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Abstract In this paper, loxodromic-type normal circular-
arc spiral bevel gear is proposed as a novel application of
the circular-arc tooth profile at the gear transmission with
intersecting axes. Based on the principle of molding-
surface conjugation, the study develops a mathematical
model for the tooth alignment curve and the computational
flow at the design stage to enable the generation of the
tooth surface. Machining of the tooth surface is then
carried out to determine the interference-free tool path of
the numerical control (NC). Moreover, a pair of loxo-
dromic-type normal circular-arc spiral bevel gears is
manufactured on computer numerical control (CNC)
machine tools. The proposed theory and method are
experimentally investigated, and the obtained results
primarily reflect the superior performance of the proposed
novel gear.

Keywords loxodrome, circular-arc tooth profile, Wild-
haber-Novikov (W-N) gear, spiral bevel gear

1 Introduction

A helical gear with a circular-arc tooth profile in the gear
drive with parallel axes was proposed by Wildhaber [1]
and Novikov [2]. Since then, intensive research had
centered on various aspects such as tooth geometry and
optimization [3–6], contact and stress analysis [7–11],

kinematics analysis [10], etc. In reality, a major difference
exists between the ideas of these two inventors. The idea
by Wildhaber was based on the generation of pinion and
gear by the same imaginary rack cutter that provided a pair
of line-contact tooth surfaces. On the contrary, Novikov’s
proposal was based on two mismatched imaginary rack
cutters that generated a pair of point-contact tooth surfaces.
In Novikov’s study, the transverse section of the tooth
surface was a circular arc in the theoretical analysis,
whereas the normal section in practice is considered as a
circular arc. Thus, the gear machining theory of Novikov
departed from the kinematic theory he originally presented.
Essentially, the ideas of Wildhaber and Novikov are
similar. In the gear community, the gear type proposed by
Wildhaber and by Novikov is still referred to as the
Wildhaber-Novikov (W-N) gear. By using two mis-
matched rack cutters with parabolic profiles in internal
tangency, Litvin et al. [12] proposed a new type of W-N
gear that can effectively reduce noise and vibration caused
by misalignment. Despite the numerous studies that had
been conducted by scholars on W-N gear, it was only in
2001 that a study was conducted on the bevel gear with a
circular-arc tooth profile. Kuo [13] proposed this kind of
bevel gear and presented the ideal conditions of
interference-free tooth surface using spherical geometry.
Maiki and Watanabe [14] presented a method to manu-
facture a W-N spiral bevel gear on the machining center,
conducted tooth contact analysis (TCA), and confirmed the
results of TCA by the tooth contact mark obtained from the
running-in experiment. Tsai and Hsu [15] investigated a
kind of spiral bevel gear with a circular-arc contact path and
tooth profile, derived the mathematical model for tooth
geometry, and presented a machining method for general
milling machine. Yao et al. [16] proposed the application of
double circular-arc tooth profile in the nutation drive and
developed a mathematical model of the tooth surface.
Spur gear, straight bevel gear, involute helical gear, and

the W-N gear share some common characteristics. First,
their conjugated tooth surfaces are molding surfaces [17]
generated by sweeping the plane generatrix (i.e., the tooth
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profile) along a directrix (i.e., tooth alignment curve) with a
single degree of freedom (DOF). Second, the surface
normals along the generatrix are coplanar in the normal
plane of the directrix. Third, the instantaneous contact
curve of tooth surfaces is always the generatrix. The gears
mentioned above can be uniformly discussed under the
principle of molding surface conjugation [18], which is
different from the conventional theory of conjugate
surfaces. More particularly, molding surface conjugation
requires that the conjugated teeth are a pair of molding
surfaces generated by the same generatrix, and that the
instantaneous contact curve is always the generatrix.
Hence, the conjugate relationship of tooth surfaces can
be transformed into the relationship between the directrixes
of tooth surfaces that involves the principle of molding
surface conjugation. Following this principle, the gears
with circular-arc tooth profile can be expanded into the
intersecting-axis and the skew-axis drives, wherein the
related theories have been presented in the literature [19].
Obviously, the W-N gear is only a special case of circular-
arc tooth profile used for the convertibility of momentum
between parallel axes. Its theory and technology have been
developed.
In navigation, a line crossing all meridians of a longitude

at the same angle is known as the loxodrome. In this paper,
a curve cutting the generatrix on a given cone surface at a
constant angle is also called the loxodrome. When a pair of
conjugate loxodromes is chosen as the tooth alignment
curves of tooth surfaces of gear and pinion, some
advantages in the bevel gear with a circular-arc tooth
profile are exhibited. As the spiral angle of the loxodrome
is constant, machining the tooth surface on the numerical
control (NC) machine tool using a milling cutter requires
only two DOF that can be offered by any general milling
machine. The ratio of the circumferential load, axial load,
and the radial load of the tooth is constant, which gradually
engages the gears to reduce the noise. According to the
geometric characteristics of the tooth surface, this kind of
bevel gear is called the loxodromic-type normal circular-
arc spiral bevel gear (LCBG). LCBG is based on the
following ideas. First, the directrixes of the tooth surfaces
are a pair of loxodromes, whereas the generatrix is a
circular arc in the normal section, which means that the
tooth surface is a special illustration of the molding surface
of the circular-arc generatrix. Second, LCBG follows the
principle of molding surface conjugation. Lastly, the non-
interference condition of the teeth is naturally satisfied.
As a practical application of the molding surface

conjugation principle, this paper aims to present the design
ideas and the mathematical model of the tooth alignment
curve of the proposed LCBG by introducing crown gear as
the intermediary conjugation between gear and pinion. On
this basis, the method for generating the tooth surface on
the computer numerical control (CNC) machine tool with
the forming method is discussed, and the tool path that
avoids the cutting interference is developed. Furthermore,

the proposed theory and method are illustrated by a
prototype of LCBG pair.

2 Mathematical model of LCBG

2.1 Basic idea

In the design and manufacture of the bevel gear, the
complementary crown gear is an effective tool to derive the
tooth surface of pinion and gear in which there is no
exception. As to the generation of the LCBG pair, the
crown gear with the circular-arc tooth profile is placed
between the pinion and gear assembly. The center is
located exactly at the intersection point of the pinion and
gear shafts. Here, the directrix of the tooth surface of the
crown gear is a loxodrome on the pitch plane and is an
important token of tooth alignment. Hence, it is also called
as the tooth alignment curve in this paper. When the pinion
is located at the backside of the crown gear and meshes
with the “negative teeth” while the gear is placed at the
front side of the crown gear and meshes with the “positive
teeth”, kinematic coupling condition is fulfilled, which
means that the pinion and gear can mesh with each other as
well. Meanwhile, the pitch plane of the crown gear is
simultaneously tangential with the pitch cones of gear and
pinion. At the instantaneous axis, they roll without slipping
with each other. In this process, an arc-length preserving
map is formed, which can be utilized to obtain the tooth
alignment curves of pinion and gear from the tooth
alignment curve of the crown gear. The tooth alignment
curve of the crown gear can map out a pair of conjugate
tooth alignment curves of gear and pinion on respective
pitch cones. As to the tooth alignment curves of the gear
and pinion, they are always opposite with each other, but
the spiral angles are equal.
In this paper, LCBG is considered to transfer the

momentum between intersecting perpendicular axes. Some
basic relationships between pinion, gear, and crown gear
are considered, as demonstrated below

rc ¼
r1

sinδ1
¼ r2

sinδ2
, zc ¼

z1
sinδ1

¼ z2
sinδ2

,

lc ¼ l1sinδ1 ¼ l2sinδ2, I ¼
z1
z2

¼ sinδ1
sinδ2

,

I1c ¼
z1
zc

¼ sinδ1, I2c ¼
z2
zc

¼ sinδ2,

8>>>>><
>>>>>:

(1)

where the subscripts “1”, “2”, and “c” indicate the pinion,
the gear, and the crown gear, respectively, ri ði ¼ 1,2,cÞ is
the shortest distance from any coinciding point (conjugate
point) of the tooth alignment curve to the respective
rotating axis, δi ði ¼ 1,2Þ is the pitch cone angle, zi ði ¼
1,2,cÞ is the number of teeth, li ði ¼ 1,2,cÞ is the rotating
angle, I is the speed ratio of pinion to gear, and I1c and I2c
are the speed ratios between the crown gear and the pinion
gear.
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2.2 Determination of the tooth alignment curve

As previously mentioned, the tooth alignment curve
reflects the direction of tooth alignment of LCBG.
Hence, determination of the tooth alignment curve of the
tooth is a chief task. According to the appointment, the
tooth alignment curve of the crown gear of LCBG is a
loxodrome on the pitch plane, which is a logarithmic
spiral. From differential geometry, this spiral has the
property wherein the angle between the tangent and the
radial line at any point is constant.
As shown in Fig. 1, in the coordinate system fOc;xcycg

with the crown gear attached, the equation and the moving
frame of the loxodrome Cp can be described as

Rp ¼ rtexp lccotβc
� �

E lcð Þ,
e1 ¼ E lc þ βc

� � ¼ cos lc þ βc
� �

ic þ sin lc þ βc
� �

jc,

e2 ¼ E1 lc þ βc
� � ¼ – sin lc þ βc

� �
ic þ cos lc þ βc

� �
jc,

(2)

where Rp is the radial vector, rt is the inner cone distance,

βc is the nominal spiral angle, e1 and e2 are unit tangent
and unit normal vectors, respectively, that form the moving
frame, and EðlcÞ, E lc þ βc

� �
, and E1 lc þ βc

� �
are unit

circle vectors.

By observing the generation of the molding surface, we
find that an arbitrary point of the generatrix can trace the
equidistant curve of the directrix. As a special illustration
of the molding surface, the tooth surface of LCBG should
have this property. In this case, once a tooth alignment
curve is used to generate two flanks of “negative tooth” or

“positive tooth” of the crown gear, the tooth thickness of
the corresponding pinion and the space width of the
corresponding gear become constant, resulting in the space
width of the pinion, while the tooth thickness of the gear at
the small ends becomes too big that the balance of the teeth
bending strength is broken.
To avoid this problem, two separate tooth alignment

curves should be derived to generate two flanks of tapered
tooth: the left and the right flanks. Both flanks are obtained
from the transformation of the nominal tooth alignment
curve that is defined in Eq. (2). The left and the right tooth
flanks of the crown gear are illustrated in Fig. 1. When the
top surface of the tooth is upturned, from the small end to
the big end, the two sides of the tooth are then called the
left and the right flanks. In the following parts, the
parameters with the subscripts “l” or “r” indicate their
relation to the left or to the right flanks. To obtain the
tapered tooth, we rotate the nominal tooth alignment curve
Cp counterclockwise and clockwise with a small rotating
angle Δl at the center axis of crown gear. The generated
results Ct – l,Ct – r are chosen respectively as the left and the
right theoretical borderlines of the tooth. According to the
equidistant rule, Cp is adjusted as the actual left and right
tooth alignment curves Cp – l and Cp – r at the mean pitch
circle. Only in this way can their equidistant curves (actual
borderlines of tooth) Cl,Cr can approach Ct – l,Ct – r.
According to above idea, for the theoretical borderlines

Ct – l, Ct – r, their equations and moving frame can be
described as

Rt ¼ rtexp lccotβc
� �

E lc � Δlð Þ,
et-1 ¼ E lc � Δlþ βc

� �
,

et-2 ¼ E1 lc � Δlþ βc
� �

,

(3)

where the upper sign “+” and the lower sign “_” are used
to express the theoretical left and right borderlines, et-1 and
et-2 are unit tangent and unit normal vectors, and Δl is
determined by the following equations:

Δl ¼ 1

2
q0gc, gc ¼

2π

zc
, (4)

where gc is the indexing angle of the crown gear and q0 is
the ratio of the indexing angle and the central angle that
determines the tooth thickness. Generally, q0 ¼ 0:618.
For the actual tooth alignment curves Cp – l,Cp – r, their

equation and moving frame can be uniformly represented
as follows:

R *ð Þ
p ¼ rtexp l�cotβ�ð ÞE l� � Δlð Þ,

e *ð Þ
1 ¼ E l� � l�0 þ β�ð Þ,
e *ð Þ
2 ¼ E1 l� � l�0 þ β�ð Þ,

(5)

where β�, l�0 are the spiral and the starting angles,
respectively, after the adjustment of Cp, l

� is the rotating

Fig. 1 Tooth alignment curve of the crown gear
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angle parameter, and eð*Þ1 and eð*Þ2 are unit tangent and unit
normal vectors. During computation, β� and l�0 are
substituted by βl, l0 – l of Cp – l and βr, l0 – r of Cp – r.
According to the definition of the equidistant curve, for

actual borderlines Cl,Cr, their equation can be expressed as
follow:

R *ð Þ ¼ R *ð Þ
p � r0e

*ð Þ
2

¼ rtexp l�cotβ�ð ÞE l� þ l�0ð Þ � r0e
*ð Þ
2 , (6)

where r0 is the radius of the working tooth profile, the
upper sign “+” and the lower sign “_” are used to express
the actual left and right borderlines Cl and Cr, respectively.
With Cl as very close to Ct – l, they are denoted by the same
curve in Fig. 1, while the same operation exists between Cr
and Ct – r.
To ensure the rationality of the tooth size and the balance

of the strength, the adjustment of Cp at the mean pitch
circle satisfies the conditions that the magnitudes of Rt and
Rð�Þ are equal to the mean cone distance rm, while the
lengths of their projections onto the vector E1ðl*m � l�0Þ are
equal as well as their unit normal vectors. This condition
can be expressed by the following equations:

R *ð Þ2 ¼ R2
t ¼ r2m,

R *ð Þ⋅E1 l�m � l�0ð Þ ¼ Rt⋅E1 l�m � l�0ð Þ,
E1 lm � Δlþ βc
� � ¼ E1 l�m þ l�0 þ β�ð Þ,

8>>><
>>>:

(7)

where the symbols with the subscript “m” indicate each of
their relation to the mean pitch circle. By substituting Eqs.
(3) and (6) into Eq. (7), the following expressions can be
obtained:

lm � Δlþ βc ¼ l�m þ l�0 þ β�,

rmsin β� – βc
� � ¼ �r0cosβ

�,

rtexp lmcotβc
� � ¼ rm,

½rtexpðl*mcotβ�Þ � r0sinβ
��2 þ ðr0cosβ�Þ2 ¼ r2m:

8>>>>><
>>>>>:

(8)

Since r0, rt, rm, βc and Δl are known, the unknowns β�,
l�0, l

�
m, and lm can be solved as follows:

tanβ� ¼ sinβc �
r0
rm

� �
1

cos�βc
,

l�m ¼ tanβ�ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m – r0cosβ

�ð Þ2
r2t

s
� r0

rt
sinβ�

 !
,

lm ¼ tanβc ln
rm
rt

� �
,

l�0 ¼ lm � Δlþ βc – l�m þ β�ð Þ,

8>>>>>>>>>><
>>>>>>>>>>:

(9)

where the solutions with the upper sign “+” and the lower
sign “_” are used for expressing Cp – l and Cp – r,
respectively.

2.3 Determination of the tooth profile

As mentioned above, the basic tooth profile of LCBG in
the normal section is a single circular arc, and its two sides
are symmetric on the normal of the pitch cone or the pitch
plane. In theory, the LCBG pair is in line contact, but the
mismatch method is usually adopted to decrease the effect
of errors, resulting in the tooth profile consisting of the
working and the fillet circular arcs. For strength purposes,
the convex profile is used for the pinion, and its radius is
slightly smaller than that of the gear. Referring to the
standard tooth profile of the W-N gear with a single
circular arc, the sketch and the basic parameters of the
tooth profile for LCBG are presented in Fig. 2 and Table 1.
Figure 2 describes a prototype of the tooth profile at the

small end of the crown gear. In the practical generating
process of the tooth, the centers of the two sides of the
tooth profile move along the respective tooth alignment
curve from the small end to the big end. Consequently, a
tapered tooth is obtained.

2.4 Computational flow

The tooth profile and the tooth alignment curve have been
identified and presented in Sections 2.2 and 2.3. The
computational flow of the related parameters at the design
stage of LCBG is accomplished as follows:

Fig. 2 Basic geometry of the tooth profiles. (a) Pinion; (b) gear
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Step 1 (Determining the nominal module and the
nominal spiral angle). Nominal module mn is chosen by
the strength requirement, while the nominal spiral angle is
generally βc£30∘.
Step 2 (Determining the tooth number). Since the least

tooth number of LCBG is not restricted by the interference
condition [18], only the size and the strength are necessary
to be considered in the design process. If the tooth number
z1 of the pinion is too large, the diameters of the gear and
the pinion increase, while if it is too small, the tooth width
increases. Hence, z1 must be optimally chosen, and
generally, z1³10. Once z1 is chosen, the tooth number
z2 of the gear can be obtained from the speed ratio.
Besides, the pitch cone angles δ1, δ2 and the tooth number
zc of the crown gear can be acquired by Eq. (1).
Step 3 (Obtaining the pitch diameter at the small end).

With the nominal module mn defined at the small end of
tooth, the pitch diameters Ds1,Ds2 at the small ends of the
pinion and the gear can be described as

Ds1 ¼
mnz1
cosβc

, Ds2 ¼
mnz2
cosβc

: (10)

The following inner cone distance rt at the small end of
the crown gear is then obtained

rt ¼
Ds1

2sinδ1
¼ Ds2

2sinδ2
: (11)

Step 4 (Obtaining the pitch diameter at the big end and
the tooth width). The contact ratio ε is firstly determined
from the drive performance, and then the ending angle of
the nominal tooth alignment curve at the big end of the
crown gear can be specified as

lh ¼ εgc: (12)

By substituting lc ¼ lh into Eq. (2) , the outer cone
radius rh at the big end of the crown gear is acquired

rh ¼ rtexp εgccotβc
� �

: (13)

Subsequently, the pitch diameters Db1,Db2 at the big
ends of the pinion and the gear, as well as the tooth width b,

can be derived as below:

Db1 ¼ 2rhsinδ1, Db2 ¼ 2rhsinδ2, b ¼ rh – rt : (14)

Step 5 (Obtaining the tooth profile). By substituting
nominal module mn into Table 1, the basic parameters of
the tooth profiles for the pinion and the gear can be
obtained.
Step 6 (Obtaining the parameters βl, l0 – l, βr, l0 – r of the

actual tooth alignment curves). By substituting the
knowns, namely, βc , rt, r0, rm and Δl in Eq. (4) into
Eq. (9), the parameters βl, l0 – l, and βr, l0 – r of the crown
gear can be acquired.
According to the mapping relationship between the

crown gear, the gear, and the pinion, the spiral angles of the
gear and the pinion are equal to that of the crown gear, but
their spiral hands are opposite to each other. Referring to
Eq. (1), the starting angles of the left and the right tooth
alignment curves of the pinion and the gear can be
expressed as

l1l ¼
l0 – l

sinδ1
, l1r ¼

l0 – r

sinδ1
,

l2l ¼
l0 – l

sinδ2
, l2r ¼

l0 – r

sinδ2
: (15)

3 Manufacture programming of LCBG

For the tooth surface of LCBG, the surface normals along
the tooth profile are coplanar. The tooth surface can be cut
by using two methods: the generating method or the
forming method. Only the forming method is discussed
here. Meanwhile, the form-milling cutter is used. The
knife-edge surface of the form-milling cutter is the torus
surface formed by the tooth profile rotating on the cutter
axis. The knife-edge surface and the tooth to be machined
is a pair of conjugated molding surfaces that satisfy the
principle of molding surface conjugation in the machining
course and guarantee the accuracy of the tooth. The
geometry of the tooth surface depends mainly on the tooth

Table 1 Basic parameters of the tooth profile

Item Symbol Pinion Gear

Pressure angle an 30° 30°

Radius of the working profile r0 1.5 mn 1.65 mn

Addendum ha 1.2 mn 0

Fillet radius rg 0.6248 mn 0.6227 mn

Tooth depth h 1.5 mn 1.36 mn

Technological angle φ0
8 ∘47#34$ –

Transverse offset of the circular center c – 0.6289 mn

Longitudinal offset of the circular center e – 0.075 mn
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alignment curve, based on the tool path programming
developed at this section.

3.1 Geometric characteristics of the tooth alignment curve

According to Section 2.4 and in the literature [18], in the
coordinate systems fO1;x1y1z1g and fO2;x2y2z2g with the
pinion and the gear attached in Fig. 3, the equations and the

moving frames of the tooth alignment curves Cð1Þ
p and Cð2Þ

p

for pinion and gear, respectively, can be described as

Cð1Þ
p : Rð1Þ

p ¼ rtexpðl1cotβ�sinδ1Þ
½sinδ1Eð – l1 þ l�01Þ þ cosδ1k1�,

eð1Þ1 ¼ cosβ�½cosδ1Eð – l1 þ l�01Þ þ sinδ1k1�
– sinβ�E1ð – l1 þ l�01Þ,

eð1Þ2 ¼ – sinβ�½cosδ1Eð – l1 þ l�01Þ þ sinδ1k1�
– cosβ�E1ð – l1 þ l�01Þ,

eð1Þ3 ¼ cosδ1Eð – l1 þ l�01Þ – sinδ1k1,

(16)

Cð2Þ
p : Rð2Þ

p ¼ rtexpðl2cotβ�sinδ2Þ
½sinδ2Eðl2 þ l�02Þ þ cosδ2k2�,

eð2Þ1 ¼ cosβ�½cosδ2Eðl2 þ l�02Þ þ sinδ2k2�
þsinβ�E1ðl2 þ l�02Þ,

eð2Þ2 ¼ sinβ�½cosδ2Eðl2 þ l�02Þ þ sinδ2k2�
– cosβ�E1ðl2 þ l�02Þ,

eð2Þ3 ¼ cosδ2Eðl2 þ l�02Þ – sinδ2k2,

(17)

where Cð1Þ
p is used to uniformly express two actual tooth

alignment curves of the pinion, eð1Þ1 is the unit tangent

vector of Cð1Þ
p , and eð1Þ3 is the unit normal vector of the pitch

cone. Both eð1Þ1 and eð1Þ3 form the moving frame with eð1Þ2 .
When we operate the left tooth alignment curve of the
pinion, β� is substituted by βl, while l�01 is substituted by
l1l which is computed in Section 2.4. When we operate the
right tooth alignment curve of the pinion, β� is substituted
by βr and l�01 is substituted by l1r. A similar operation can

be applied to Cð2Þ
p of the gear.

According to differential geometry, the geometric
property of the curve can be represented by the curvature
and the torsion. Using the derivatives of the unit vectors of
moving frames in Eqs. (16) and (17) with respect to the

arc-length parameter, the differential invariables of Cð1Þ
p ,

Cð2Þ
p can be obtained as follows:

τ 1ð Þ
g ¼ –

cosβ�sinβ�

rtanδ1
, τ 2ð Þ

g ¼ –
cosβ�sinβ�

rtanδ2
,

k 1ð Þ
n ¼ –

sin2β�

rtanδ1
, k 2ð Þ

n ¼ –
sin2β�

rtanδ2
,

k 1ð Þ
g ¼ –

cos2β�sinβ�

r
, k 2ð Þ

g ¼ –
cos2β�sinβ�

r
,

(18)

where r ¼ rtexpðl1cotβ�sinδ1Þ ¼ rtexpðl2cotβ�sinδ2Þ and
τðiÞg , kðiÞn and kðiÞg ði ¼ 1,2Þ are the geodesic torsion,
the normal curvature, and the geodesic curvature, respec-
tively.
For a pair of conjugated tooth alignment curves, the

absolute values of these invariables decrease with the

increase in r, while kð1Þg is always equal to kð2Þg . After the

reciprocal operation of kðiÞn and kðiÞg , the normal curvature

radii �ð1Þn and �
ð2Þ
n , as well as the geodesic curvature radii

�
ð1Þ
g and �

ð2Þ
g are acquired:

Fig. 3 Coordinate system. (a) Pinion; (b) gear
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�
ð1Þ
n ¼ –

rtanδ1
sin2β�

, �
ð2Þ
n ¼ –

rtanδ2
sin2β�

,

�
ð1Þ
g ¼ �

ð2Þ
g ¼ –

r

cos2β�sinβ�
,

�
ð1Þ
n

�
ð1Þ
g

¼ const,
�
ð2Þ
n

�
ð2Þ
g

¼ const:

8>>>>>>>>>><
>>>>>>>>>>:

(19)

Obviously, �ð1Þn , �ð2Þn , �ð1Þg and �ð2Þg are linear with respect
to r. They obtain the maximum at the big end and the
minimum at the small end of the tooth, respectively. The

normal curvature center Oð1Þ
n and Oð2Þ

n and the geodesic

curvature centerOð1Þ
g andOð2Þ

g can be denoted in the normal
plane of the tooth alignment curve (see Fig. 5) with the aid
of the operational method presented in the literature [19].

The line Oð1Þ
n Oð1Þ

g (or Oð2Þ
n Oð2Þ

g ) is the curvature axis of the

tooth alignment curve Cð1Þ
p (or Cð2Þ

p ), while the distances of

the point P to Oð1Þ
n (or Oð2Þ

n ) and Oð1Þ
g (or Oð2Þ

g ) are normal
curvature and geodesic curvature radii, respectively. Since

the ratio between �ð1Þn and �ð1Þg (or �ð2Þn and �ð2Þg ) is constant,

the intersection angle of the curvature axis and the axis-eð1Þ2

(or axis-eð2Þ2 ) is also constant, which is favorable for the
interference inspection.

3.2 Determination of the tool-path and the interference area

In the process planning for the workpiece machined by the
forming method, determination of the relative position and
the relative motion between the cutter and the workpiece is
important. As shown in Fig. 4, the axis-z1 (or axis-z2) of the
pinion blank (or gear blank) is inclined and forms the angle
of π=2 – δ1 (or π=2 – δ2) with the axis-zm of the machine
tool setting and with the upper generatrix of the pitch cone
as parallel to axis-xm. Under the control of NC codes, the
cutter axis is maintained in the normal plane of the tooth
alignment curve and is always parallel to axis-zm. In
observing the motion from the small end to the big end, the
pinion blank (or gear blank) rotates clockwise (or
counterclockwise) on the axis-z1 (or axis-z2) with the
rotating angle φ1 (or φ2). Relative to the workpiece, the
cutter moves parallel along axis-xm, and its motion is
determined by the following equation

x1 ¼ rtexp φ1cotβ
�sinδ1ð Þ, for pinionð Þ,

x2 ¼ rtexp φ2cotβ
�sinδ2ð Þ, for gearð Þ:

(20)

Since the spiral angle β� is constant, changing the tool
pose in the whole machining process is unnecessary. In
general, the manufacture process only needs 2 DOF,
namely, the rotation and the translation, that exhibit a good
processing performance of LCBG. In order to achieve the
point-contact, the center of the working tooth profile of the

gear offsets from the tooth alignment curve with a constant
distance, which is the difference of the radii of the working
tooth profiles of gear and pinion. The trace of this center is
a spatial equidistant curve of the tooth alignment curve of
the gear. Since the difference of the radii is very small, an
error generated from the machining principle is less than
1μm and can be ignored in the generation of the tooth.
In the machining course, curvature interference poten-

tially exists. Since the knife-edge surface is a torus, the
curvature axis of the directrix is the cutter axis. According
to the interference condition, the line connecting the
intersected point of the cutter axis and the curvature axis of
the tooth alignment curve with the center of the working
tooth profile intersects the tooth profile at the boundary
points of interference. These points must be avoided in the
machining area. As shown in Fig. 5, by connecting the
center of the working tooth profile with the starting point a
and the end point b of the working tooth profile, we can
obtain two forbidden areas (the shadow parts). Hence, the
non-interference condition for the machining can be
represented as the intersected point of the cutter axis and
the curvature axis of the tooth alignment curve outside the
forbidden area.
With the interference condition coming from the general

principle of the normal circular-arc gear [19], the tool pose
is determined during tooth machining by the forming
method. Figure 5 illustrates the tool pose of the

Fig. 4 Pose of blank on the worktable. (a) Pinion; (b) gear
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form-milling cutter and shows that the area fulfilling the
non-interference rule is big.

4 Manufacture and running-in test of LCBG

The main purpose of the tests is to verify the proposed
method and to conduct an elementary investigation on the
running-in situation of the LCBG pair. The analyses are
performed through the prototype machine of the LCBG
pair using the design parameters in Table 2.
Figure 6 illustrates the machining process of LCBG on

the CNC machine center with a pair of form-milling
cutters. In the process of tooth cutting, the cutter is
controlled by the NC codes programmed in terms of Eq.
(20). Unlike the conventional method of spiral bevel gears,
this method can machine any size of LCBG with the same
module by a form-milling cutter. Certainly, for the

manufacture of LCBG with the forming method, a
relatively limited productivity is entailed.
The finished pinion and gear are installed on the test

table, as shown in Fig. 7. The assembly is realized without
intent to pursue the higher alignment accuracy. After
500 r/min and torque 30 N$m are applied to the pinion, the
running test is conducted. By basic observation, the LCBG
pair works very well and the level of noise is low. The
contact pattern of the tooth flank is a continuous zonal area
from the small end to the big end and occupies majority of
the tooth-depth.

5 Conclusions

In this paper, LCBG was proposed as an application of the
single circular-arc tooth profile at the intersecting-axes
gear drive. The design idea of LCBG was presented, and

Fig. 5 Sketch of the interference area. (a) Left flank of pinion; (b) right flank of pinion; (c) left flank of gear; (d) right flank of gear
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Table 2 Dimensions of the LCBG prototype

Item Pinion Gear

Tooth number 12 24

Hand of spiral Left Right

Nominal module 5 mm

Shaft angle 90°

Pressure angle 30°

Nominal spiral angle 30°

Contact ratio 2.1

Inner cone distance 70.460

Mean cone distance 125.832

Fig. 6 Photograph of NC machining experiment of LCBG. (a) From milling-cutter; (b) processing on NC machining center

Fig. 7 Running-in test of the LCBG prototype. (a) Pinion and gear; (b) test table
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the mathematical models of the tooth alignment curve and
the tooth profile were developed. Through the tooth
alignment curve of the tooth surface, the tool path of tooth
machining by the forming method was programmed, and
the interference area was developed. The proposed theory
and method were experimentally investigated. The
obtained results primarily reflect the process and the
contact performances of LCBG.
In our future work, the quantification of the contact

pattern and transmission errors will be important topics.

Acknowledgements The work was supported by the National Natural
Science Foundation of China (Grant No. 51105210) and by the Nantong
University (Nos. 10ZY006 and 201010).

References

1. Wildhaber E. U.S. Patent, 1601750, 1926

2. Novikov M L. USSR Patent, 109750, 1956

3. Togashi S, Iyoi H. Improvement in W-N gears from the viewpoint of

gear geometry-effects of mismatching or a difference in profile radii

on the contact stresses. Mechanism and Machine Theory, 1973, 8

(3): 351–363

4. Lingaiah K, Ramachandra K. Photoelastic optimization of the

profiles of Wildhaber-Novikov gears. Experimental Mechanics,

1976, 16(3): 116–120

5. Dyson A, Evans H P, Snidle R W. Wildhaber-Novikov circular arc

gears: Geometry and kinematics. In: Proceedings of the Royal

Society of London A, 1986, 403: 313–340

6. Ye G, Ye X Y. A new method for seeking the optimum gear tooth

profiles–the theoretical basis of Wilhaber-Novikov gearing.

Mechanism and Machine Theory, 2002, 37(10): 1087–1103

7. Maiki M. On the theory of the contact of the helical gear on the tooth

normal plane. Transactions of the Japan Society of Mechanical

Engineers, 1995, 61(582): 492–494

8. Tsay C B, Fong Z H, Tao S. Finite element stress analysis of

Wildhaber-Novikov gears, In: Proceedings of 5th Conference on

Mechanical Engineering, Taipei, 1988

9. Colbourne J R. The contact stress in novikov gears. Mechanism and

Machine Theory, 1989, 24(3): 223–229

10. Tsay C B. Motion velocity of the contact ellipse over Wildhaber-

Novikov gears. Journal of the Chinese Society of Mechanical

Engineers, 1995, 16(2): 123–131

11. Litvin F L, Tsay C B. Helical gears with circular arc teeth:

simulation of conditions of meshing and bearing contact. Journal of

Mechanisms Transmissions and Automation in Design, 1985, 107

(4): 556–564

12. Litvin F L, Fuentes A, Gonzalez-Perez I, Carnevali L, Sep T M.

New version of Novikov-Wildhaber helical gears: computerized

design, simulation of meshing and stress analysis. Computer

Methods in Applied Mechanics and Engineering, 2002, 191(12):

5707–5740

13. Kuo H M. A study on the bevel gear with circular-arc tooth profiles.

Dissertation for the Master’s Degree. National Sun Yat-sen

University, 2001

14. Maiki M, Watanabe M. A study on WN spiral bevel gear

manufactured by machining center, Journal of technological

researches, 2005, 48(2): 91–97

15. Tsai Y C, Hsu W Y. The study on the design of spiral bevel gear sets

with circular-arc contact paths and tooth profiles. Mechanism and

Machine Theory, 2008, 43(9): 1158–1174

16. Yao L G, Gu B, Haung Sh J, Wei G, Dai J S. Mathematical modeling

and simulation of the external and internal double circular-arc spiral

bevel gears for the nutation drive. Journal of Mechanical Design,

2010, 132(2): 021008

17. Monge G. Application de l’Analysis à la Géometrie. Histoire de

l’Acad, Des Sciences de Paris, 1850

18. Chen H J, Duan Z Y, Liu J, Wu H J. Research on basic principle of

moulding-surface conjugation. Mechanism and Machine Theory,

2008, 43(7): 791–811

19. Chen H J, Duan Z Y, Wu H J, Liu J. Study on the general principle

of normal circular-arc gear transmission. Mechanism and Machine

Theory, 2006, 41(12): 1424–1442

Zhenyun DUAN et al. Mathematical model and manufacture programming 321


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19


