and freezing water droplets
layer by layer. In this process, the building environment is
kept at a temperature below water’s freezing point. In
building each layer, water is ejected through a nozzle and
deposited onto the previously solidified ice surface. The
newly deposited water layer is cooled mainly by the ice
surface of the previous layer through conduction. As a
result, the deposited water freezes rapidly and binds to the
previous layer, forming a new layer. RFP is an envir-
onmentally friendly process because it uses water as the
build material. Example ice parts built by the RFP process
are shown in Fig. 1. Besides making ice sculptures, a
potential industrial application is investment casting with
ice patterns [27].

2.2 Filament/paste

Fused Deposition Modeling (FDM) [29] was developed in
the late 1980s. The major manufacturer of FDM systems is
Stratasys Inc. (USA). This process deposits a thread of
molten material usually from a plastic filament, onto a
substrate with the use of a movable head. The material is
heated to a temperature slightly above its melting point
within the head, then extruded though a nozzle to a
substrate and cooled down until it solidifies and forms a
layer. Advances have been made in research to include the
use a multi-nozzle system [30–32], where each nozzle
deposits a different material in order to fabricate objects
with novel properties.
Robocasting [33,34], developed at Sandia National

Laboratories, is an AM technique that extrudes aqueous
ceramic pastes layer by layer to fabricate a 3D part. In
robocasting, ceramic paste is extruded through a nozzle
and deposited on a substrate. After the deposition of each
layer, the vertical axis of the gantry system moves up by
one layer thickness, and the next layer is deposited. This
step repeats until the complete part is built. Control of paste
properties is essential for the robocasting process. The
paste dries from a fluid-like state to a solid-like state
normally within 10 to 15 s of being deposited so that the
next layer can be added without a long wait. If the paste is
too thin, the deposits will come out as liquid beads that
spread uncontrollably. If it is too thick, the deposits will
look like rope. With proper paste viscosity and consis-
tency, each deposited layer maybe a rectangular cross-
section with relatively straight walls and flat tops.
Freeze-form Extrusion Fabrication (FEF) [35–38],

developed at the Missouri University of Science and
Technology (Missouri S&T), is similar to robocasting, but
each layer solidifies by freezing the deposited aqueous
paste. The entire machine is encased in a freezer box,
maintaining the temperature below the freeze point of
water in order to solidify the paste after it is extruded on the
substrate. The FEF process has several unique advantages,
including greatly reduced organic binder, environmental
friendliness, low equipment cost, and the ability to make
functionally graded components from multiple materials.

2.3 Powder

This category of AM processes centers around the
application of material in powder form and selective
formation of the part by a localized heat source to build
each layer. Variations include Selective Laser Sintering
(SLS), in which powder is first spread in a layer and then
scanned selectively by a laser, and Laser Metal Deposition
(LMD), in which powder is sprayed and deposited locally
and melted by a focused high-power laser beam. Two
variations derived from the earlier SLS process focus on
fabricating metal parts. They are Selective Laser MeltingFig. 1 Example ice parts built by the RFP process
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(SLM), in which powder is fully melted instead of partially
melted in SLS, and Electron Beam Melting (EBM), in
which an electron beam functions as the heat source.
Another powder-based AM process is Three-Dimensional
Printing (3DP), in which a part is created from the powder
bed by selectively spraying liquid binder, which solidifies
to form a layer. Compared with other AM processes,
distinguishing advantages of powder-based AM processes
are that they cover a wide range of materials from those
with low to high melting points, and they do not require
any support structures to build parts.
Selective Laser Sintering (SLSTM, or Laser Sintering

(LS)) [39–43] is an AM process that uses a laser beam to
selectively fuse and sinter polymer particles by scanning
cross-sections on the surface of a powder bed layer-by-
layer into an object that has a desired 3-dimensional shape
based on a CAD model. After each cross-section is
scanned, the powder bed is lowered by one layer thickness,
a new layer of material is spread on top, and the process is
repeated until the part building is complete. SLS can
produce parts from a relatively wide range of powder
materials, including wax, polymers, polymer/glass com-
posites, polymer/metal powders, metals, and ceramics
[44,45]. The binding mechanisms include solid state
sintering, chemically induced binding, liquid phase sinter-
ing, and partial melting [43]. For metal and ceramic parts,
the metal or ceramic particles are coated with polymer or
mixed with polymer particles serving as the binder. Post
processing is required to remove the binder and fully sinter
the part. Unlike some other AM processes such as SLA and
FDM, SLS does not require support structures because the
part being fabricated is surrounded by unsintered powder.
Major commercial manufacturers of SLS equipment
include 3D System and EOS.
Selective Laser Melting (SLM) [46–49] is a process

derived from SLS. It completely melts the metal powder
with a high-power laser beam to form a metallic part that is
almost completely dense and does not require post
processing. This results in mechanical properties equal to
or even better than those of rolled metal sheets. The SLM
process is more difficult to control due to the large energy
input to melt metal particles, which causes problems such
as balling, residual stress development, and part deforma-
tion [46]. The manufacturers of commercial SLM equip-
ment include the MCP Realizer, EOS and SLM Solutions.
Currently available alloys used in this process include
stainless steel, cobalt chromium, inconel, and titanium.
Electron Beam Melting (EBM) [50–55], an AM

technology that has emerged very recently, is similar to
the SLM process in some sense because it also uses a
power bed. The major difference is that the EBM process
uses an electron beam rather than a laser beam as its energy
source. EBM builds parts by melting metal powder layer
by layer with an electron beam in a high vacuum chamber.
The fabricated parts are fully dense, free of voids, and

extremely strong. Compared to SLM, EBM generally has a
superior build rate because of its higher energy density and
higher scanning speed; however, the part’s surface finish is
not as good. The EBM process is developed and
commercialized by Arcam in Sweden.
Laser Metal Deposition (LMD) [56–61], also known as

Laser Engineered Net Shaping (LENS), Direct Metal
Deposition (DMD), or laser cladding, is an AM process in
which, as in SLM, the powder is completely melted by a
laser beam, resulting in fully dense parts without the need
for post processing. The major difference between LMD
and SLM is in the provision of the powder material. In
LMD, the powder material is locally supplied by a powder
feeding nozzle (coaxial or off-axial), while in SLM, the
part is fabricated in a powder bed. LMD can build very thin
walls because of the very small heat-effect zone generated
during the process. LMD also can build up material layers
directly on the surfaces of a 3D part and thus can be used
for repair and wear/corrosion protection applications [56].
Commercial vendors of the LMD process include Optomec
(LENSTM), AeroMet (LasformTM) and Precision Optical
Manufacturing (DMDTM).
Three-Dimensional Printing (3DP) [62–68] is an AM

process in which the part is built in a powder bed. An ink-
jet printing head is used to spray a liquid binder into a layer
of powder, and the binder solidifies to form a solid layer.
Then, the piston holding the part descends by one layer
thickness, and a new layer of powder is applied. The 3DP
process is quite flexible in terms of the types of materials
that can be used. Any combination of a powdered material
with a binder that has low enough viscosity to form
droplets could be used. Plastic, ceramic, metal, and metal-
ceramic composite parts can be produced using 3DP. The
disadvantage is that the parts are porous because of density
limitations on the distribution of dry powder. Post-
processing steps including sintering and/or infiltration are
applied in order to make fully functional parts [69]. The
system is commercialized by 3D Systems and Z Corpora-
tion (which was acquired by 3D Systems in 2012).

2.4 Solid sheet

In the Laminated Object Manufacturing (LOM) [70–74]
process, solid material is supplied in sheet form. Process
steps involve cutting a cross-section in the sheet and
attaching the cross-section to the part being built. A sheet
of material is spread across a movable substrate, and a laser
cuts it along the contours of the part’s geometry
determined by the CAD model. The layers bond when a
hot roller compresses the sheet and activates a heat-
sensitive adhesive. The materials used in this process can
be layers of adhesive-coated paper, plastic, or laminated
metal. The main advantage of this method lies in its high
fabrication speed [75], which is achieved because the laser
only has to scan through the contour of the part and not the
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whole cross-section. Because the quality of the surface
finish depends upon the thickness of the sheet, achieving a
very good surface finish is difficult. The major commercial
LOM system is from Helisys Inc. (USA), which later went
out of business and was succeeded by Cubic Technologies
(USA).

3 Materials

In its early development, AM technology was applied to
produce plastic prototypes, and many AM processes (i.e.,
SLA, SLS, FDM, 3DP) have been developed to produce
parts with various plastics. After intense development and
exploration, AM technology has become more and more
capable of producing complex net-shaped or nearly net-
shaped parts in materials that can be directly used as

functional parts, including metals, ceramics and compo-
sites. Table 2 lists the types of materials that can be
processed by AM technology and the corresponding
processes. The various types of materials are discussed
in the following sections.

3.1 Polymers

A polymer is a large molecule composed of repeating
structural units, including a large class of natural and
synthetic polymers. For AM processes, polymer materials
such as photosensitive resin, Nylon, elastomer, ABS and
wax can be used to produce parts with the SLA, SLS, FDM
and 3DP processes. Nylon, i.e., polyamide (PA) [107,108],
is one of the most widely used and investigated polymers
in the SLS process because it melts and bonds by laser
better than other polymers [41]. ABS plastic is also a

Table 2 Materials and corresponding AM processes

Material type AM process(es)
Manufacturer/research

institute(s)
Material(s)

Polymersa) Thermo-setting SLA, MJM 3D Systems Photo-curable polymers

Thermo-plastic MJM 3D Systems Wax

SLS EOS Polyamide 12, GF polyamide, polystyrene

FDM Stratasys ABS, PC-ABS, PC, ULTEM

3DP 3D Systems Acrylic plastics, wax

Metalsa) SLM EOS Stainless steel GP1, PH1 and 17-4, cobalt chrome MP1,
titanium Ti6Al4V, Ti6Al4V ELI and TiCP, IN718,

maraging steel MS1, AlSi20Mg

LDM/LENS Optomec Steel H13, 17-4 PH, PH 13-8 Mo, 304, 316 and 420,
aluminum 4047, titanium TiCP, Ti-6-4, Ti-6-2-4-2 and Ti6-

2-4-6, IN625, IN617, Cu-Ni alloy, cobalt satellite 21

EBM Arcam Ti6Al4V, Ti6Al4V ELI, cobalt chrome

Ceramicsb) SLA [76–78] Suspension of Zirconia, silica, alumina, or other ceramic
particles in liquid resin

FDM [79–81] Alumina, PZT, Si3N4, zirconia, silica, bioceramic

SLS [82–85] Alumina, silica, zirconia, ZrB2, bioceramic, graphite,
bioglass, and various sands

3DP [64,86] Zirconia, silica, alumina, Ti3SiC2, bioceramic, and various
sands

Compositesb) Uniform composites FDM [87–89] Polymer-metal, polymer-ceramic, short fiber-reinforced
composites

3DP [90,91] Polymer-matrix, metal-ceramic, ceramic-ceramic short
fiber-reinforced composites

LOM [92–94] Polymer-matrix, ceramic-matrix, fiber and particulate-
reinforced composites

SLS, SLM [95–100] Metal-metal, metal-ceramic, ceramic-ceramic, polymer-
matrix, short fiber-reinforced composites

FGM LMD/LENS [57,101–105] CoCrMo/Ti6Al4V, TiC/Ti, Ti/TiO2, Ti6Al4V/IN718

FDM [30] PZT

FEF [106] Al2O3/ZrO2

Notes: a) Commercially available materials for AM processes; b) materials under research and development
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popular material for use in the FDM process [109]. Photo-
curable polymers, which are used by the SLA process, cure
when exposed to a laser with a certain wavelength. Various
polymers have been processed by the 3DP process, such as
waxes, elastomerics, and starch-based polymers [110].
Nylon, elastomer, ABS plastic and wax are thermoplastics,
which change from a harder (solid and glassy) structure to
a softer structure before finally melting into a viscous
flowing liquid when heated to high temperatures. Photo-
sensitive resins are usually thermosetting polymers, which
will decompose rather than melt at high temperatures. The
polymeric parts produced by AM technology can be used
for prototypes, sacrificial patterns for investment casting,
and even functional parts. In addition to industrial
polymers, biocompatible polymers, such as poly-e-capro-
lactone (PCL) and polyetheretherketone (PEEK) and
starch-based polymers, also have been investigated with
the SLS [111,112], FDM [113,114] and 3DP processes
[110] for biomedical applications such as implants and
tissue scaffolds.
Polymer based components in medium and large

quantities usually are manufactured “indirectly” by injec-
tion molding in industry. AM processes can be used to
fabricate these molds (called rapid tooling) to reduce the
time and cost of new tool development, which will be
discussed in the next section.

3.2 Metals

Metal products can be produced using AM processes in
either an “indirect” way, in which a binder is used to bond
metal particles forming a 3D part and post-processing is
required after the AM process, or a “direct” way, in which
metal particles are fully melted by the AM process to make
the final part directly. Also, metal parts can be produced by
employing the shells, cores or sacrificial patterns fabricated
by AM processes (called rapid tooling) in investment

casting or sand casting [115]. A classification of metal AM
processes is given in Fig. 2.

3.2.1 Indirect methods

Metal parts can be fabricated by the SLS process either by
partially melting the metal particles [41] or by melting the
low-melting-point binder to bond the metal particles
together [116,117]. The binders used can be polymer,
such as phenolic polymer, or low-melting-point metal,
such as SnS. The metal parts fabricated using these
processes require post-processing, including removal of
the polymer binder, thermal sintering and liquid-metal
infiltration (if needed), to achieve a fully dense part. For
example, a nearly fully dense Ti6Al4V part can be
fabricated using the SLS process and Hot Isostatic Pressing
(HIP) process, in which the SLS laser beam fuses the
boundaries of the metal particles followed up by the HIP
process [40]. Metal parts also can be built indirectly using
other non-melting methods, such as 3DP, SLA and LOM.
In the 3DP process, a liquid binder is sprayed onto the
surface of a metal powder bed and used to bond metal
particles. SLA uses UV light to cure the suspension made
by mixing small metal particles into a liquid photo-curable
resin. Post processing has to be performed in order to
achieve desired properties for these processes. For
example, a 420 stainless steel tool was built using 3DP,
and then the binder was removed and the tool infiltrated
with Cu-10 Sn bronze [118]. Metal green parts in stainless
steel 316L and 17-4 PH were fabricated via SLA by using a
suspension with photo-curable resin and metal particles
[119]. Metal parts also have been fabricated using the
LOM process by joining metal sheets in a layer-by-layer
fashion. As a critical step in the process, layer joining
determines the strength of the part in the direction
perpendicular to the layers, which can be joined by layer
diffusion welding, soldering, and adhesives.

Fig. 2 Classification of metal AM processes
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3.2.2 Direct methods

The direct method includes an AM process, such as SLM,
EBM, or LMD/LENS, which uses a high-power laser/
electron beam as the heating source. The bonding
mechanism of these processes is full melting [41,43]. A
metal powder bed is used in SLM and EBM, and metal
particles are continuously fed into the melt pool created by
the high-power laser beam in LMD/LENS. Fully dense
metal parts that have nearly the same or even better
mechanical properties as the bulk metal can be produced.
Table 3 lists the mechanical properties of the metal
materials from these processes as well as the reference
values for comparison. Stainless steels (304, 316, 410, 420,
17-4PH), tool steels (H13), nickel alloys (IN617, 625,
718), cobalt alloys (#6 Stellite, #21 Stellite), titanium
alloys (Ti6Al4V, Ti-6-2-4-2), and a variety of hardfacing or
cladding alloys have been processed successfully with
LENS [122] and SLM [123] by companies including
Optomec, EOS, etc. and research institutes. Titanium
alloys (e.g., Ti6Al4V, Ti6Al4V ELI) and the CoCr alloy
have been qualified for use in the EBM process by Arcam
[124]. Other materials, such as the nickel-based super-
alloys IN718 and 625, H13 steel, Stainless steels 316L and
17-4PH, and Aluminum alloys, have also been researched
and developed. For example, the microstructure and
mechanical properties of IN718 fabricated using EBM
were investigated by Strondl et al. [121]. H13 steel parts
were produced using EBM by Cormier et al. [50]. NiTi

shape memory alloy was processed using EBM by Otubo
and Antunes [125]. Figures 3 and 4 show some of the parts
fabricated using these processes, including thin wall parts
such as turbine blades and complex structures such as
diamond lattice structure.

3.2.3 Rapid tooling

Metal parts also can be produced using rapid casting by
combining AM produced patterns, or casing shells and
cores, and subsequently casting with molten metal, such as
in investment casting and sand casting [115]. These molds
(shells or cores), usually in ceramic/sand, can be fabricated
using the same processes such as SLS, 3DP [126] and
SLA, that are used to produce ceramic parts. For example,
Si and Zr sands provided by 3D Systems and EOS can be
used to produce molds and cores with the SLS process for
metal casting. Ceramic molds for investment casting of
turbine airfoils were fabricated by Das et al. [127,128] via
the Large Area Maskless Photopolymerization (LAMP)
process, in which parts were built by curing the
suspensions of ceramic powders in monomer solutions
using UV light. Casting patterns built using AM processes
were also applied to investment casting, such as polymer
patterns via SLA, wax patterns via FDM, paper patterns via
LOM, polymer patterns via 3DP and SLS. Figure 5 shows
a metal cast and the corresponding shells and core made by
Z Corporation using 3DP [129].

Table 3 Mechanical properties of materials processed by laser or electron beam based full-melting processes

Material Process
Ultimate tensile
strength/MPa

Yield tensile strength/
MPa

Elongation/% Elastic modulus/GPa Source

Ti6Al4V Reference (wrought) 951 883 14 110 –

EBM 1020 950 14 120 Arcam

LENS 1077 973 11 – Optomec

LMD 1160 1060 6 115 [120]

SLM ~1100 ~1000 ~8 ~120 EOS

SLS+HIP 1116.9 – 5 – [40]

316SS Reference (wrought) 579 290 50 – –

LENS 655 278 66.5 – Optomec

LMD 579 296 41 – [58]

IN718 Reference (rolled
sheet)

1407 1172 21 – –

LENS 1393 1117 15.8 – Optomec

EBM 1238�22 1154�46 7 – [121]

IN625 LENS 938 584 38 – Optomec

LMD 745–800 480–520 31–48 – [120]

17-4SS SLM 1050�50 540�50 25�5 170�20 EOS

Co-Cr alloy EBM 960 560 20 – Arcam

Co-Cr-Mo alloy SLM 1400�50 960�50 9–13 210�10 EOS
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3.3 Ceramics

Ceramics are inorganic, non-metallic, solid materials.
Examples include alumina, silica and zirconia. Ceramics
usually have great chemical resistance and ability to
withstand high temperatures, and they have been applied
widely in industry. However, these materials are very
brittle and hard, which makes them difficult to manufac-
ture, especially for producing parts with complex geome-
tries. AM technology has been successfully demonstrated
its advantages in producing ceramic parts through both
“direct” and “indirect” methods.

3.3.1 Indirect methods

Industrial ceramics (e.g., Si3N4, Al2O3, SiO2, ZrB2),
advanced ceramics (e.g., lead zirconate titanate (PZT))
and biocompatible ceramics (e.g., hydroxyapatite) have
been investigated to fabricate porous and dense parts using
AM processes such as FDM, SLS, 3DP and SLA. These
processes typically create a ceramic green body with a high
content of organic or inorganic binders. Then, binder
burnout and densification of the green body are conducted
in a conventional sintering step. Several examples are
discussed below.
Various functional components made of advanced

ceramics [79] (i.e., alumina structures with photonic

Fig. 3 (a) Example metal parts fabricated using LENS (Source: Optomec [133]); (b) fine grid structure for use in the medical field
(material: Cobalt chrome alloy) fabricated using SLM (Source: Concept Laser [134])

Fig. 4 Titanium 3D-micro-framework-structure based on a
diamond lattice fabricated using EBM (Source: [51])

Fig. 5 A cast metal part and the corresponding shells and core
made by Z Corporation using 3DP (Source: [129])
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bandgap properties, bismuth titanate, and piezoelectric
actuators) and structural parts in Si3N4, SiO2 [80,81] have
been fabricated by using ceramic loaded polymer filaments
in the FDM process. For the ceramic FDM ceramic
process, also called fused deposition of ceramics (FDC),
the green part is built by a hot extrusion process in which a
ceramic particle loaded thermoplastic filament is extruded
through a small nozzle and then subjected to conventional
binder removal and sintering processes to produce fully
dense components.
Fully dense parts in Ti3SiC2, a new class of ceramics

with unique electrical and mechanical properties, were
fabricated using 3DP by spraying a liquid binder onto the
powder bed, followed by cold isostatic pressing and
sintering [86]. A ZrB2 part (fuel injector strut for aircraft
engine) [82], alumina and silica cores and shells for
investment casting (Fig. 6) [83], graphite bipolar plates for
fuel cells [84], and bio-ceramic bone scaffolds [85] were
fabricated using SLS by laser scanning the mixture of
ceramic powder and binder and then removing the binder
and sintering the parts in a furnace. Ceramic parts also have
been produced by the SLA process, in which ceramic green
bodies are created by laser scanning a ceramic suspension
consisting of ceramic powder (i.e., silica, alumina, silicon
nitride and PZT) dispersed within a photo-curable resin
[76–78].

3.3.2 Direct methods

Direct fabrication of ceramic parts using AM processes is
much more challenging due to the high melting tempera-
tures of ceramics such as Al2O3 (> 2000°C) and SiO2

(> 1700°C), and also the large thermal gradients, thermal
stresses and residual stresses associated with melting/re-
solidifying in the laser based AM processes. Research

attempts were carried out to directly manufacture fully
dense ceramic components using AM processes. For
example, the SLM process was investigated to fabricate
ceramic parts from a mixture of zirconia and alumina by
completely melting the ceramic powder [130]. The ceramic
powder bed was preheated to a temperature higher than
1600°C to reduce thermal stresses, and nearly fully dense,
crack-free parts were obtained without any post-proces-
sing. Fully dense, net-shaped, alumina parts were produced
using LENS by direct laser melting of the ceramic powder
[131]. The as-processed structures show anisotropy in
mechanical properties with a high compressive strength
normal to the build direction and columnar grains along the
build direction.

3.4 Composites

Composites are engineered or naturally occurring materials
made from two or more constituent materials with
significantly different physical or chemical properties that
remain separate and distinct at the macroscopic or
microscopic scale within the finished structure but exhibit
properties that cannot be achieved by any of the materials
acting alone. The materials in a composite can be mixed
uniformly, resulting in a homogeneous compound (uni-
form composite), or non-uniformly, resulting in an
inhomogeneous compound (e.g., functionally graded
materials) in which the composition varies gradually
over volume, leading to corresponding changes in the
properties of the composite material.

3.4.1 Uniform composites

Uniform composites fabricated using AM processes are
usually done by employing a pre-prepared mixture of
proper materials, such as a mixed powder bed for SLS,
SLM and 3DP, a filament in mixed materials for FDM, a
composite laminate for LOM, or a mixture of liquid photo-
curable resin with particulates for SLA. The composite
materials that can be produced with AM technology
include a polymer matrix, ceramic matrix, metal matrix,
and fiber and particulate reinforced composites [95]. One
of the most important uniform composite families for
industrial application is fiber-reinforced composite. The
AM processes can be used to produce fiber-based
composites include FDM and LOM. AM processes, such
as SLS and 3DP, are not ideal for working with fiber-based
composites because making a smooth layer of the powder-
fiber mixture is difficult in these processes. Incorporating
the use of long or continuous fibers rather than short fibers
into AM processes is difficult and has been limited to LOM
[92]. FDM and LOM require the fabrication of respective
fiber-reinforced composite filament tapes and laminates as
a pre-step before AM processing. Several examples will be
discussed later.

Fig. 6 Alumina and silica ceramic cores produced using SLS for
investment casting of turbine blades and other ceramic parts
(Source: Phenix Systems [83])
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Metal-metal composites (e.g., Fe-Cu and stainless steel-
Cu), metal-ceramic composites (e.g., WC-Cu, WC-Co,
WC-CuFeCo, TiC-Ni/Co/Mo, ZeB2-Cu, and TiB2-Ni), and
ceramic-ceramic composites (e.g., Si-SiC) have been
processed by SLS/SLM [95]. These processed composites
can be classified into two categories: those that aim to
facilitate the process using a liquid-phase sintering
mechanism, and those that combine various materials to
achieve properties not possible with a single material.
Examples of composites in the first category include Fe-Cu
and stainless steel-Cu used in SLS, in which Cu acts as a
binder to bond Fe or stainless steel particles rather than a
reinforcement phase to enhance the mechanical or other
properties of the final product. An example of the second
category is the bio-composite poly-epsilon-caprolactone
and hydroxyapatite (PCL/HA) bone scaffold fabricated
using SLS, with the addition of HA to enhance the strength
and biocompatibility of PCL [96,97]. In terms of
fabrication methods, SLS of composites can be achieved
by varying the composition of the powder mixture, using
in situ chemical reactions or conducting post-processing
procedures (e.g., infiltration). Various polymer matrix
composites, metal matrix composites, and short fiber-
reinforced composites have been processed by using this
method. Composites also have been manufactured through
laser-induced chemical reactions that in situ create
chemical compounds. One example is the fabrication of
a Cu-based metal matrix composite reinforced with TiB2

and TiC from a powder mixture of Cu, Ti and B4C [98].
Conducting post-processing on laser-sintered materials is
another way to manufacture composites (e.g., using a
furnace for chemical reactions and infiltration). A common
example of a composite produced using this method is the
Si/SiC composite. A laser-sintered SiC preform is
infiltrated at room temperature with phenolic resin,
which converts to carbon in a furnace and reacts with the
infiltrated Si to form SiC, thus producing the Si/SiC
composite [99,100].
In addition to SLS, 3DP also can be used to make

composites, either by changing the component of the
powder mixture or by infiltrating porous 3DP preforms
with metal or alloy. An example of the former method is
hyroxyapatite/apatite-wollastonite glass ceramic compo-
site in situ fabricated using the proper powder mixture to
improve the strength of bone scaffold [90]. An example of
the latter method is dense TiC/Ti-Cu composites fabricated
by infiltrating TiCu alloy into a porous carbon preform
produced using 3DP [91].
By developing a feedstock filament with the proper

composite, polymer-metal and polymer-ceramic compo-
sites could be produced with FDM. ABS-Iron composites
have been made using FDM with a single-screw extruder
by appropriately producing an iron particulate-filled
polymeric filament [87]. Fibers, such as short glass fibers
[88] and nanofibers (vapor-grown carbon fibers) [89], have
been added into ABS filaments to improve the mechanical

properties of the parts built using FDM. The fabrication of
composites using LOM depends directly on the develop-
ment of composite laminates, such as fiber or particulate
reinforced sheets. Polymer matrix and ceramic matrix
composites have been made with curved LOM by laying-
up and shaping composite laminates from prepreg feed-
stocks, followed by vacuum bag/oven curing and con-
solidation [93,94].

3.4.2 Functionally graded materials (FGM)

AM processes that can deliver different materials (usually
through multiple feeding systems) to the building areas
have the ability to build components with FGM, which is
one of the primary advantages of AM technology that
conventional methods cannot realize. This ability offers the
flexibility to control the composition and optimize the
properties of the built part. One example is a pulley that
contains more carbide near the hub and rim to make it
harder and more wear resistant, and less carbide in other
areas to increase compliance [132]. Another example is a
missile nose cone with an ultra-high temperature ceramic
graded to a refractory metal from outside to inside in order
to sustain extreme external temperatures while attaching
easily to the metallic missile nose.
As a powder deposition process, LMD/LENS has the

ability to vary the degree of material composition, leading
to FGM by feeding different material powders from
multiple nozzles. Porous Ti6Al4V implants with function-
ally graded Co-Cr-Mo coating have been produced using
LENS by Bandyopadhyay et al. [101,102]. These implants
exhibited a high degree of hardness with an excellent
interaction between the bone cell and other materials. The
microstructure is shown in Fig. 7. The composition
gradient was achieved by gradually increasing the feed
rate of the Co-Cr-Mo alloy and accordingly decreasing the
feed rate of the Ti6Al4V alloy powder. The graded
structures exhibited good bonding between individual
layers, avoiding the issue of cracking that will occur if
100% Co-Cr-Mo is transitioned from 100% Ti6Al4V. A
functionally graded TiC/Ti composite [103] and a
compositionally graded Ti-TiO2 structure [57] were
fabricated with LENS by employing different powders
carried by non-reactive gases through different nozzles.
Graded nickel-titanium components were built from
Ti6Al4V to IN 718 using LENS by Domack and
Baughman [104]. One process developed by Wang et al.
[105] went beyond feeding different powders. They
combined powder and wire for LMD, which allowed for
multi-material fabrication without the mixing and waste of
blown, unused feedstock powders.
Several ceramic actuators and sensors with novel

properties have been fabricated using a variant FDM
process developed by Jafari et al. [30]. The modified
system has multiple deposition units and the ability to
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deposit up to four different types of materials in any given
layer. The Freeze-form Extrusion Fabrication (FEF)
process can produce FGM parts by employing multiple
extruders with different materials in different extruders.
Material compositions are varied by controlling the
extrusion speed of each extruder. Figure 8(a) shows the
triple-extruder FEF equipment developed at Missouri S&T
[106], and the fabricated FGM part with a gradient from
100% Al2O3 to 50% Al2O3 and 50% ZrO2 is shown in
Fig. 8(b).

4 Applications

The development of innovative, advanced AM techniques
has progressed greatly in recent years, yielding broader and
broader industry applications. Compared with subtractive

manufacturing, AM is particularly suitable for producing
low volumes of products, especially for parts with complex
geometries. AM processes also offer great potential for
customization, such as fabricating personalized implants
for hip and knee replacements. The following review AM
applications in the aerospace, automobile, biomedical and
energy fields.

4.1 Aerospace

Aerospace components often have complex geometries
and are made usually from advanced materials, such as
titanium alloys, nickel superalloys, special steels or ultra-
high-temperature ceramics, which are difficult, costly and
time-consuming to manufacture. Additionally, aerospace
production runs are usually small, limited to a maximum of
several thousand parts. Therefore, AM technology is
highly suitable for aerospace applications.

Fig. 8 (a) Triple-extruder FEF system; (b) FGM part with a gradient from 100%Al2O3 to 50%Al2O3 and 50% ZrO2 fabricated using the
triple-extruder FEF process (Source: [106])

Fig. 7 Typical microstructure and Co distribution of LENS processed Co-Cr-Mo graded coating on porous Ti6Al4V alloy (Source:
[101])
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4.1.1 Commercial applications in aerospace industry

Optomec [133] used the LENS process to fabricate
complex components for satellites, helicopters and jet
engines. An example is a 1/6 scale mixing nozzle for gas
turbine exhaust for Bell helicopter, as shown in Fig. 9(a).
Arcam [124] applied its EBM system to produce functional
parts for end users. Some of these applications included
commercial and military aircraft, space applications,
missiles and various subsystems (e.g., engines and
accessories) which use light-weight materials such as
titanium alloys. For example, an EBM-produced compres-
sor support case for a gas turbine engine using Ti6Al4V is
shown in Fig. 9(b). The turbine blades, which are typical
thin-wall parts with complex channels inside, were
produced using SLM from Inconel 718 and cobalt chrome
alloy by Concept Laser [134] and Morris Technologies
[135], respectively, as shown in Figs. 9(c) and 9(d). A
hollow static turbine blade in stainless steel (Fig. 9(e)) was
cast using a ceramic mold and cores fabricated using 3DP
by Prometal [136]. An engine housing (Fig. 9(f)) was
produced using SLM by Concept Laser [134]. Also, AM
built plastic parts, such as vents and ducts, have been used
in aerospace industry. Meanwhile, polymers that are flame

retardant, such as PEEK, have been developed for AM
processes to meet the aerospace requirements.
In addition to directly manufacturing functional parts for

aerospace applications, AM techniques also are used to
repair aircraft engine parts in order to reduce the cost and
extend the lifetime of such parts as compressors, turbine
and combustor castings, housing parts, and blades.
Optomec has demonstrated that LENS can successfully
repair parts used in gas turbine engines such as vanes,
stators, seals and rotors, and even geometrically complex
parts such as airfoils, blisks, ducts and diffusers
[122,133,137]. Fraunhofer ILT (Germany) [56,138] has
been successfully certified by Rolls-Royce Deutschland
for 15 different repair applications using LMD, including
repair of high-pressure turbine case and compressor front
drum. A blisk repaired by Optomec is shown in Fig. 10.

4.1.2 Examples from academia

Xue and Islam (National Research Council Canada) [139]
investigated LMD with various materials, such as IN 625,
IN 738, Ti6Al4V, and Fe-based tool steel, showing that
LMD-processed materials have mechanical properties
comparable to and sometimes better than conventionally

Fig. 9 (a) Mixing nozzle for gas turbine exhaust produced by LENS (Source: Optomec [133]); (b) compressor support case for gas
turbine engine produced by EBM (Source: Arcam [124]); (c) turbine blade with internal cooling channels produced by SLM (Source:
Concept Laser [134]); (d) turbine blades fabricated by SLM (Source: Morris Technologies [135]); (e) hollow static turbine blade cast using
the mold and cores fabricated by 3DP (Source: Prometal [136]); (f) engine housing produced by SLM (Source: Concept Laser [134])
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cast or wrought materials. Some example parts (e.g.,
airfoils, shown in Fig. 11) for aerospace application were
given. Besides fabricating parts, researchers also have
applied LMD/LENS techniques to repair expensive and
complex parts for aerospace applications. Xue and Islam
[139] demonstrated repair of the tips and seal of a damaged
IN 738 blade. Richter et al. [140] applied LMD to repair a
Ti6-2-4-2 blade and studied the microstructure, hardness,
residual stress, mechanical properties, and fatigue of the
repaired parts. A geometry-based adaptive toolpath LDM
process was developed by Qi et al. [141] to improve the
geometric accuracy of the repaired part such as an airfoil,
which has a wall thickness usually varied from sub-
millimeters at the edges to several millimeters in the
middle of the cross-section.
A hybrid process combining multi-axis laser deposition

and CNC machining was developed by Liou et al.
[142,143]. By rotating the building part with a multi-axis

system, the process can create overhanging features
without support structures. The hybrid process provides
greater build capabilities, accuracy and surface quality and
has been applied successfully to the building and repair of
functional metallic parts. An example of a repaired die core
is shown in Fig. 12 [144]. Other AM processes, such as
SLA, FDM and 3DP, can fabricate metal parts (e.g., turbine
blades) for aerospace applications by building casting
patterns for investment casting. Integrally cored ceramic
molds for investment casting of turbine blades have been
fabricated using ceramic stereolithography [145], and as
well as by gelcasting ceramic slurry into plastic molds
made from SLA patterns [146,147].
Aside from the direct benefits of AM processes, special

structures such as porous mesh arrays and open cellular
foams can be produced by varying their density and
stiffness to provide unique energy efficiency and excellent
corrosion resistance and to impact on the absorption
features, thermal management, and stiffness and strength
of the sandwich cores. Numerous potential applications in
aerospace, aeronautics and automotive systems can benefit
from this density-compensated strength and stiffness.
Figure 13 shows a Ti6Al4V open cellular foam fabricated
using EBM from a CAD model based on CT scans of
common aluminum alloy foam [148,149]. The strength of
these foams can be as much as 40% higher than that of
fully dense EBM-fabricated components.
Another aerospace application of AM is the building of

wind tunnel testing models for aircraft, missiles, airfoils,
etc. to study the aerodynamic characteristics of the designs.
AM techniques reduce the time and cost associated with
manufacturing these models, which usually have compli-
cated geometries. For example, Daneshmand et al. [150]
used SLS to build a wing-body-tail launch vehicle
configuration model with glass-reinforced Nylon (Fig.
14). The aerodynamic data obtained from the SLS built

Fig. 10 Damaged blisk repaired using LENS (Source: Optomec
[133])

Fig. 11 (a) Airfoil (material: IN 738) produced by LMD on cast IN 738 substrate; (b) airfoil with embedded cooling channels (material:
Ti6Al4V) produced by LMD (Source: [139])
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model agreed well with the data from the physical model
produced by CNC machining.
In addition to metallic components, the aerospace

industry also places great demands on ceramic parts,
especially those made of ultra high temperature ceramics
(UHTC) such as ZrB2 and ZrC, which have an excellent
ability to withstand extremely high thermal (> 2000°C)
and tough chemical environments. Such parts can be
applied in, for example, hypersonic flight systems and
rocket propulsion systems. It is difficult to fabricate
geometrically complex UHTC parts using traditional
manufacturing techniques such as drilling and milling
operations because of the extremely brittle nature of
ceramics. AM technology provides a promising way to
make 3D UHTC parts that are difficult to make by
conventional means. For example, a fuel injector strut with
crossing channels inside that potentially could be used for
a hypersonic aircraft engine was fabricated by SLS using
ZrB2 to provide resistance to extremely high temperatures
[82]. Also, scaled-down versions of missile nose cones
made of Al2O3 and ZrB2 were fabricated using FEF [36–
38], which extrudes aqueous ceramic pastes layer by layer
below the water freezing temperature (Fig. 15(a)). Green
parts fabricated using the FEF process first undergo freeze-
drying followed by binder burnout and finally sintering
to produce dense ceramic components, as shown in
Figs. 15(b) and 15(c). The FEF process also can be
extended beyond the fabrication of monolithic ceramics to
the production of FGM parts by employing a triple-
extruder mechanism, as shown in Fig. 8. Possible
applications of FGM parts include fabrication of UHTC-
refractory metal parts consisting of a UHTC graded to a
refractory metal for the leading edges of hypersonic
vehicles, nose cones of missiles, and nozzle throats of
spacecraft propulsion engines, which are required to
sustain extremely high temperatures and thermal gradients
for future aerospace systems.

Fig. 12 A die core repaired using an LDM based hybrid rapid manufacturing system: (a) before the repair, showing the top of the core
damaged and the surrounding surface worn; (b) after deposition, showing the portion requiring repair covered with new material; (c) after
surfacing machining, showing the repaired core. (Source: [144])

Fig. 13 Example of an enlarged Ti6Al4V open cellular foam
prototype fabricated using EBM (Source: [148])

Fig. 14 Wing-body-tail launch vehicle configuration model for
wind tunnel testing produced by SLS using glass-reinforced Nylon
(Source: [150])
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4.2 Automotive

New product development is critical for the automotive
industry, but developing a new product is often a very
costly and time-consuming process. The automotive
industry has been using AM technology as an important
tool in the design and development of automotive
components because it can shorten the development
cycle and reduce manufacturing and product costs. AM
processes also have been used to make small quantities of
structural and functional parts, such as engine exhausts,
drive shafts, gear box components and breaking systems
for luxury, low-volume vehicles. Unlike passenger cars,
vehicles for motorsports usually use light-weight alloys
(e.g., titanium) and have highly complex structures and
low production volumes. Companies and research insti-
tutes also have successfully applied AM techniques to
manufacture functional components for racing vehicles.

4.2.1 Commercial applications in automotive industry

CRP Technology (Italy) [151] has successfully applied
AM techniques including SLS, SLM and EBM to develop
and produce various components for motorsports. The
produced parts include F1 gearboxes (titanium), MotoGP
250R air boxes, motorbike dashboards and supports,
camshaft covers for MotoGP engines, reed valves, F1
suspension systems, etc. Significant advantages have been
realized by applying AM technology. For example, the F1
gearbox produced using these new design and fabrication
techniques saves 20%–25% weight and approximately
20% volume, and it has twice in torsion stiffness, less gear
wear, and less power absorption. Figure 16(a) shows a
titanium upright (which transmits the engine’s rotational
power to wheels) made for the Minardi F1 team by CRP

Technology via rapid casing based on polystyrene patterns
made by SLS. Optomec [133] produced Ti6Al4V
components including suspension mounting brackets
(Fig. 16(b)) and drive shaft spiders for the Red Bull
Racing car using LENS, resulting in a> 90% material
reduction, as well as significantly reduced time and cost.
Arcam [124] applied EBM using Ti6Al4V to produce parts
such as gearboxes (Fig. 16(c)), suspension parts and engine
parts with lattice structures for race cars. Using SLM,
Concept Laser [134] produced many steel and aluminum
components for cars, including wheel suspensions, oil
pump housings, engine blocks, exhaust manifolds and
valve blocks; two examples are shown in Figs. 16(d) and
16(e). Prometal [136] successfully applied its Prometal
process (a rapid casting technique based on 3DP) to
manufacture engine components, such as cylinder heads,
intake manifolds, and engine blocks, for the development
of passenger car engines and production of race engines.
This process significantly reduces the development time
for car engines; for example, an intricate shape engine
block that includes cooling passages and oil recirculation
lines (Fig. 16(f)) can be produced completely in only one
week.

4.2.2 Examples from academia

Universities and research institutes also have investigated
AM technology for automotive applications. For example,
Vilaro et al. [152] fabricated a water pump for motorsports
cars (Fig. 17(a)) by SLM using aluminum alloy
(AlSi10Mg). Their experimental results showed that the
produced parts have mechanical properties equivalent to
conventional heat-treated AlSi10Mg.
In addition to the direct manufacturing of functional

parts, rapid tooling [153] has been studied widely and

Fig. 15 (a) FEF system developed at Missouri S&T. Sintered ceramic parts fabricated using the FEF process: (b) Al2O3 nose cones; (c)
ZrB2 nose cones (Source: [36,37])
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applied in automotive industries for quite a few years.
Much research has demonstrated the flexibility of AM to
fabricate complicated components for the automobile
industry by using casting patterns, or molds and cores
built by SLS, FDM, SLA, 3DP and LOM. For example,
one part used in the automotive industry (Fig. 17(b)) was

produced by investment casting starting from 3D-printed
starch patterns and 3D-printed molds [154].
AM technology also offers a fast way to make parts with

previously unattainable properties in order to improve fuel
efficiency and engine life. For example, an engine part with
a lattice structure may reduce the engine’s weight while

Fig. 16 (a) F1 upright (right) cast via rapid casting process using polystyrene patterns produced by SLS (left) (Source: CRP Technology
[151]); (b) suspension mounting bracket for Red Bull Racing produced by LENS (Source: Optomec [133]); (c) race car gear box produced
by EBM (Source: Arcam [124]); (d) exhaust manifold produced by SLM (Source: Concept Laser [134]); (e) oil pump housing produced
by SLM (Source: Concept Laser [134]); (f) engine block cast using the mold and cores fabricated by 3DP (Source: Prometal [136])

Fig. 17 (a) Water pump for a motorsports car produced by SLM (Source: [152]); (b) automotive part produced by investment casting
with 3D-printed starch patterns and molds (Source: [154])
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enhance its stiffness (Fig. 18), and metal matrix composites
may provide extraordinarily durable, low-inertia valves. A
titanium aluminide alloy with low density and high specific
strength (ratio of elastic modulus vs. density) and stiffness
(ratio of yield strength vs. density) was investigated using
EBM for its potential to fabricate automotive engine
components (e.g., engine exhaust valves and pistons)
[155]. Ti6Al4Vopen cellular foams fabricated using EBM
demonstrated high potential for novel applications in
automotive systems due to their light weight and
exceptional mechanical properties [148]. An intake system
for a 600cc formula automotive engine was designed to
minimize pressure losses and maintain an equal charge for
each cylinder supply; it was manufactured using a
combination of FDM and subsequent lamination of a
carbon-fiber composite material [156], as shown in Fig. 19.

4.3 Biomedical

Recent developments in AM technology, as well as in
biomaterials, biologic sciences and biomedicine, have
broadened the application of AM techniques in the
biomedical field to such products substantially as ortho-
pedic implants, tissue scaffolds, artificial organs, medical
devices, micro-vasculature networks, and biologic chips
(produced by printing/patterning cells and proteins [157]).

4.3.1 Orthopedic and dental applications

Many companies, research institutes and universities are
exploring ways to apply AM processes to manufacturing of
medical implants. The application of AM in orthopedic
and dental implants benefits significantly from the ability
of AM technology to manufacture complex geometries and
structures, to make rough, engineered surface for more
effective bone integration, and to allow implants to be
personalized to match each patient’s individual needs.
Arcam [124] has applied EBM to manufacture a wide
range of implant types such as acetabular cups (Fig. 20(a)),
hips, knees, shoulders and spinal implants, and a number
of implants have been certified on the market. For example,
using Arcam EBM technology, Adler Ortho Group [158]
launched the CE-certified Fixa Ti-Por acetabular cup in the
European market in 2007, and more than 2000 of these
cups have been implanted. Another fast-growing area for
AM applications is the dentistry business [159]. Several
companies including Concept Laser and MTT Technolo-
gies are using SLM to produce copings for crowns and
bridges. Figures 20(b) and 20(c) show examples of a dental
prosthesis and a dental bridge, respectively.
Research institutes and universities also have explored

the application of AM to biomedical implants. Ti6Al4V
implants (Fig. 21(a)) with tailored mechanical properties
that mimic the stiffness of bone in order to reduce stress
shielding have been fabricated by EBM [53], and

Fig. 18 Engine part with lattice structure fabricated by EBM
using Ti6A14V to reduce engine weight while enhance stiffness
(Source: Arcam [124])

Fig. 19 (a) Final assembly of an intake manifold fabricated by FDM; (b) completed intake system after a composite layup process and
final assembly of sensors and mounts (Source: [156])
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functional hip stems (Fig. 21(b)) with designed porosity
have been made from titanium by LENS [101]. Cellular
Ti6Al4V structures with interconnected pores (see Fig. 4)
for bone implants were fabricated using EBM by Heinl et
al. [51,55], demonstrating the suitability of these implants
for tissue ingrowth and vascularization. SLM also has been
used to fabricate implant parts in biocompatible metal
alloys (i.e., Ti6Al4V and CoCrMo) [160].

4.3.2 Tissue scaffolds

In tissue engineering, three-dimensional scaffolds play a
vital role as extra-cellular matrices onto which cells can
attach, grow and form new tissues. The conventional
fabrication of tissue scaffolds has relied on techniques such
as solvent casting, melt molding, freeze drying, and foam
replication to create the shape and architecture of a

scaffold. These methods have limitations in the areas of
manual interaction requirements, difficulty in the control of
complicated internal architectures, and reproducibility. In
contrast, fabrication of tissue scaffolds using AM technol-
ogy allows versatility in the use of biomaterials and the
fabrication of scaffolds with complex geometries and
designed internal architectures [12,161–164]. AM pro-
cesses have been used both directly to manufacture
scaffolds (in biodegradable polymer, bioactive ceramic or
glass [165]) and indirectly as a “manufacturing tool” for
the molds required to cast scaffolds [11].
The methods employed to fabricate tissue scaffolds

directly can be using SLA [166], 3DP [67,110], FDM
[167,168] or SLS [163,169]. Researchers have demon-
strated the ability to make tissue scaffolds from
biopolymers such as PCL and PEEK, bioceramics
such as hydroxyapatite (HA) and β-tricalcium-phosphate

Fig. 20 (a) Acetabular cups with designed porosity (material: Ti6Al4V) produced using EBM (Source: Arcam [124]); (b) dental
prosthesis (material: Ti6Al4V) produced using SLM (Source: Concept Laser [134]); (c) 3-unit dental bridge (material: CL111 CoCr)
produced using SLM (Source: Concept Laser [134])

Fig. 21 (a) Hip stems with mesh, hole and solid configurations fabricated using EBM (Source: [53]); (b) functional hip stems with designed
porosity (no porosity,< 2 vol% porosity, and 20 vol% porosity) fabricated using LENS (Source: [101])
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(β-TCP), and bioglasses such as the 13-93 glass using 3DP
[67,110,170] and SLS [171,172]. Multiple materials also
can be used to fabricate scaffolds. For example, HA
reinforced PCL scaffolds can be fabricated using the FDM
process to improve the mechanical strength of the
biopolymer [167]. The fabrication of apatite-mullite
glass-ceramic bone scaffolds using SLS was investigated
both with binder (for bonding glass-ceramic particles) and
without binder (by directly melting glass-ceramic particles)
[85,169]. Photopolymerizable biomaterials, such as poly-
ethylene glycol (PEG) and polyethylene oxide, were used
in the SLA process to fabricate bioactive scaffolds with
living cells encapsulated inside, for a variety of tissue
engineering applications [173,174].
In addition, several new AM variations have been

developed for biomedical applications. HA scaffolds have
been made using robocasting [175], in which a syringe
deposits highly concentrated colloidal suspensions in
layers to form a scaffold, followed by drying and sintering.
Another FDM-based extruding deposition method, called
precision extruding deposition (PED), was applied by Shor
et al. [176] to fabricate PCL tissue engineering scaffolds.
In contrast to the conventional FDM process that requires
the use of precursor filaments, the PED process directly
extruded scaffold materials in a granulated form, thereby
avoiding the need for filament preparation.
SLS and FEF have been applied to fabricate bone tissue

scaffolds in bioactive glass (13–93 glass), a new generation
of biomaterial that not only bonds with the surrounding
tissue but also actively aids in tissue regeneration
[177,178]. The bone scaffolds fabricated using SLS and
FEF are shown in Figs. 22(a) and 22(b), respectively.
Figure 23 shows the SEM images of the bio-test results
with MLO-A5 cells seeded on the commercial scaffold
(BD CaP) and the SLS scaffold after two days of
incubation. The higher-magnification SEM images in
Figs. 23(c) and 23(d) show that the cells visible on both
the BD CaP scaffold and the SLS scaffold appear anchored
well by lamellipodia and filopodial extensions. The optical
image of cell-seeded SLS scaffolds incubated after 2, 4,
and 6 days is shown in Fig. 24. The relative intensity of
purple formazan staining on these scaffolds increased
dramatically with the duration of incubation, indicating

that metabolically active cells undergoing vigorous growth
on the scaffolds and the fabricated bone scaffolds promote
cell growth.
Indirect AM of tissue scaffolds are normally obtained by

building a mold (in polymer) using an AM process and
then casting with biocompatible materials into the mold
cavity to form a scaffold. Lin et al. [179] fabricated porous
β-TCP scaffolds with a polygradient controllable structure
of both macro and micro pores by combining FDM and
freeze drying. An artificial bone with a porous internal
structure was fabricated by injecting calcium phosphate
cement (CPC) into an SLA mold [180]. Scaffolds with villi
features were produced by solvent casting into 3D printed
plaster molds, followed by particulate leaching [65].

4.3.3 Biofabrication

Biofabrication [181] using living cells, a new paradigm of
AM application in the biomedical industry, has evolved
through the convergence of engineering and life sciences.
Biologics or biomaterials are used as building blocks to
fabricate biologic and bio-application oriented substances,
devices, and therapeutic products through a broad range of
engineering, physical, chemical and biologic processes.
Biofabrication encompasses an extremely wide range of
applications in tissue engineering, disease pathogenesis
and drug studies, biochips and biosensors, drug delivery,
in-cell printing, patterning, assembly, and organ printing.
AM techniques for cell manipulation have been

developed, e.g., syringe-based cell deposition for tissue
constructs [157]; inkjet-based cell printing [182,183];
micro-contact printing of cells and bacteria; cell manipula-
tion by mechanical, optical, electrical, magnetic, and
ultrasound methods for micro-fluidics; and cell patterning
by photo- or electro-etching and soft lithography. A
syringe-based, layered, direct cell writing, bioprinting
process with a multi-nozzle was developed at Drexel
University [157]. The system has the ability to deposit
multiple cell types and bioactive factors in controlled
amounts at a precise spatial position for the freeform
fabrication of biopolymer-based, three-dimensional, liver
cell-embedded tissue constructs. Boland et al. [184–186]
developed a process (Fig. 25) by which a printer can print

Fig. 22 (a) Bone scaffolds fabricated using SLS; (b) bone scaffolds with 600 µm pores fabricated using FEF (Source: [177])

Nannan GUO et al. Additive manufacturing: technology, applications and research needs 233



gels and cells, and cell aggregates into a 3D gel. Their
process consists of the following three stages: 1) pre-
processing (creating CAD models, which can be generated
from CT scanned data), 2) processing (printing) and 3)
post-processing (perfusion of printed organs and their
biomechanical conditioning).

4.4 Energy

Renewable energy (e.g., solar energy, wind energy) and

clean energy (e.g., hydrogen energy) are promising
solutions for reducing environmental burden and the
dependence on fossil energy. As one of the “green” energy
devices, fuel cells provide great advantages such as high
efficiency, high power density, and low emissions. The
potential applications include portable power supply,
automotive system, and distributed power system. How-
ever, the high cost and low durability obstruct the wide
application of fuel cells [187]. Ample opportunities exist
for AM technology to contribute to the area of energy, such
as through the rapid development and fabrication of
prototypes to reduce the cost and lead-time of research and
development of new products, and the exploration of novel
designs to improve the energy efficiency and power
density. For example, Bourell et al. [188–191] developed
an SLS based process to fabricate the graphite composite
bipolar plate, which is one of the most important
components in Polymer Electrolyte Membrane (PEM)
fuel cells. Guo et al. [192–197] investigated the effect of
different graphite materials on the electrical conductivity
and mechanical strength of the SLS fabricated bipolar
plates, and also compared their in situ performance with
the bipolar plates made by injection molding and
compression molding. Figure 26 shows some examples
of the fabricated bipolar plates. By using SLS the cost and

Fig. 23 SEM images of MLO-A5 cells on control BD CaP (a, c) and SLS-1 scaffolds (b, d) after 2 days of incubation (Source: [178])

Fig. 24 MTT labeling of MLO-A5 cells on porous 13-93 SLS
scaffolds after culture intervals of 2, 4, and 6 days (Source: [178])
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lead-time of developing new bipolar plates can be reduced
dramatically compared to conventional methods such as
injection molding and compression molding, in which
expensive metal molds have to be manufactured. AM
technology also expands the design possibilities and makes
it easier to realize novel designs that might be able to
improve energy efficiency and/or power density. A bipolar
plate with a bio-inspired “leaf” design of the flow field
(Fig. 26(d)) was fabricated using the SLS process, showing
an over 20% improvement in PEM fuel cell power density
compared to the conventional designs (e.g., designs in

Figs. 26(a)–26(c)) because of the more uniform distribu-
tion of gas fuels [194].

5 Future research needs

Although AM technology recently has undergone sig-
nificant development, it still is not widely accepted by most
industries. Improving the technology to the point of
changing this mindset and gaining industry acceptance,
as well as broadening, developing and identifying

Fig. 25 A bioprinter and images of printed cells and tissue constructs. (a) Schematic representation of the bioprinter model; (b) bovine
aortic endothelial cells printed in 50 µm drops in a line; (c) cross-section of the p(NIPA-co-DMAEA) gel showing the thickness of each
sequentially placed layer; (d) actual bioprinter; (e) print head with nine nozzles; Endothelial cell aggregates “printed” on collagen (f)
before and (g) after their fusion (Source: [184–186])
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manufacturing applications that are only possible with AM
processes, are the critical targets for the next 5–10 years.
The report of 2009 US NSF workshop “Roadmap for
Additive Manufacturing: Identify the Future of Freeform
Proceeding” contains a comprehensive discussion of AM
research needs in the future [198].
For a manufacturing process to be adopted widely by

industry, the repeatability and consistency of the manu-
factured parts are critical. These are required over the build
volume and between builds of each machine, as well as
across different machines of the same make. Currently, the
inability of AM technology to guarantee material proper-
ties for a given process is inhibiting its industry adoption
because many companies do not have confidence that
manufactured parts will have the mechanical properties
required to meet specific application needs. A main reason
for this problem is that the existing AM systems are still
predominantly based on rapid prototyping machine
architectures, which are surrounded by a different
mentality regarding the requirements of the produced
parts. Additionally, to broaden and develop new applica-
tions, novel AM processes, such as those for bio-
applications using cells, biologics or biomaterials as
building blocks and those for micro and nano engineering,
need to be investigated and developed. To achieve these
goals, AM technology and its applications require
significant further research and development in terms of
designs, materials, new processes and machines, process
modeling, process control, bio-additive manufacturing,
and energy and sustainability applications. The following
summarizes the main recommendations from the above
mentioned NSF workshop on Roadmap for Additive
Manufacturing.

5.1 Design

The unique capabilities of AM processes, including their
ability to fabricate complex shapes, tailor materials and
properties, and handle functional complexities, greatly
enhance the freedom of designers to explore novel

applications of this technology. However, it is not easy
for designers to take advantage of these capabilities. To
address this issue, the following developments are needed:
1) Conceptual design methods to aid designers in

defining and exploring design spaces enabled by AM,
methods for simultaneous product-process design and
multifunctional design, and methods by which to assess
lifecycle costs and impacts of parts and products fabricated
by AM.
2) A new foundation for computer-aided design systems

that overcomes the limitations of parametric, boundary-
representation solid modeling in representing very com-
plex geometries and multiple materials.
3) Composable simulation capabilities for primitive

shapes, materials, material compositions, etc., multiscale
modeling and inverse design methodologies to assist in
navigating complex process-structure-property relation-
ships, and improved finite element analysis software that
can make use of such capabilities.
4) Methods by which to model and design successfully

despite shape, property, process and other variabilities.
5) CAD systems for non-experts, which will be

necessary for areas related to toys, collectables, house-
wares, game avatars, etc.

5.2 Process modeling and control

The ability to achieve predictable and repeatable opera-
tions is critical. Process variability must be reduced, as
must the sensitivity to process variations. To achieve this,
research in the following areas is needed:
1) Process-structure-property relationships modeled and

integrated with CAD/E/M tools for each material and
process.
2) Closed-loop adaptive control systems, the control

algorithms of which based on predictive models of system
response to process changes.
3) New sensors (process, shape/precision/surface finish)

that can operate in build-chamber environments, sensor
fusion and interpretation methods, computer-aided inspec-

Fig. 26 Graphite composite bipolar plates for PEM fuel cell fabricated by SLS process. Active area is 50 mm� 50, channel width is 1.5
mm and depth is 1.5 mm. (a) Serpentine design; (b) parallel in series design; (c) serpentine in series design; and (d) bio-inspired “leaf”
design (Source: [194])
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tion systems integrated into control systems, and machine
learning technologies suitable for AMmachine control and
improvement.

5.3 Materials, processes and machines

Research opportunities in AM materials, processes and
machines include the following:
1) A better understanding of the basic physics and

chemistry of AM processes that capture complexities in the
multiple interacting physical phenomena inherent in most
AM processes.
2) Processes based on scalable and fast material

processing methods, such as processes that can fabricate
a line (e.g., ink-jet printing) or area (e.g., mask-projection)
to greatly increase machine throughput.
3) New, open-architecture controllers for AM machines

and the development of reconfigurable, standard machine
modules that could impact on the field.
4) Exploitation of unique characteristics that differenti-

ate AM from conventional manufacturing processes, such
as the anisotropic nature of AM, as well as the production
of epitaxial metallic structures, fabrication of functionally
gradient materials, and embedding of components (e.g.,
sensors and actuators) during the fabrication process.
5) Screening methodologies for advanced manufactur-

able materials to answer why some materials can be
processed by AM and some cannot. Material “allowables”
(range of material properties) should be developed for new
materials that enter the market.
6) Micro and nano AM research to develop better tools

with which to build structures and devices atom by atom,
and design tools for nano-manufacturing.
7) Development of sustainable (green) materials, includ-

ing recyclable, reusable, and biodegradable materials, to
reduce environmental impact.

5.4 Bio-additive manufacturing

Research opportunities of AM technology in the biome-
dical field include the following:
1) Design and modeling methods for fabricating

implants and medical devices that are customized to
individual patients, including software tools to interpret
CT/MRI imaging data.
2) Development of viable Bio-additive Manufacturing

(BAM) processes to construct 3D biologic and tissue
models using living biologics and to fabricate scaffolds,
including “smart scaffolds” with embedded sensors.
3) Computer-aided BAM including modeling, analysis

and simulation of cell responses and cell-tissue growth
behavior.

5.5 Energy and sustainability applications

AM technology can save material and energy usage and

lessen environmental burden compared with conventional
manufacturing processes. Research opportunities relating
to energy and sustainability include the following:
1) Design energy system components to take advantage

of AM capabilities.
2) Pursue maintenance, repair, and overhaul in the

aerospace and other industries as a potential application of
AM.
3) Develop cradle-to-grave lifecycle inventory of engi-

neering materials for AM processes.
4) Develop equitable indicators for measuring sustain-

ability in AM processes and products.

6 Conclusions

Various additive manufacturing processes, techniques and
systems have been developed for over 20 years. With
advances in this technology, the applications of AM
processes have continued to shift from rapid prototyping to
rapid manufacturing of tooling and end-use parts for
aerospace, automotive, biomedical and other applications.
AM processes, materials, applications and future research
needs are reviewed in this paper. Based on the state of
starting material, AM processes are classified into four
categories: liquid, filament/paste, powder, and solid sheet.
The techniques of creating a layer include UV light
induced polymerization, ink-jet printing, extrusion, laser
melting, etc. Polymers are the initially investigated
materials in AM technology, and recently more and more
attention has been paid to AM of metals, ceramics and
composite materials to fabricate functional parts. High-
power laser and electron beam based AM processes have
demonstrated the capability of additive technology to
manufacture fully dense metal components with mechan-
ical properties comparable to those of bulk metal.
Although attempts have been made to directly fabricate
ceramic components by AM, intensive research is still
needed before successful commercialization can be made.
Various uniform composites including polymer-ceramic,
metal-metal, metal-ceramic, and ceramic-ceramic have
been investigated using AM processes. With the ability to
locally control the material composition, AM technology
has been developed to build functionally graded materials
having new properties that conventional materials do not
possess. AM technology has begun to exhibit great
application potential and advantages in the aerospace,
automotive, biomedical, and energy fields, by providing a
cost-effective and time-efficient way to produce low-
volume, customized products with complicated geometries
and advanced material properties. Although AM technol-
ogy offers numerous advantages over subtractive manu-
facturing methods, it is still regarded as a niche technology
by most industries. To gain further acceptance from
industry, research and development is needed in terms of
designs, materials, novel processes and machines, process
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modeling and control, biomedical applications, and energy
and sustainability applications in order to broaden the
applications of AM technology and elevate it to a
mainstream technology.
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