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Abstract This paper addresses the problem of a
numerical evaluation of the stiffness performance for
multibody robotic systems. An overview is presented with
basic formulation concerning indices that are proposed in
literature. New indices are also outlined. Stiffness indices
are computed and compared for a case study. Results are
used for comparing the effectiveness of the stiffness
indices. The main goal is to propose a performance index
describing synthetically the elastostatic response of a
multibody robotic system and also for design purposes.
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1 Introduction

Stiffness performance can significantly affect the accuracy,
payload, and dynamic characteristics of a multibody
robotic system, as pointed out for example in Refs. [1–
20]. In fact, inadequate stiffness of links and/or joints may
cause large compliant displacements of an end-effector
when external forces and moments are acting on the end-
effector itself. These compliant displacements detrimen-
tally affect both accuracy and payload performances.
Moreover, insufficient stiffness of links and joints may lead
to low natural frequencies, yielding longer stabilization
(settling) times and reduced dynamic performance as well
as larger link excursions and vibration during transient
periods. Therefore, an unsuitable stiffness performance can
compromise also the dynamic performance of a multibody
robotic system especially if inertia forces are high and
operation frequencies are close to natural frequencies, as
pointed out for example in Ref. [21]. Therefore, stiffness
performance should be carefully taken into account at the
design stage, as proposed for example in Refs. [1–7,10–
12].

In the literature, attention has been addressed to stiffness
analysis and numerical evaluation of stiffness performance
with different approaches both from the general viewpoint,
like for example in Refs. [1–10], and for specific kinematic
architectures, like for example in Refs. [7,11,12]. Experi-
mental determinations and evaluations of stiffness perfor-
mance are presented as necessary tools for validating the
mechanical design of a multibody robotic system in Refs.
[14–16]. Experimental tests of stiffness performance are
also prescribed in standard codes for robotic manipulators
having serial architecture, as reported in Refs. [15,16].
Nevertheless, it is still an open issue to formulate a
standard “stiffness performance index” that can be
computationally efficient, giving direct engineering insight
of the design parameter influence, and that can be
translated into experimental determinations for validating
a design process.
This paper addresses the above-mentioned issue by

providing an overview of the existing indices for stiffness
performance evaluation. Then, the effectiveness and
computational efficiency of each index is compared by
means of a suitable case of study to propose a global
performance index for the elastostatic response in a
multibody robotics system.

2 Cartesian stiffness matrix

Usually the purpose of a stiffness analysis is the definition
of the stiffness of the overall system through the derivation
of a Cartesian stiffness matrix K. This stiffness matrix K
expresses the relationship between the compliant displace-
ments ΔS occurring to a frame fixed at the end of the
kinematic chain when a static wrenchW acts upon it andW
itself. Considering Cartesian reference frames, 6�1
vectors can be defined for compliant displacements S
and external wrench W as

ΔS ¼ ðΔx,Δy,Δz,Δα,Δγ,ΔδÞT,

W ¼ ðFx,Fy,Fz,Tx,Ty,TzÞT, (1)
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where Δx, Δy, and Δz are the variations of Cartesian
coordinates for the origin of a moving frame on
manipulator extremity and Δx, Δy, and Δz are the
variations of angular coordinates for a moving frame; Fx,
Fy, and Fz are the force components acting upon a point on
the moving frame along the x, y, and z directions,
respectively; and Tx, Ty, and Tz are the torque components
acting upon the same point on the movable plate about the
x, y, and z directions, respectively. Provided that the
assumption of small compliant displacements holds, the
relationship between the vectors ΔS and W can be written
as

W ¼ KΔS, (2)

where K is the so-called 6�6 Cartesian or spatial stiffness
matrix. It is worth noting that according to the definition in
Eq. (2) the stiffness matrix K is in general posture
dependent. Moreover, the stiffness matrix K is generally
non-symmetric and its entries depends on choice of
reference frame because it is not reference frame invariant,
as demonstrated for example in Refs. [2,8,17,18].
The computation of stiffness matrix K can be achieved

with different approaches such as the finite element
methods (FEMs) or methods based on models with lumped
parameters (MLP). FEM can be used for a stiffness
analysis of multibody robotic systems, although with very
difficult numerical implementation. In fact, even if FEM
methods can be more accurate than MLP methods, they are
time consuming and require a complete recalculation at
each configuration under analysis. Therefore, the stiffness
analysis of multibody robotic systems is usually carried out
by means of MLP methods that are based on using lumped
stiffness parameters for considering the stiffness properties
of links and joints with configuration dependent relation-
ships. Therefore, the main advantages of MLP methods
can be understood in reduced computational efforts and
possibility to use the same stiffness model for the analysis
of several different configurations. These aspects give the
possibility to investigate the stiffness performance through
the whole workspace of a multibody robotic system in a
reasonable amount of computation time. Moreover, MLP
methods can be conveniently used for developing para-
metric models within optimal design procedures while
FEM methods are not suitable for this purpose.
The lumped stiffness parameters can be graphically

represented as linear or torsion springs, as shown for
example in Fig. 1. In particular, Fig. 1(a) shows a model of
a 2R serial manipulator with two linear springs and two
torsion springs representing the lumped stiffness para-
meters of links (k1 and k2) and motors (kT1 and kT2),
respectively. Figure 1(b) shows a model of a parallel
manipulator with three linear springs representing the
lumped stiffness parameters (k1, k2, and k3) of links and
linear actuators on each limb. It is worth noting that in
Fig. 1 the bold lines show the deformed models after

applying a wrench W; the dotted curves show the motion
of reference points due to compliant displacements.
In general, one can define the relationship between the

external wrench W and the forces acting on each single
lumped parameter. For example, this relationship can be
written for the model in Fig. 1(b) as

W ¼ f1s1 þ f2s2 þ f3s3, (3)

where fi (i = 1,2,3) are the modules of the force acting on
each limb; si (i = 1,2,3) are the vectors expressing the
directions of the limbs. (A similar approach is possible for
the model of Fig. 1(a)). In addition, one can write

fi ¼ kiΔ‘i with i ¼ 1,2,3, (4)

where Δ‘i are the compliant displacements of the i-th limb
in the si-th direction and ki is the i-th lumped stiffness
parameter. Thus, Eq. (3) can be written as

Fig. 1 Schemes of elastically compliant multibody robotic
systems. (a) 2R serial manipulator; (b) parallel manipulator with
three SPS legs
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W ¼ ðk1Δ‘1Þs1 þ ðk2Δ‘2Þs2 þ ðk3Δ‘3Þs3: (5)

Then, a differential of Eq. (5) can be written as

δW ¼ ðk1δ‘1Þs1 þ ðk2δ‘2Þs2 þ ðk3δ‘3Þs3

þ ðk1Δ‘1Þ
ds1
d�1

δ�1 þ ðk2Δ‘2Þ
ds2
d�2

δ�2

þ ðk3Δ‘3Þ
ds3
d�3

δ�3: (6)

If one defines J, a Jacobian matrix of the system in
Fig. 1(b), one can write the first three terms of Eq. (6) as
reported for example in Ref. [2] in the form

ðk1δ‘1Þs1 þ ðk2δ‘2Þs2 þ ðk3δ‘3Þs3 ¼ ðJK‘J
TÞδS: (7)

Therefore, Eq. (6) can be also written in the form

δW ¼ ðJK‘J
TÞδS þ ðk1Δ‘1Þ

ds1
d�1

δ�1

þ ðk2Δ‘2Þ
ds2
d�2

δ�2 þ ðk3Δ‘3Þ
ds3
d�3

δ�3, (8)

where K‘ is a diagonal matrix of lumped stiffness
parameters, given by

K ‘ ¼
k1 0 0

0 k2 0

0 0 k3

2
64

3
75: (9)

It is worth noting that the movable plate in Fig. 1(b) is
assumed to be a rigid body. Thus, the distances between
the points 1, 2, and 3 should not be modified by the
application of any external wrench. As a consequence of
this constraint, small compliant displacements on each
limb do not necessarily imply negligible angular displace-
ments of the limbs. Thus, the terms

ðkiΔ‘iÞ
dsi
d�i

δ�i, (10)

with i = 1,2,3 cannot be usually considered as negligible.
Moreover, they can add significant non-symmetric terms to
the overall stiffness matrix K. Nevertheless, for the sake of
simplicity several authors consider the terms in Eq. (10) as
negligible to compute the stiffness matrix as

K ¼ JK‘J
T: (11)

This approach is widely used in stiffness analysis of
multibody robotic systems as mentioned for example in
Refs. [1–3,5–7]. In fact, if the Jacobian matrix J is
available in closed form, Eq. (11) can provide a closed
form equation for the stiffness matrix K that is a function
only of the input parameters in terms of input angles and/or
strokes.

3 Numerical evaluation of the stiffness
matrix

One of the main advantages of using models with
lumped parameters instead of using finite element methods
for stiffness analysis is that one can compute numerically
the stiffness matrix K at any posture assumed by a
multibody robotic system with a single model and
algorithm.
A numerical algorithm for computing the stiffness

matrix K at any posture can be composed of a first part
in which the numerical values for geometrical dimensions,
masses and lumped stiffness parameters are identified. In a
second step one defines a kinematic model, a force
transmission model and a lumped parameter model. Then,
in a third step these models can be used to evaluate the
stiffness matrix K.
It is worth noting that the stiffness matrix K is posture

dependent. Thus, one should define configuration(s)
of a multibody robotic system where the stiffness matrix
can be computed. The configuration(s) should be
carefully chosen to have significant information on the
stiffness performance of the system in its whole work-
space. Then, the kinematic model can be used for
computing the vector θ that express input angles and
strokes in the joint space for any posture of a multibody
robotic system.
In general, a multibody robotic system can have

few trajectories that are used during its operation. In
these cases, a kinematic model can be used together
with a proper path planning strategy for computing a
vector θ(t) that expresses input angles and strokes in
the joint space as a function of time for a given
trajectory. Thus, the vector θ(t) can be used for
computing the stiffness matrix as a function of time for a
given end-effector trajectory. However, the whole path
should be split in a given number of configurations
by selecting a proper step size and the time in which
the motion of the robotic system will be completed. Of
course, the smaller the step size the higher the number
of configurations in which stiffness matrix K is
computed.
It is worth noting that the accuracy in the estimation of

model data such as geometrical dimensions, and values of
lumped stiffness parameters can significantly affect the
accuracy of the computed stiffness matrix. Thus, experi-
mental tests should be carried out to validate model data
and overall stiffness model.
Once the stiffness matrix has been derived, it is also

necessary to give synthetic evaluation of the stiffness
performance both for analysis and design purposes.
Thus, an index of merit can be formulated by using
properties of the stiffness matrix so that it represents
numerically the stiffness performance of a new multibody
robotic system.
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4 Indices for stiffness performance
evaluation

The current standard codes for stiffness evaluation of
manipulators are given as short parts of the norms ANSI/
RIA15.01.11-1990 [15] and ISO9283-1995 [12], which
refer explicitly to serial chain industrial robots only. In
particular, Section 8.6 in Ref. [15] and Section 10 in Ref.
[16] are devoted to static compliance with a very similar
approach but only referring to a performance evaluation
through measures of position compliant displacements.
Then, a recommendation states to express the results in
term of millimeters per Newton for displacements that are
referred to the directions of a base coordinate system.
Thus, the standard codes do not yet consider the stiffness

matrix as a performance index for the elastostatic response
of multibody robotic manipulators; however, they still
refer to a practical evaluation with a direct natural
interpretation that is related to the compliance response
of the stiffness of a manipulator structure. Of course, it is
evident that compliant displacements can be considered as
a measure of the manipulator stiffness because of the
fundamental relationship in Eq. (1). Nevertheless, the
compliance response is system posture and wrench
direction dependent because one can find a 6�1 vector
of compliant displacements at any posture for any wrench.
Therefore, one should define a single local index of
stiffness performance and then a global index expressing
the stiffness performance in the overall workspace of a
multibody robotic system.
A local stiffness index can be directly related with the

Cartesian stiffness matrix by means of different mathema-
tical operators that can be applied to a matrix. Feasible
choices can be the determinant, trace, and norm at a given
posture, as proposed for example in Refs. [1–3,5–7,22,23].
In particular, the determinant of a stiffness matrix K is
invariant in similarity transformations. Thus, it does not
rely on the choice of reference frame. Moreover, it can be
computed as

detðKÞ ¼ ð – 1Þ6 þ P1ð – 1Þ5 þ P2ð – 1Þ4

þ P3ð – 1Þ3 þ P4ð – 1Þ2 þ P5ð – 1Þ þ P6, (12)

where Pi (with i = 1,2,…,6) is the sum of the principal
minors of order i of the matrix K. However, the
determinant can be expressed also as the product of matrix
eigenvalues as given in Matrix Algebra [23]. Each entry
K – 1
ij of the inverse matrix of K can be computed as

K – 1
ij ¼ ðKÞji

detðKÞ, (13)

where (K)ji is the algebraic complement of the entry Kij of
the matrix K with i, j = 1,2,…,6. Thus, if the determinant
det(K) is zero, the Eq. (13) gives singular values and

Eq. (12) cannot be computed. Therefore, the determinant
of K can be used as a performance index to investigate
synthetically the effect of the design parameters on the
stiffness behavior, since it is easy to compute and it is
particularly significant for determining stiffness singularity
properties.
The trace tr(K) of K can be expressed as

trðKÞ �
Xn
i,j¼1

Kij: (14)

The trace can be seen as the sum of the components of
compliance displacements along the principal directions. It
gives a measure of the compliant displacements per unit of
external wrench. Nevertheless, it is worth noting that its
components do not have the same dimensions and thus the
sum does not have a full physical interpretation. A possible
solution to this problem is the definition of a dimensionless
or dimensionally consistent stiffness matrix as proposed
for example in Refs. [24–26]. However, this would require
the definition of a characteristic length L, whose choice is
usually questionable but significantly affecting the results.
A norm of a matrix is similar to what an absolute value is

for a real number or what a modulus is for a complex
number. The norm of K can be also very useful as stiffness
index because it provides a measure on how much the
stiffness matrix differs from zero. In particular, the norm
can be defined in various forms as outlined in the
following.
The Euclidean norm, which is also called as the 2-norm,

is the square root of the largest (nonnegative) eigenvalue of
the positive-semidefinite product of the matrix by its
transpose, regardless of the ordering of the factors, as

Kj jj jE � max
i

f
ffiffiffiffi
li

p
g, (15)

where symbol || || is the norm operator; f ffiffiffiffi
li

p g is the set of
nonnegative eigenvalues of KKT. This norm is also called
the spectral norm and it is frame invariant. Notice that li is
identical to the square of the module of the i-th eigenvalue
of K itself. In this case, the norm expresses the spectral
radius whose length is related with the maximum
eigenvalue which is the value of the stiffness in the stiffest
direction. A similar norm can be defined as related with the
minimum eigenvalue being the value of the stiffness in the
most compliant direction.
The Frobenius norm is the square root of the sum of the

squares of the entries of the matrix K. It can be expressed in
the form

Kj jj jF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xn
j¼1

K2
ij

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðKKTÞ

q
: (16)

The Chebyshev norm or infinity norm is the maximum
absolute value of the entries of the matrix K as
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Kj jj j1 � max
i,j

f Kij

�� ��g: (17)

The main advantage of this norm is that it does not
require floating point operations that can increase the
computational costs and roundoff errors.
The p-norm is a general definition of a norm. It can be

written as

Kj jj jp �
Xn
j¼1

Xn
i¼1

Kij

�� ��p
 !1=p

, (18)

which becomes the Frobenius norm for p = 2 or the
Chebyshev norm for p going to infinity, respectively.
The condition number has been also proposed as a

potential candidate for a local index of stiffness perfor-
mance. In fact, the condition number of a stiffness matrix K
can be computed as

κðKÞ ¼ Kj jj j K – 1
�� ���� ��: (19)

If one refers to Euclidian norm, Eq. (18) can be written
as

κEðKÞ �
ffiffiffiffiffi
ll

ls

s
, (20)

where ll and ls are the larger and smaller eigenvalue of
KKT. It is worth noting that due to Eq. (20) the minimum
value of the condition number is one and it tends to 1
when the matrix K is singular.
It is worth noting that if one considers the simplified

expression Eq. (11) one can define performance indices
also by using the Jacobian matrix to characterize the
stiffness performance. A significant example is the
manipulability index that has been defined as the square
root of the determinant of the product of the manipulator
Jacobian by its transpose [25]. Other useful indices are
reported for example in Refs. [26–28] such as alternative
expressions for kinematic performance that can be related
to stiffness through Jacobian.
Compliant displacements can also provide an insight

on local stiffness performance due to their simple
physical interpretation, as indeed suggested by ISO and
ANSI codes [15,16]. In fact, one can compute the
compliant displacements for a given configuration by
multiplying the computed stiffness matrix for a given
external wrench WG. Reasonable choices for WG can be a
unit vector or a vector equal to the expected payload for a
multibody robotic system as proposed for example in Ref.
[7]. The first choice gives a measure of the compliant
displacements per unit of external wrench. The second
choice provides a measure of the maximum compliant
displacements for the system in specific applications.
Nevertheless, compliant displacements have usually six
components. Thus, they cannot be treated as a single merit
index.

Eigenvalues and eigenvectors of a stiffness matrix are
also very useful for their physical interpretation with
respect to local stiffness performance. In fact, the
eigenvectors are related with the maximum and minimum
eigenvalue and they provide the directions of maximum
and minimum stiffness performance, respectively. More-
over, a smaller difference among the eigenvalues stands for
a smaller anisotropic stiffness behavior at a given posture.
Nevertheless, eigenvalues and eigenvectors cannot be
treated as a single merit index. However, their values can
be used for drawing graphical local representations of the
stiffness performance such as compliance/stiffness ellipses
and ellipsoids, as reported for example in Refs. [1–3,5].
These graphical local representations also provide a
graphical tool for the comparison of stiffness performance
along and about different directions. These graphical
representations can be very useful when specific design
requirements arise. In particular, they are useful if there is a
requirement of the best stiffness performance only in a
given direction or if equal stiffness is preferred in all
directions.
Other graphical tools for a comparison of stiffness

performance can be obtained through the definition of the
so-called center-of-stiffness or the center-of compliance
and by means of stiffness or compliant axes that can be
used for defining directions and orientations in which a
robotic system acts as a simple spring, as mentioned for
example in Ref. [24].
A local index of stiffness performance is neither suitable

for an accurate design analysis nor useful for a comparison
of different designs. In fact, even if a multibody robotic
system has suitable stiffness for a given system posture it
can have inadequate stiffness at other postures. Therefore,
one should look at stiffness performance at all points of the
workspace or define a single global stiffness index over the
whole workspace.
A global index of stiffness performance for a multibody

robotic system can be defined by means of graphical
methods that are based on plotting curves connecting
postures having the same value of the local stiffness index
(ISO-stiffness curves or surfaces), as proposed for example
in Refs. [3,5]. Nevertheless, the number of ISO-stiffness
curves or surfaces that one can plot is graphically limited.
Moreover, few curves or surfaces usually do not provide
sufficient insight of the overall stiffness behavior of a
multibody robotic system. These aspects significantly
reduce the effectiveness of ISO-stiffness curves or
surfaces.
Global stiffness indices can be defined also in a

mathematical form by using minimum, maximum, average
or statistic evaluations of a local stiffness index. For
example, one can compute a global index in the form

GId ¼ min detðKÞj j: (21)

It is worth noting that a GId index equal to zero means
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that at least one singular configuration is within the
workspace of a multibody robotic system. This is a critical
situation that should be avoided at the design stage.
A global performance index similar to Eq. (21) can

be obtained by referring to local indices in Eqs. (14)–(20).
In addition, mean and standard dispersion of the local
indices in Eqs. (14)–(20) or of the compliant displacements
can be considered as merit indices since they provide a
useful insight of the global stiffness performance of a
multibody robotic system with a direct physical interpreta-
tion.
Another possible approach for defining a global stiffness

index is based on something similar to the magnitude of a
vector. In particular, one can compute the integral of a
certain power of a local stiffness index in Eqs. (12)–(20).
For example, if a design requirement is to have an isotropic
behavior in terms of stiffness performance a new useful
global stiffness index can be obtained as the integral of the
stiffness condition number over the whole workspace in
the form

GIC ¼
!κ�ðKÞdV

L3
, (22)

where V is the workspace volume; L is a characteristic
length used to obtain information that is independent from
the workspace volume. Alternatively to L3, the denomi-
nator can be expressed as the volume V of the workspace.
Moreover, the dimensional inconsistency can be solved by
using a proper dimensionless value of the merit index
(which is indicated with a superscript *) that can be
obtained by dividing the length entries by a characteristic
length L.
Another interesting new global stiffness index can be

obtained from Eq. (15) in the form

GIMN ¼
! max

i¼1,:::,6
f
ffiffiffiffiffi
l�i

p
gdV

L3
: (23)

This global index can be useful when the design goal is
to maximize the stiffness performance along or about one
or more specific direction(s). A similar new global stiffness
index can be defined by referring to the minimum
eigenvalue as

GImN ¼
! min

i¼1,:::,6
f
ffiffiffiffiffi
l�i

p
gdV

L3
: (24)

This global stiffness index can be useful to detect and
avoid a design with weak stiffness performance along or
about a specific direction. A global index can be defined
also as the difference between GIMN and GImN as

GIRN ¼
! max

i¼1,:::,6
f
ffiffiffiffiffi
l�i

p
gdV –! min

i¼1,:::,6
f
ffiffiffiffiffi
l�i

p
gdV

L3
, (25)

which can be considered as a global index providing
information on the range of stiffness performance within
the workspace. Equations (22)–(25) can be considered new
synthetic evaluation measures of stiffness performance in
multibody robotic systems.

5 Numerical example

A numerical example is reported as referring to CaPaMan
2bis in order to compute and compare some of the indices
of stiffness performance that are proposed in Eqs. (12)–
(24) for a real multibody robotic system.
CaPaMan 2bis is a parallel manipulator that has been

designed and built at LARM in Cassino [29], Fig. 2. A
kinematic scheme of CaPaMan 2bis is shown in Fig. 2(a),
where the fixed platform is FP and the moving platform is
MP. MP is connected to FP through three identical leg
mechanisms and is driven by the corresponding articula-
tion points. An articulated parallelogram AP, a revolute
joint RJ and a connecting bar CB compose each leg
mechanism. AP’s coupler carries the RJ and CB transmits
the motion from AP toMP through RJ; CB is connected to

Fig. 2 CaPaMan 2bis. (a) Kinematic scheme; (b) prototype with
Milli-CaTraSys set up at LARM
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the MP by a spherical joint BJ, which is installed on MP.
Each plane, which contains AP, is rotated of π/3 with
respect to the neighbor one. Design parameters of a k-th leg
are identified through: ak, which is the length of the frame
link; bk, which is the length of the input crank; ck, which is
the length of the coupler link; dk, which is the length of the
follower crank; hk, which is the length of the connecting
bar. Kinematic input variables are the crank angles
αk ðk ¼ 1,2,3Þ. Sizes of MP and FP are given by rp and
rf, respectively. Other sizes of design parameters are
reported in Table 1.
The stiffness matrix of CaPaMan 2bis has been

numerically computed by means of models with lumped
parameters as reported in Ref. [7]. In particular, a lumped
parameter has been used for modeling the axial compliance

of the links of the articulated parallelograms AP and a
torsional spring has modeled the compliance of the
actuators and corresponding bearings.
Then, the stiffness performance has been experimentally

measured by means of Milli-CaTraSys as reported in
Refs. [7,14]. The experimental results confirm the
numerical computations that are reported in the following.
For example, when the three legs of CaPaMan 2bis are
in the vertical configuration the stiffness matrix is given
by

K ¼ 108

0:018 0:008 – 0:027 – 1:17 0:031 0:339

0:000 0:005 0:015 – 0:930 0:001 – 0:272

0:000 0:006 0:019 – 1:141 – 0:001 0:333

0:000 – 0:000 0:000 0:022 0:000 – 0:006

0:000 – 0:000 0:001 0:042 0:000 – 0:001

– 0:000 – 0:000 0:000 – 0:029 0:000 0:008

2
66666666664

3
77777777775
: (26)

When a wrench is obtained by using additional masses of 50 g on each wire once in tension, similarly, when the three
legs of CaPaMan 2bis are inclined 45°, the stiffness matrix is given by

K ¼ 107

0:013 0:002 0:040 – 0:013 0:031 3:058

0:003 0:001 0:010 – 2:595 0:012 0:782

0:000 0:000 0:001 – 0:093 – 0:013 0:028

0:000 0:000 0:000 – 0:027 0:000 0:008

– 0:000 – 0:000 – 0:001 0:195 – 0:001 – 0:059

0:000 0:000 0:000 – 0:051 0:000 0:015

2
66666666664

3
77777777775
: (27)

The stiffness matrix of CaPaMan 2bis can be computed also when two legs are inclined 60°, and one leg is in vertical
configuration in the form

K ¼ 105

0:014 – 0:094 0:268 7:416 4:410 – 2:051

0:009 – 0:174 0:606 1:740 13:99 – 5:299

0:008 – 0:138 0:500 20:09 7:603 – 5:923

– 0:000 0:000 – 0:000 0:003 0:007 – 0:000

– 0:000 0:000 – 0:001 0:169 – 0:026 – 0:050

– 0:000 0:000 – 0:000 – 0:307 – 0:126 0:092

2
66666666664

3
77777777775
: (28)

The stiffness matrices in Eqs. (26)–(28) have been used
for computing the local stiffness indices in Eqs. (12)–(20).
The obtained results are listed in Table 2.
It is worth noting that for all the local indices in Table 2

(with the exception of the condition number) a higher
value means a stiffer behavior. In fact, the closer is the
robot configuration to the vertical the better is the stiffness
performance as physically expected. The only exception is

Table 1 Sizes of design parameters for CaPaMan 2bis.

ak = ck/mm bk = dk/mm hk/mm rP = rf/mm αk=ð°Þ
100 100 50 65 45 : 135
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the condition number. In fact, a lower condition number
means a better conditioned stiffness matrix. The global
indices in Eqs. (21)–(25) have been also computed as listed
in Table 3. It is worth noting that GId or GIc indices should
be selected as global stiffness indices when a specific
application requires higher attention to global properties.
Instead, GIMN and GImN can be selected as global indices
when a specific application requires higher attention to
local properties.
For example, a system that is very stiff in most part of

its workspace but very weak in one configuration cannot
be used as a machine tool. In this case, it can be useful
to compute GImN and GIMN. Moreover, one should
note that for GId, GIMN, and GImN the higher the value
the better the stiffness performance. Instead, for GIC, and
GIRN the lower the value the better the stiffness
performance.

6 Conclusions

This paper addresses the problem of a numerical evalua-
tion of the stiffness performance of multibody robotic
systems in general terms. In particular, we have over-
viewed the possibilities for local merit indices of
stiffness performance. Then, synthetic measures of global
stiffness performance are proposed for characterizing
numerically the overall stiffness performance of a multi-
body robotic system even by proposing the new expres-
sions in Eqs. (22)–(25). The reported case of study
compares the stiffness indices showing feasibility of their
numerical computation and effectiveness of their practical
use.
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