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Abstract This article focuses on the dynamic index and
performance of a radial symmetric six-legged robot. At
first the structure of the robot is described in brief and its
inverse kinematics is presented. Then the dynamic model
is formulated as based on the Lagrange equations. A novel
index of total torque is proposed by considering the posture
of the supporting legs. The new index can be used to
optimize the leg’s structure and operation for consuming
minimum power and avoiding unstable postures of the
robot. A characterization of the proposed six-legged robot
is obtained by a parametric analysis of robot performance
through simulation using the presented dynamic model.
Main influences are outlined as well as the usefulness of
the proposed performance index.

Keywords six-legged robots, dynamic modeling, perfor-
mance index

1 Introduction

One of the most significant advantages of six-legged robot
refers to its high locomotion ability. Legged robots can
walk through rough terrain, especially in the outdoor
environments, rather than other types of mobile robots. In
order to improve the performance of six-legged robots,
dynamic analysis becomes a key research issue, and it is
very important for mechanical optimization design and leg
operation of six-legged robot.
To analyze the dynamic performance of six-legged

robots, a dynamic model is necessary. Contributions have
been made by several authors in the area of dynamic
modeling and performance analysis of the multi-legged
robot. Chen et al. established the dynamic equations of
multi-legged robot in a modular method [1]. Barreto et al.
used the free body diagram method to obtain the dynamic
model of a six-legged robot [2]. Yiu et al. studied the
dynamics of parallel manipulators in Ref. [3]. Ding et al.
analyzed the dynamics of hexapod robot with elastic joints
using screw theory [4]. For the dynamic performance of
the multi-legged robot, Silva et al. proposed four dynamic
indices in the aspect of energy and power [5]. Bowling had
analyzed the performance of legged robots by examining
the kinematic constraints associated with ground contact in
Refs. [6,7]. Erden handled with the distribution of required
forces and moments to the supporting legs by the method
of torque-distribution [8]. Low and Bai introduced an
index named terrain complexity based on the terrain
evaluation [9,10]. However, the existing indices of robot’s
dynamic performance which minimize the power con-
sumed have no consideration on stability reduction effect.
In this paper, an index Ttot of total torque is proposed by

considering the posture of supporting legs. The new index
Ttot can be used to optimize the leg’s structure and
operation for consuming the minimum power and avoiding
the unexpected postures that the supporting legs can reduce
the stability excessively. The effects of four parameters
(length of leg, mass distribution of leg, step length and
joint angles of supporting legs in standing state) on the
dynamic performance are analyzed quantitatively as based
on dynamic equations. The analyses of leg operation in
two cases are presented as based on the index Ttot.
The rest part of this paper is organized as follows. In

Sect. 2, radial symmetric six-legged robot and its inverse
kinematics are described. In Sect. 3 the dynamic modeling
of this robot is presented. An index of total torque
considering the posture of supporting legs is proposed in
Sect. 4. The robot’s dynamic performance is analyzed by
simulation experiments in Sect. 5. Finally, a conclusion is
summarized in Sect. 6.
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2 Structure and inverse kinematics of the
six-legged robot

2.1 Structure of the robot

Different with the hexapod robots in Refs. [11–14], the six-
legged robot we proposed is radial symmetric. The
mechanical structure is composed of six leg subsystems
and the body with hemispheric shell as shown in Fig. 1.
The radius of body is 300 mm, and the length of leg is 600
mm. Each leg is composed of hip, thigh and calf. The mass
of robot is evenly distributed, and the mass center of each
part is located at its geometric center.

Since the legs are located symmetrically, the angle
between adjacent legs is 60°. There are three joints in each
leg, namely hip yawing joint, hip pitching joint and knee
joint. All of the joints are driven by DC motors through the
bevel gear. The hip yawing motors are placed in the body,
while the other motors are mounted inside of thighs. The
initial state of robot is defined that all the legs are placed on
the ground symmetrically along the circumference. The
range of joint angles qi1, qi2, qi3 of leg i is limited in ( – 90°,
90°), ( – 90°, 150°), ( – 90°, 150°), respectively. The body
is covered by a hemispheric shell which can help the robot
to return to the original position if it turned over. There are
three parts inside of the robot body. The bottom part
accommodates the battery and motors. The middle part
contains the hardware of control system such as CPU
board, motion drive, control cards and video capture card,
etc. Binocular camera that can be stretched out of the shell
for environmental detection is placed at the top.
This robot can walk in various gaits such as 3+ 3 insect

gait, mammal gait and mixed gait. In the insect gait and
mammal gait, the legs are parallel to each other in the
initial configuration. The motion direction is vertical to the
legs in the insect gait as Fig. 2(a), while in the mammal gait

the motion direction parallel to the legs as in Fig. 2(b). In
the mixed gait as in Fig. 2(c), one leg walks as in the
mammal gait and two legs walk as in the insect gait in
every half period. There are always three supporting legs
during a locomotion cycle. If one or two legs are broken or
used as manipulators, the robot can walk in 5+ 1 or 4+ 2
gait [15,16]. In this article the mixed gait is selected as a
case to analyze the dynamics and performance of the six-
legged robot.

As shown in Fig. 2, the dotted line is the initial position

Fig. 1 The radial symmetric six-legged robot

Fig. 2 Different gaits of the radial symmetric six-legged robot
(a) Insect gait; (b) mammal gait; (c) mixed gait
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of the robot and the black line is a new position in its
motion. In this step the robot is supported by legs 1, 3, 5
and legs 2, 4, 6 are the swinging legs. The supporting area
is determined by the position of feet 1, 3, 5. The stability
margin (SM) which is the distance between vertical
projection of the robot’s gravity center and the support
polygon changes with the movement of robot. The
standing SM of the initial configuration is the largest.
Since the supporting area remain unchanged and the body
move forward, the walking SM becomes smaller than the
standing SM which means that the stability is reduced
during walking. If the step length is too large, it may cause
the robot turn over especially on the uneven terrain.
Therefore the changes of stability should be involved in the
analysis of dynamic performance.

2.2 Inverse kinematics of the robot

In order to obtain the joint angles when the robot’s feet are
constrained to track the predefined paths, the inverse
kinematics is necessary.
As shown in Fig. 1, Rb is the radius of body; L1, L2 and

L3 are the lengths of hip, thigh and calf; Pi1c, Pi2c, Pi3c are
the gravity centers of each link of leg i coinciding with the
geometric centers. The robot walks along the axis Y of the
inertial coordinate system O-XYZ, the reference coordinate
Ob-XbYbZb is attached to the center of body frame. Vector
pb ¼ ½xb   yb   zb�T and three Euler angles ðα,β,gÞ are selected
to represent the global position and posture of the body.
The generalized coordinates of body and leg i are qb ¼
½pb   qb�T and qi ¼ ½qi1   qi2   qi3�T, i = 1,2,…,6 respectively,
where qb ¼ ½a  b  g�T is the orientation of body in the
inertial coordinate system. Thus, the rotation matrix R can
be expressed as

R ¼
cgcα – cβsαcg – sgcα – cβsαcg sβsα

cgsαþ cβcαsg – sgsαþ cβcαcg – sβcα

sβsg sβcg cβ

2
64

3
75, (1)

where c and s refer to cosine and sinus functions,
respectively.
Because the trajectories of robot’s body and foot are

predefined, the position vector of foot tip in Ob-XbYbZb can
be expressed as ​ bpif ¼ ð​ bxif byif

bzif ÞT given by

pif ¼ Rbpif þ pb: (2)

Since the plane of leg is perpendicular to XbYb plane of
the reference coordinate, the mapping of leg i in XbYb plane
can be described as

L2cqi2 þ L3cðqi2 þ qi3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
​ bx2ifþby2if

q
– L1,

L2sqi2 þ L3sðqi2 þ qi3Þ ¼ – ​ bzif ,

tanðqi1 þ p=2Þ ¼ ​ byif= ​
bxif :

(3)

The joint angles (qi1, qi2, qi3) of leg i can be obtained by
solving Eq. (3) [17]. There are two groups of possible
solutions for the joints of each leg, but only one of them is
chosen as based on the desired configuration of leg i. For
example, when the position of foot 1 is given, both qi2, qi3
and qíi2, qíi3 are the possible solutions as shown in Fig. 3.
However, qíi2, qíi3 should be abandoned because the knee
joints suffer from heavy loads in this case.

3 Dynamic modeling of the robot

The six-legged robot can be treated as a floating body with
six legs if the constraints between foot and ground are
substituted by constraint force vectors. The dynamic
equations of the robot system can be developed by
Lagrange equations combining the constraint relation
between qb and qi.
The total kinetic energy of the robot system is the sum of

the kinetic energy of body and six legs. Based on the
generalized coordinate qb, the kinetic energy of body can
be expressed as

Ekb ¼
1

2
_qTbMb _qb, (4)

where

Mb ¼

mb

mb

mb

Ibx

Iby

Ibz

2
6666666664

3
7777777775
,

is the inertia matrix of body. mb, Ibx, Iby, Ibz are the mass
and rotational inertia of the body.
The kinetic energy of one leg is the sum of translational

kinetic energy of three links’ gravity center and their
rotational kinetic energy around each gravity center. Once

Fig. 3 Two groups of possible solutions for a leg
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the gait is selected the position of each link in the inertial
coordinate can be determined as

pijc ¼ pb þ Rbpijc, i ¼ 1,2,:::,6, j ¼ 1,2,3, (5)

where

​ bpi1c ¼
​ bpi2 – ​

bpi1
2

þ ​ bpi1,

​ bpi2c ¼
​ bpi3 – ​

bpi2
2

þ ​ bpi2,

​ bpi3c ¼
​ bpif – ​

bpi3
2

þ ​ bpi3,

(6)

are the vectors of gravity center of each link of leg i. Leg i
can be determined by the position vectors ​ bpij of its joints
and foot in the form

bpi1 ¼ ½ –Rbsφ Rbcφ 0�T,
bpi2 ¼ bpi1 þ ½ – L1sq#i1 L1cq#i1 0�T,
bpi3 ¼ bpi2 þ ½ – L2cqi2sq#i1 L2cq2cq#i1 – L2sqi2�T,
bpif ¼ bpi3 þ ½ – L3cqi3sq#i1 L3cqi3cq#i1 – L2sqi2 – L3sqi23�T,

(7)

where qíi1 ¼ qi1 þ φ, φ ¼ i – 1ð Þπ
3
, qi23 ¼ qi2 þ qi3.

Velocity of the gravity center of link j of leg i can be
obtained by differentiating Eq. (5) with respect to time to
get

vijc ¼ _pijc ¼ _pb –R
bp̂ijcG _qþ RJ ij _qi, (8)

where ​ bp̂ijc, J ij is the skew symmetric matrix and Jacobian

matrix of ​ bpijc respectively. The rotational influence
matrix G [18] is

G ¼
sβsg cg 0

sβcg – sg 0

cβ 0 1

2
64

3
75:

Rearranging Eq. (8) yields

vijc ¼ I3�3 –Rbp̂ijcGRJ ij

� �
_qb _qi½ �T: (9)

Thus, the kinetic energy of link j of leg i is given by

Ekij ¼
1

2
mijv

T
ijcvijc þ

1

2
jij _qij _qij: (10)

Substituting Eq. (9) into Eq. (10) yields

Ekij ¼
1

2
_qb   _qi½ �M ij

_qb

_qi

" #
þ jij _q

2
ij

 !
,

where

M ij ¼
mijI –RmijG# RmijJ ij

–RmijG# G#TmijG# GTmij ​
bp̂ijcJ ij

RmijJ ij GTmij ​
bp̂ijcJ ij mijJ

T
ijJ ij

2
664

3
775,

G#¼bp̂ijcG, Mij is the inertia matrix of link j of leg i, and
mij, J ij are the mass and rotational inertia of link j of leg i.
Thus, the kinetic energy of leg i is computed as

Eki ¼
X3
j¼1

Ekij: (11)

Therefore, the total kinetic energy of robot system can
be expressed as

Ek ¼ Ekb þ
X6
i¼1

Eki: (12)

When adopting the mixed gait, the supporting legs and
swinging legs alternate between the odd number legs and
even number legs. When legs 1, 3, 5 support the body, the
Lagrange equations of robot system are

d

dt

∂Ek

∂ _q 0

� �T

–
∂Ek

∂q0

� �T

¼
X3
i¼1

Q2i – 1
qb þ Qb þ

X3
i¼1

ðCi
q0ÞTF2i – 1

c , (13)

d

dt

∂Ek

∂ q_i

� �T

–
∂Ek

∂qi

� �T

¼ τi þ Qi
qi þ ðCi

qiÞTFi
c, i ¼ 1,3,5, (14)

d

dt

∂Ek

∂ q_i

� �T

–
∂Ek

∂qi

� �T

¼ Qi
qi þ τi, i ¼ 2,4,6, (15)

where Ci
qo ¼ I –Abp̂ifG

� �
, Ci

qi ¼ AJ if .
Eqs. (13)–(15) are the dynamic equations as referring to

robot body, legs in contact with ground, and legs in
swinging phase, respectively. Qi

qb , Q
i
qi are the generalized

forces for the generalized coordinates of body and leg i due
to the mass of leg i respectively, Qb is the generalized force
due to the gravity of body [1]. Fi

c is the constraint force on
the foot of supporting leg i which can be determined by
force distribution optimizing methods [19–21]. In this
paper, the constraint force is calculated based on the
simplified model by regarding the foot tips as the spherical
hinges.
When the supporting legs change to legs 2, 4, 6, the

generalized force and constraint force
X3
i¼1

Q2i – 1
qb ,

X3
i¼1

F2i-1
c
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in Eq. (13) change to
X3
i¼1

Q2i
qb ,
X3
i¼1

F2i
c and the number i in

Eqs. (14) and (15) is switched.
Moreover, qb and qi are dependent due to the contact

constraints between the foot and ground. When the
trajectory of foot pif (t) is given, the constraint equation
can be expressed as

​ bpif ¼ RTðpif – pbÞ, i ¼ 1,2,:::,6, j ¼ 1,2,3: (16)

Rearranging and differentiating Eq. (16) with respect to
time can give expressions for _qi, €qi. The complete dynamic
equations can be obtained when _qi and €qi are expressed by
qb through the constraint equations together with the
dynamic Eqs. (13)–(15).
The proposed dynamic modeling is formulated to

characterize the operation of the robot but also to evaluate
its dynamic performance through numerical simulation
results.

4 An index for total torque

In order to analyze the dynamic performance of the six-
legged robot, indices just considering the energy consumed
are not comprehensive. Robot stability should also be
considered, because the parameters of robot which
minimize the power consumption may reduce the stability
excessively.
The stability of the radial symmetric six-legged robot is

measured by SM as described in Sect. 2. To increase the
stability, the supporting feet should be located far away
from the body. However, the position of a supporting foot

on the O-XY plane may occur inside the area of body’s
projection during a step due to the unpredicted situations
such as excessive step length, length distribution of thigh
and calf etc. An example is shown in Fig. 4 where the
initial position and posture of body and leg 1 are depicted
in bold dotted lines, while their final position and posture
are represented in bold solid lines. P1XY and P#1XY are the
projection of P1 and P#1 on the ground. As can be seen in
Fig. 4(a), the foot is outside of the projection area of body
during the step, while in Fig. 4(b) the foot appears between
P1XY and P#1XY inside of the area of body’s projection and
the stability of the robot is poor. Therefore Fig. 4(a) is a
desired posture but Fig. 4(b) is unexpected in a locomotion
cycle. It is fairly easy to find that once the supporting leg 1
reaches on undesired posture, the direction of τ12 will
change, i.e., the sign of its value will change.
Thus, in order to prevent a reduction of robot’s stability,

a novel index of total torque is proposed by considering the
posture of supporting legs as

Ttot ¼
X6
i¼1

X3
j¼1

Xn
k¼1

T

n
τijðtkÞ
�� ��, (17)

with

τi2ðtkþ1Þ ¼
τi2 tkþ1ð Þ, τi2 tkð Þτi2 tkþ1ð Þ³0,

Mf τi2 tkþ1ð Þ, τi2 tkð Þτi2 tkþ1ð Þ<0,
,

(

where Ttot is the sum of all i � j joint torques in a periodic
time T, i is the number of leg and j is the number of joints
of a leg. Torques τij of the hip yawing joints and knee joints
are measured every T/n seconds. If the robot walks in a
stable posture as in Fig. 4(a), the measured torques τij of

Fig. 4 The posture of supporting leg 1
(a) Stable posture; (b) unstable posture
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hip pitching joints can be applied directly. In an undesired
posture, however, the torque of hip pitching joint τi2ðtkþ1Þ
will be amplified by magnification factorMf (Mf≫0) when
its direction become opposite to τi2ðtkÞ. The optimal values
of torques can be based on this index and the minimum Ttot
can be properly used.
A comparative simulation experiment is reported to

show its validity. Based on the inverse dynamics, the index
of density of power lost (TL) in Ref. [5] and torque
considering the posture of supporting legs (Ttot) for six
examples of leg design (LD1–LD6) as in Table 1 are
evaluated, where L2, L3 are the length of thigh and calf,
respectively.

Let the general coordinates qi1 = 0°, qi2 = 30°, qi3 = 60°
at the standing state, the robot walks along the direction of
leg 1 (parallel to Y-axis) in the mixed gait, legs 1, 3, 5 are
the supporting legs at the beginning. The step length is S =
100 mm, and cycle time is T = 2 s. The height of body is
unchanged during the motion.
Let’s consider the above notation with:

mb = 30 kg, m1 = 0.5 kg, m2 = 2 kg, m3 = 2.5 kg, Rb =
300 mm, L1 = 150 mm, L2 = 300 mm, L3 = 300 mm, Ibx =
0.7 kg$m2, Iby = 0.7 kg$m2, Ibz = 1.35 kg$m2, j12 = j13 =
0.015 kg$m2, Mf = 200, n = 10.
Taking leg 1 as an example, the torque value of τ12, τ13

for all examples of leg design in a periodic locomotion are
shown in Fig. 5. As can be seen in Fig. 5(a), all the lines of
torque of hip pitching joint change smoothly except line 3.
There is a numerical mutation of τ12 for LD3, because the
thigh is too much short in this case, and the supporting leg
1 cannot be allocated a series of continuous rotation angles
to follow foot’s path. The sudden variation of torque from
about 10 N$m to – 90 N$m suddenly may cause serious
damage to the motor. Torque of hip pitching joint for LD1
is the maximum during a step, while torque for LD5 is the
minimum. However, in LD5 τ12 change into negative value
at the end of the step which indicates that the supporting
leg is located in the unstable posture as in Fig. 4(b).
Therefore, both of LD3 and LD5 are not the feasible
choices. Torque of knee joint for LD3 is the maximum,
while torque for LD1 is the minimum as shown in
Fig. 5(b). The variation trend of all lines maintain uniform,
To obtain the optimal design among LD1–LD6,

performance index TL and Ttot are employed here. The
results of TL and Ttot are calculated as based on τ12, τ13 and
illustrated in Fig. 6. According to the result of index TL,
Example 5 is the optimal design since its value is the
minimum as in Fig. 6(a). From Fig. 6(b), however, the
minimum Ttot is related to Example 4 as based on the

Eq. (17). The optimal solutions according to these two
indices are different. Because the length distribution of
thigh and calf in LD3 and LD5 cause the unstable posture
during one step, the τ12 for these two cases had been
amplified by the magnification factor Mf in index Ttot.
Simulation results show that the index TL can be used for

optimizing the design parameters of leg to fullfile the goal
of consuming minimum energy, but it can’t avoid the
unexpected posture of supporting legs. While the index Ttot
not only can reject the design parameters causing the
unstable posture, but also find the optimal design of leg
with minimum energy consumption.

5 Analysis of the robot’s dynamic
performance

In order to characterize robot dynamic performance a
parametric study has been carried out by simulating its

Table 1 Six examples of leg design

LD1 LD2 LD3 LD4 LD5 LD6

L2/mm 300 270 100 200 150 230

L3/mm 300 330 500 400 450 370

Fig. 5 The joint torques during motion of leg 1
(a) The torque of hip pitching joint; (b) the torque of knee joint
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operation for different design conditions. Results are
summarized in the following.

5.1 The effect of design parameters

Four important parameters are selected to analyze their
influence on joint torques, namely the length of leg (L2,
L3), the mass distribution of leg (m2, m3), the step length
(S), and the joint angles of supporting legs in standing state
(qij). Since the dynamics of swinging legs has been well
studied when it is treated as mobile manipulators [22–24],
we have just analyzed the dynamics of supporting legs.
The motion and notations of the robot are same with

those in Sect. 4. The normal values of these four
parameters are L2 = 300 mm, L3 = 300 mm; m2 = 2 kg,
m3 = 2.5 kg; S = 100 mm; qi1 = 0, qi2 = 30°, qi3 = 60° at the
standing state.
Taking leg 1 as an example, the torques of hip pitching

joint (τ12) and knee joint (τ13) for normal values of the

parameters are displayed by the line 1 in Figs. 7–10 as
results of numerical simulations. The average value of τ12
and τ13 are 46 N$m and – 10 N$m respectively. To
illustrate the effect of these four parameters, joint torques
are also calculated in the condition that one parameter
changes at a rate of 10% and 20%, meanwhile, the other
two parameters remain unchanged.
Figure 7 shows the variation of τ12 and τ13 for five

different lengths of L2 and L3 as in Table 2. From the
simulation results, in one step, the variation trend of τ12 or
τ13 for five cases in one step keep almost uniform. The τ12
for case 5 is the maximum during a step, while it is the
minimum for case 3. On the contrary, the τ13 for case 5 is
the minimum but the maximum for case 3. Difference
between the adjacent lines in Fig. 7(a) is about 9 N$m, and
that is 2.5 N$m in Fig. 7(b), which means that 10%
variation of L2 and L3 cause τ12 and τ13 to change 20% and
40% respectively.

Figure 8 shows the result of τ12 and τ13 for different
groups of m2 and m3 in Table 3. The variation trend of the
five lines which are the torques of hip pitching joint (τ12)
for five different distributions of leg’s mass keep uniform
in Fig. 8(a). Torque τ12 for case 3 is the maximum, while its
minimum value is for case 5. The result of Fig. 8(a) is just
opposite to Fig. 7(a). Difference between the adjacent lines
in Fig. 8(a) is about 0.2 N$m, which means 10% variation
of m2 cause τ12 just to change 0.43%. Furthermore, the
torque of knee joints τ13 almost keep unchanged for the
five cases of legs’ mass distribution. The effect of mass
distribution of leg on the joint torques is little because the
body of robot (30 kg) is much heavier than one leg.
The effect of different step length is shown in Fig. 9.

Line 2 and line 3 describe the torque in the situation of S =
90 mm, S = 80mm, while line 4 and line 5 represent the
torque for S = 110 mm, S = 120 mm. The five cases have
the same initial value of both τ12 and τ13, but their values
change over time. The τ12 decreases gradually, while the
τ13 increases in the opposite direction. The maximum
variation of both joint torques are about 1Nm at the end of
lines, which suggest the changes of τ12, τ13 are 2.2% and
10% caused by 10% variation of step length.
The effect of the joint angles in standing state to τ12 and

τ13 is illustrated in Fig. 10. The line 2 and line 3 represent
the torque in the situation of qi2 = 33°, qi2 = 36°, while line
4 and line 5 describe the torque for qi2 = 27°, qi2 = 24°. To
maintain the calf being perpendicular to the ground in
standing state, qi3 = 90° – qi2. The variation trends of five
lines are also uniform. The difference of τ12 is about

Fig. 6 Value of index TL and Ttot for six design examples
(a) Index TL; (b) index Ttot

Table 2 Different lengths of L2 and L3

Case 1 Case 2 Case 3 Case 4 Case 5

L2/mm 300 270 240 330 360

L3/mm 300 330 360 270 240
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2 N$m, which means that 10% variation of qi2 lead a

change of 4.3% of τ12. The difference of τ13 is small
enough to be neglected.
Based on the simulation results, the effect of different

parameters on the joint torques of supporting legs is listed
in Table 4. The results show that the change of leg length
has great influence, especially on τ13. On the contrary, the
effects of mass distribution of a leg and joint angles are
relatively less. The influence of step length on the knee
joint is significantly greater than hip pitching joins. The
results provide a basis for optimizing the leg’s structure
and operation.

5.2 Analysis of leg operation

In this subsection the leg operations are analyzed in two
cases, namely the robot walks with maximum step length

Table 3 Different groups of m2 and m3 /kg

Case 1 Case 2 Case 3 Case 4 Case 5

m2/kg 2 1.8 1.6 2.2 2.4

m3/kg 2.5 2.7 2.9 2.3 2.1

Table 4 The effect of different parameters to the joint torques of
supporting legs

10% change
of L2 and L3

10% change
of m2 and m3

10% change
of step
length

10% change
of joint
angles

τ12 change 20% 0.43% 2.2% 4.3%

τ13 change 40% Neglect 10% Neglect

Fig. 7 Results of simulation for different length of leg
(a) Torque of hip pitching joint; (b) torque of knee joint

Fig. 8 Results of simulation for different mass distribution of leg
(a) Torque of hip pitching joint; (b) torque of knee joint
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with different poses, and it walks with different step length
with the same pose.

5.2.1 Maximum step length with different poses

Let’s consider the robot walking under the following
conditions. In the original standing state, the calves are
perpendicular with the ground. The robot walks along the
direction of leg 1 in the mixed gait, legs 1, 3, 5 support the
robot in the first step. Four different poses of the robot are
selected as shown in Fig. 11. The angles between the body
and thigh are different in these poses. The robot walks with
maximum step length (Smax) which is the distance between
the foot in state of stand and the projection of P1 on the
ground. The time spent in one step is 2 s with a uniform

step frequency in the four situations and the height of body
is unchanged during the motion.
Using the dynamic Eq. (14), τ12 and τ13 are calculated in

these four situations. The values of Ttot in one step and Ttot
of per meter are listed in Table 5 as obtained from the
numerical simulation. Both Smax and Ttot in pose Fig. 11(a)
are the largest in these four sets of results, while the time
spent is the shortest. On the contrary, Smax and Ttot in pose
Fig. 11(c) are the smallest but the walk time is the longest.
When the robot stands in its highest state like pose
Fig. 11(d), it is not suitable to walk because its foot is
located inside of the projection of the body on the ground,
so that the stability margin is reduced greatly. The results
demonstrate that both the total torque and time spent per
meter in these four cases are different according to the

Fig. 9 Results of simulation for different step length
(a) Torque of hip pitching joint; (b) torque of knee joint

Fig. 10 Results of simulation for different posture of supporting legs
(a) Torque of hip pitching joint; (b) torque of knee joint
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above conditions. Therefore, when the robot stand higher,
the total torque consumed per meter is lower but the time
spent is longer. While the robot’s height is lower, the Ttot of
per meter becomes larger and the time spent is shorter.

5.2.2 Different step length with the same pose

Let’s consider the robot also walking along the direction of
leg 1 in the mixed gait as shown in Fig. 12. The dotted line
is the initial position of leg 1 and the black line is its final
position in a step. Four different step lengths S1–S4 are
selected to analyzed the robot dynamic performance. The
step frequency in the situations is uniform, and the height

of body also remains unchanged during the motion in each
case.
The results of Ttot and the time spent per meter are listed

in Table 6. The smallest value of Ttot and time spent per
meter appear in case Fig. 12(a), and the largest Ttot and
time spent per meter appear in case Fig. 12(d). The results
demonstrate that the total torque consumed and the time
spent per meter in the same pose of robot are determined by
the step length. The value of Ttot and the time spent per
meter are inversely proportional to the step length. In order
to consuming minimum power and spending the shortest
time, the robot should walk with the maximum step.
Meanwhile, the stability of case Fig. 12(a) is the worst
among these four cases.

6 Conclusions

In this paper the dynamic performance of a radial
symmetric six-legged robot has been analyzed. The
dynamic model of the robot has been formulated according
to the Lagrange equations. A new index of total torque has
been proposed by considering the posture of supporting
legs (Ttot), and its validity has been verified by comparing

Fig. 11 The robot walks in four different poses
(a) Pose 1; (b) pose 2; (c) pose 3; (d) pose 4

Table 5 Results form numerical simulation for total torque and time
spent in four different poses

Smax/m Ttot of
one step

Ttot of per
meter

Time spent per
meter/s

Pose 1 0.260 93.4 359.23 7.7

Pose 2 0.212 70.6 333.02 9.4

Pose 3 0.150 41.7 278.00 13.3

Pose 4 0 0 0 1
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the simulation results with the existing index TL. The index
Ttot can be used to identify the optimal design of robot for
minimizing energy consumption and preventing the
unstable posture.
Results of the analysis of dynamic performance show

that the change of leg length has great influence on the joint
torques of supporting legs, yet the effect of joint angles is
relatively less. Moreover, the influence of step length on
the knee joint is significantly greater than it on hip pitching
joint. When the robot walks in the same step length but
different poses, the total torque is determined by Smax and
Ttot of one step. If the robot stands higher, the total torque
consumed per meter is lower but the time spent is longer.
Else if the robot’s height is lower, the Ttot of per meter
becomes larger and the time spent is shorter. When the

robot walks in the same pose but different step lengths, the
value of Ttot and time spent per meter are inversely
proportional to the step length.
Our work in this article is significant to optimize the

parameter design of mechanical structure and the leg
operation of the radial symmetric six-legged robot.
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