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Abstract  We propose a level set method-based 
framework for the conceptual design of compliant 
mechanisms. In this method, the compliant mechanism 
design problem is recast as an infinite dimensional 
optimization problem, where the design variable is the 
geometric shape of the compliant mechanism and the goal is 
to find a suitable shape in the admissible design space so 
that the objective functional can reach a minimum. The 
geometric shape of the compliant mechanism is represented 
as the zero level set of a one-higher dimensional level set 
function, and the dynamic variations of the shape are 
governed by the Hamilton-Jacobi partial differential 
equation. The application of level set methods endows the 
optimization process with the particular quality that 
topological changes of the boundary, such as merging or 
splitting, can be handled in a natural fashion. By making a 
connection between the velocity field in the 
Hamilton-Jacobi partial differential equation with the shape 
gradient of the objective functional, we go further to 
transform the optimization problem into that of finding a 
steady-state solution of the partial differential equation. 
Besides the above-mentioned methodological issues, some 
numerical examples together with prototypes are presented 
to validate the performance of the method.  
 
keywords  compliant mechanisms, conceptual design, 
level set methods, shape gradient, Hamilton- Jacobi PDE 

I Introduction 

Mechanisms play a role of utmost importance in machinery. 
They are capable of transmitting motion, force and energy 
to meet design requirements [1]. According to the intrinsic 

way of transferring force and motion, the category of 
mechanisms can be subdivided into rigid-body mechanisms 
and compliant mechanisms. The former, in general, consists 
of numerous parts connected by rigid joints, where force 
and motion are transmitted by the relative motion between 
these joints. Different from rigid-body mechanisms, 
compliant mechanisms, usually in a monolithic form, 
transmit energy and motion from specified input ports to 
output ports by the elastic deformation of its comprising 
material [2]. Because of this property, compliant 
mechanisms by nature possess some inherent advantages 
over their rigid-body counterparts. They can be 
manufactured with small dimensions, light weights and ease 
in assembly as well [3]. In the same way, compliant 
mechanisms provide people with effective means of 
eliminating back lash, wear and friction which are often 
associated with rigid-body mechanisms. These merits have 
proven especially valuable in microelectromechanical 
systems(MEMS) [4], [7], high precision instruments [5] and 
medical tools for minimally invasive surgery [6]. 

It is rather difficult to quote the exact date of invention of 
compliant mechanisms. But the record of their application 
can be traced back to the early stage of human history [1]. 
And for a long time, the design procedure was rather a 
handicraft than a technology. The traditional design of 
compliant mechanisms is made on an ad hoc basis, which to 
a large extent depends on the designers’ intuition, 
experience and inspiration. The limitations of such a 
trial-and-error approach are obvious: it is not always 
guaranteed to work, especially when the design is very 
complicated or when topology and multi-material problems 
are taken into account. The practical design and application 
of compliant mechanisms are in need of a systematic and 
effective approach to create conceptual designs. 

Directed toward this goal, various scientific endeavors 
have been made by different research groups during the past 
decades. In general, the major design approaches fall into 
two categories. The first approach, represented by Howell 
and Midha [1], [12], has its roots in the concept of flexible 
linkages [8]. The basic configuration of an analogous 
rigid-body mechanism is first obtained based on kinematic 
synthesis. Then by replacing the rigid-body linkages with 
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compliant joints, the basic rigid-body configuration can be 
transformed into that of a compliant mechanism. A genuine 
defect of this approach lies in the fact that even with 
rigorous analysis the compliant design may not be able to 
fully reproduce the motion of its rigid body counterpart. 

The second category of approaches is mainly based on 
the design techniques originally developed for structural 
optimization. These methods include ground structure 
method, homogenization method (and its variant SIMP 
method), and level set methods [2], [3], [20], [24], [26], 
[27]. The underlying idea of these methods is to recast the 
design problem as an optimal material distribution problem 
so that the configuration of the design can fulfill the 
requirements measured quantitatively by an objective 
function. The differences among these approaches lie in 
their representations and modeling schemes. 

In the ground structure method, the design is represented 
by a full or a modular ground structure. In the optimization 
process, an elastic analysis of the compliant mechanism is 
implemented iteratively using truss elements or frame 
elements. Based on the results of the elastic analysis, bars 
with cross sections reduced to a lower threshold are 
removed gradually. 

In contrast to the ground structure method representing 
material in a discrete form, homogenization-based methods 
are distributed material optimization methods [9], which 
have been a main approach to structural optimization. In 
this method, the structure to be optimized is fixed in a 
reference domain and is discretized with the elements for 
elastic analysis. The design variables are the artificial 
densities of the elements and their material properties are 
modeled in terms of a set of material interpolation functions 
such that the intermediate properties are penalized usually 
using a ‘power-law’ applied on the relative material density. 
A limitation of the homogenization methods is that the 
results are always in a check-board pattern, and some post 
processes are usually needed before the results are put into 
practical use. 

The level set approach, possessing a boundary 
representation geometric model, was initially proposed by 
Osher and Sethian on a physical base to solve the 
boundary-capturing problem in computational fluid 
dynamics [16]. And in the past twenty years, level set 
methods have been successfully extended to versatile 
application areas [29], [30]. Sethian and Wiegmann first 
combined level set methods with immersed interface 
methods to do structural boundary design [17], where the 
former was used to represent the boundary of the design and 
the latter was used to do elastic analysis. Different from 
Sethian and Wiegmann, Osher and Santosa introduced the 
shape gradient of the objective functional into the level set 
model, establishing a link between the shape gradient and 
the velocity field [18]. Recently, the work was further 
consummated by Wang [27] and Allaire [20]. What’s more, 
Wang proposed a ‘color level set’ model, and thus made 
possible topology optimization with multi materials in the 
level set framework [2], [25]. 

The rest of the paper is organized as follows: Section 2 
describes the setting of the problem. Section 3 introduces 
several basic issues in the level set methods. Section 4 gives 
the shape gradient of the objective functional (geometric 
advantage). Section 5 presents the flow chart of the 
algorithm and some numerical examples. Some prototypes 
will be presented in the last section to assess the 
performance of this method. 

2 Problem formulation 

As mentioned in the previous section, a compliant 
mechanism should be capable of transmitting motion and 
energy from the input port to the output port. And this 
functional requirement is specified in quantity by an 
objective function. In terms of topology optimization of a 
compliant mechanism, the most frequently used objective 
functions include: a weighted sum of mutual strain energy 
(MSE) and strain energy (SE), the ratio of MSE to SE [21], 
geometric advantage, mechanical advantage and work 
efficiency [10], [22]. The study of the effects of the 
above-mentioned objective functions on the final designs is 
beyond the scope of this paper. Here, we just follow 
Sigmund’s way [10] to select geometric advantage as our 
choice for the objective function. The geometric advantage 
(GA) of compliant mechanisms is defined as follows (as 
shown in Fig. 1): 

 
Fig. 1 A schematic of a compliant mechanism with input displacement and 
output displacement 
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where out∆  and in∆  denote the displacements at the 
output port and the input port, respectively; 

(  = 2 3)dR d orΩ ⊆  represents an open and bounded set 
occupied by a linear isotropic elastic material, and it is also 
the design variable in the level-set-based shape optimization 
framework; u is the external force-induced displacement 
field in Ω . 

With the objective function, the original design problem 
is transformed into a conventional optimization problem. 
Our task is to find a proper shape from the admissible 
design space, so that the objective function can reach its 
minimum. However, only with the objective function, the 
topology optimization problem is usually ill posed, that is, 
the optimum solution is not always guaranteed to exist. To 
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regularize the ill-posed optimization problem, some extra 
constraints should be put into consideration. The usually 
used constraints are volume constraint and perimeter 
constraint [9]. Besides these, stress is another important 
issue needing great concern in the optimization design 
procedure. This constraint is applied indirectly by limiting 
the range of the input displacement [10]. Combining the 
constraints with objective function (1), we can specify the 
general problem of compliant mechanism optimization as 
Minimize

Ω
( , ) ( , )J u GA u µΩ = Ω + ∂Ω  

max

in in max

subject to d [ ]

( ) [ ]

V
Ω
Ω

∆ Ω ∆
∫ ≤

≤
  (2) 

( ) ( ) ( )d d

0,
ijkl ij klD

Td

E u v H f v s

u v U

ε ε φ
∂Ω

− Ω = ⋅

= ∀ ∈

∫ ∫  

where µ is a positive parameter, ∂Ω  denotes the boundary 
of the elastic material, and ∂Ω  is the perimeter of the 
boundary. The last constraint equation is the weak form of 
the linear elastic equation governing the linear elastic 
structure of the compliant mechanism. 

3 Level set model 

Since its being introduced by Osher and Sethian as a 
scheme for following fronts propagating with 
curvature-dependent speed [16], level set model has thrived 
to be a powerful tool with many applications in different 
fields [29], [30]. Its charm lies in giving a natural way to 
describe closed boundaries with dynamics variations, and 
enabling easy ’capture’ of the boundary on a Euler grid by 
solving a Hamilton-Jacobian partial differential equation. In 
order not to be lost in technical detail, in this section, we 
will give a brief introduction only to those key issues 
involved in topology optimization of compliant mechanisms. 
For a complete introduction on level set methods, please 
refer to [29], [30]. 

3.1 Implicit representation of the boundary 

Just as its name implies, level set method implicitly 
represents the boundary as the zero level set of a one-higher 
dimensional surface ( )xφ , which is called level set 
function. In the level set model, the domain is defined as 
three parts according to the value of the level set function: 

( ( )) > 0 : ( ) \
( ( )) 0 : ( )
( ( ))<0 : ( ) \

x t x t D
x t x t
x t x t

φ
φ
φ

∀ ∈ Ω⎧
⎪ ∀ ∈∂Ω⎨
⎪ ∀ ∈Ω ∂Ω⎩

=   (3) 

where D denotes the design domain; and t∈R+ is time. The 
domain and the level set embedding of the model are shown 
in Fig. 2. The greatest advantage of implicit representation  

lies in the fact that it is able to deal with topological 
changes, such as splitting and merging of the boundary, in a 
natural manner. And in addition, with implicit 
representation, boolean operations on the boundary are easy 
to implement. With the level set model, we can rewrite the 
problem formulation as: 
Minimize

φ
( , ) ( , ) ( ) d

D
J u GA uφ φ µ δ φ φ= + ∇ Ω∫  

max

in in max

subject to  ( )d [ ]

( ) [ ]
D

H Vφ− Ω

∆ Ω ∆
∫ ≤

≤
 (4) 

( ) ( ) ( )d d
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ijkl ij klD
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E u v H f v s

u v U

ε ε φ
∂Ω

− Ω = ⋅

= ∀ ∈

∫ ∫  

 

Fig. 2 A 2D boundary embedded as the zero level set of a 3D level set 
function. a The implicit level set function. b Its corresponding boundary 

where ( )H φ  is the Heaviside function defined as follows: 
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and ( )δ φ  is the one dimensional delta function: 

( ) dH
d

δ φ
φ

=   (6) 

3.2 Level set equations and its numerical computation 

1. Governing equation for boundary variations As presented 
in subsection A, the boundary is embedded as the zero 
level set of the level set function. During the optimization 
process the level set surface may move up and down on a 
fixed Euler grid, and thus causing the embedded 
boundary to undergo drastic shape or topological changes. 
From beginning to end, the value of the level set function 
on the boundary is constantly kept to be zero, viz. 
( ) 0,x xφ ≡ ∀ ∈∂Ω   (7) 
If we differentiate the above equation with respect to 

time t, we can get the follow equation with the chain rule: 

( ) 0V x
t
φ φ∂
+∇ ⋅ =

∂
  (8) 

where d( )
d
xV x
t

=  is the velocity vector field. Considering 

n φ
φ

∇
=
∇

 and ( )V V nφ φ⋅∇ = ⋅ ∇ , we can write Eq. (8) as 

0nV
t
φ φ∂
+ ∇ =

∂
  (9) 

These two Hamilton-Jacobi type partial differential 
equations are the well-known level set equations [16], [29], 
[30]. Based on the level set theory, the topology 
optimization problem is transformed into a problem of 
finding the steady-state solution of the Hamilton-Jacobi 
equation. As we can see from Eqs. (8) and (9), after the 
initial level set function ( )xφ  is identified, to get a 
feasible steady-state solution, the crux is to find a 
meaningful velocity field. We will mention this in a later 
section. 
2. Discrete computation scheme: The discrete solution to 

the Hamilton- Jacobi equation is acquired by using an 
upwind difference scheme’ [29], [30]. The upwind 
scheme adaptively calculates forward or backward 
difference at a point according to the direction of the 
velocity field at that point. In our understanding, the 
underlying idea of the upwind scheme is that information 
is always spreading from the known area to the unknown 
area, and what the upwind scheme does is to use the 
information in the known area to speculate about that in 
the unknown area.  
The following is the first-order upwind scheme for 2D 

cases: 
1 (max(( ) ,0)

(min(( ) ,0)

n n
ij ij n ij

n ij
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φ φ+ +

−

= − ∆ ∇
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t∆  is the time step, and it should satisfy the Courant- 
Friedrichs-Lewy (CFL) conditions [29]: 

min( , )
max ( )n ij

x yt
V

∆ ∆
∆ ≤   (11) 

x∆  and y∆  are grid spaces in horizontal and vertical 
directions, x

ijD± , y
ijD±  are forward (+) and backward (−) 

finite difference operators. 

3.3 Calculation of geometric quantities 

In the optimization process, it is often necessary to 
approximate some quantities, e.g., the normal vector, 
curvature, perimeter, area, etc. In the level set model, all 
these geometric quantities can be expressed as functions in 
terms of the implicit level set function (x)φ . The most- 
often-used geometric quantities include [29], [30]: 
1. Normal vector N (pointing in the direction of 

increasingφ ), 

N φ
φ

∇
=
∇

  (12) 

2. The mean curvature k of the interface, which is defined as 
the divergence of the normal vector N : 

k N φ
φ

∇
= ∇ ⋅ = ∇ ⋅

∇
  (13) 

3. The perimeter of the boundary ∂Ω : 

( )
D

dδ φ φ∂Ω = ∇ Ω∫   (14) 

4. The area of the elastic material Ω : 

( )
D

H dφΩ = − Ω∫   (15) 

3.4 Level set surface re-initialization 

Theoretically speaking, the implicit level set function can be 
of any type only if it is a smooth function satisfying Eq. (3). 
But in practice, to get highly accurate numerical results [16], 
it is usually regularized as a signed distance function, 
which is a subset of implicit functions and is defined as 
follows: 

( ), \
( ) 0,

( ), \

d x x D
x x

d x x
φ

∀ ∈ Ω⎧
⎪= ∀ ∈∂Ω⎨
⎪− ∀ ∈Ω ∂Ω⎩

  (16) 

where d(x) is the distance function defined as: 
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( ) min( ),I Id x x x for x= − ∀ ∈∂Ω  (17) 
An important feature of the signed distance function is 

that ( ) 1xφ∇ = , x D∀ ∈ . In the optimization process, the 
level set surface may become too steep or too flat, deviating 
away from the signed distance function. This may cause 
numerical instability. So it is necessary to regularize the 
level set surface to be a signed distance function from time 
to time. This process is called re-initialization. In this 
paper, we use the PDE-based method proposed by Peng, 
Merriman and Osher [19], which needs to solve another 
PDE shown in Eq. (18) for its steady state: 

sign( )(1 )
t
φ φ φ∂
= − ∇

∂
  (18) 

where 
1, 0

sign( ) 0, 0
1, 0

if
if
if

φ
φ φ

φ

>⎧
⎪= ⎨
⎪−⎩

=

<

  (19) 

In a similar way, we use the upwind finite difference 
scheme to get the steady-state solution of equation (18) and 
makes 1φ∇ =  indirectly. 

4 Shape gradient and velocity field 

To find a minimization solution to the optimization problem, 
we need to find the variation of the objective function with 
respect to a variation of the design variable. This process is 
usually called sensitivity analysis. And since in our case the 
design variable is the shape represented by the level set 
model, it is also called shape sensitivity analysis and the 
result is called shape gradient.  

The shape gradient is acquired with a two-step procedure: 
First, using the linear superposition principle of 
displacement field and the reciprocity principle [11], we 
express Eq. (1) in terms of displacement variables u1i, u1o, 
u2i and u2o, whose definition will be given later. In the 
second step, based on shape sensitivity theory [31], we 
derive the shape derivative of the above displacement 
variables, and further give the shape gradient of the 
objective function with the chain rule. 

The physical property of the compliant mechanism is 
assumed to be linear elastic. When a unit force fin with the 
same direction of the input force Fin is applied at the input 
port of the mechanism, it generates a displacement field in 
the solid. u1 denotes the displacement field caused by the 
unit force fin. Let u1i denote the displacement at the input 
port in the same direction as fin, and u1o denote the 
displacement at the output port in the same direction as the 
output force, as shown in Fig. 3(a). The linear elastic 
equilibrium can be written in the following weak variation 
form: 

1 in( ) ( ( , ))d (20)

0,
ijkl ij klvD

d

E u vH x t f v

u v U

ε ε φ− Ω = ⋅

Γ = ∀ ∈

∫  (20) 

where U denotes the admissible displacement field. 
In a similar way, when a unit force fout is applied at the 

output port, we have another linear elastic equilibrium 
equation similar to Eq. (20): 

 
Fig. 3 A schematic of a u1i and u1o. b u2i and u2o 

2( ) ( ( , ))dijkl ij klv outD
E u vH x t f vε ε φ− Ω = ⋅∫  (21) 

where u2 is the displacement field caused by fout. 
Replace v with u1 and u2, respectively, in Eq. (20), we 

can obtain 

1i 1 1( ) ( ) ( ( , ))dijkl ij klvD
u E u u H x tε ε φ= − Ω∫  (22) 

1o 1 2( ) ( ) ( ( , ))dijkl ij klvD
u E u u H x tε ε φ= − Ω∫  (23) 

where u2i is the displacement at the input port caused by fout. 
Note that fin and fout are unit forces. 

Similarly, by replacing v with u1 and u2, respectively, in 
Eq. (21) we obtain 

2o 2 2( ) ( ) ( ( , ))dijkl ij klD
u E u u H x tε ε φ= − Ω∫  (24) 

2i 2 1( ) ( ) ( ( , ))dijkl ij klD
u E u u H x tε ε φ= − Ω∫  (25) 

According to the reciprocity principle, the work done by 
fin in Eq. (23) is equal to the work done by fout in equation 
(25), i.e. 

1o 2i 1 2( ) ( ) ( ( , ))dijkl ij klD
u u E u u H x tε ε φ= = − Ω∫  (26) 

Since the system is a linear elastic system, the final 
displacement field can be expressed as the linear 
superposition of the two displacement fields caused by Fin 
and Fout respectively. That is, 

in in 1i out 2iF u F u∆ = +  

out in 1o out 2oF u F u∆ = +   (27) 
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Further more, it is assumed that there exists a linear 
relationship between Fout and the output displacement [21] 
as 

out out 0F f= ∆ +   (28) 
where k and fo are constants. With Eq. (27) and (28), we 
have the following expressions for in∆  and in∆  

in 1i o 2i in 1o 2i in 1i 2o
in

2o

in 1o o 2o
out

2o

1

1

F u f u F ku u F ku u
ku

F u f u
ku

− − − +
∆ =

− +
− −

∆ =
− +

 (29) 

Then, the geometric advantage can be expressed as 
out in 1o o 2o

in in 1i 0 2i in 1o 2i in 1i 2o

F u f u
GA

F u f u F ku u F ku u
∆ +

= − =
∆ − − − +

 (30) 

Now the shape gradient of the objective function can be 
written as 

1i
1i

1o 2i 2o
1o 2i 2o

( ) ( )

( )

GAD J D GA D D u
u

GA GA GAD u D u D u D
u u u

µ

µ

Ω Ω Ω Ω

Ω Ω Ω Ω

∂
= + ∂Ω = +

∂
∂ ∂ ∂

+ + + ∂Ω
∂ ∂ ∂

 

  (31) 
For a general functional of the integration of an integrand 
g(x) on the domain Ω  

( ) ( )du g x x
Ω

Ω = ∫   (32) 

its shape derivative is known to have the following form 
[28], [31] 

( ) dnD u g x V sΩ ∂Ω
= ∫   (33) 

where Vn is the normal velocity of x on the boundary. With 
Eq. (33), we can get the shape gradient of u1i, u1o, u2i, u2o 
and the shape gradient of volume constraint. 

The perimeter ∂Ω  is an integration along the boundary. 
Instead of directly using the results given by Sokolowski 
[31], we use the knowledge from differential geometry to 
give a brief derivation. The boundary can be regarded as a 
closed curve ( ) { ( ), ( )}C p x p y p= , where [0,1].p∈  
Formally, we say that the curve maps the interval I = [0, 1] 
to the Euclidean space R2 and write 2:C I R→  

( ) ( )1 1

0 0

1 11
0 0 0

d d d d
d d

d d

p
p pt

p

p t p p
p t t

p p p

C
D C p C p

t t C

C C C C
C C

C C C

Ω

=

∂Ω = ∂Ω = =

⋅
= − = −

∫ ∫

∫ ∫
 (34) 

Note that 0 1
p t p t

p p
p p

C C C C

C C= =

⋅ ⋅
= As we know 

{ ( ), ( )}t tV C xt p y p= =  and 
2 2

{ , }p p p

p p p

C x y
T

C x y
= =

+
，where 

T  is the unit tangent. So Eq. (34) becomes 

1

0
dsVdT V T s

∂Ω
= ⋅∫ ∫  As ,sT Nκ= − then dsV T s

∂Ω
⋅ =∫  

d dnV N s V sκ κ− ⋅ = −∫ ∫ . So the shape gradient of the 
boundary length 

( ) dnD V sκΩ ∂Ω
∂Ω = ∫   (35) 

Now substitute the shape gradient of u1i, u1o, u2i, u2o and 
the shape gradient of the perimeter ∂Ω  into Eq. (31), we 
can get the shape gradient of the objective function (4) as 

dnD J GVΩ Ω
= Ω∫   (36) 

where 

1 1 1 2
1i 1o 2i

2 2
2o

( ) ( ) ( ) ( )

( ) ( )

ijkl ij kl ijkl ij kl

ijkl ij kl

GA GA GAG E u u E u u
u u u

GA E u u
u

ε ε ε ε

ε ε µκ

⎛ ⎞∂ ∂ ∂
= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∂

+ +
∂

  (37) 
and is known as the shape gradient density [31]. 

After we get the shape gradient of the objective function, 
it is natural for us to use the steepest descent optimization 
process by letting nV G= −  in the Hamilton-Jacobi Eq. 
(9). 

5 Numerical algorithms 

We imply topology optimization of compliant mechanism 
with the following steps: 
Step 1: Define the initial level set function and set the initial 
condition. The initial level set function gives the initial 
value of the Hamilton-Jacobi PDE, which is also the 
starting point of the optimization process. Note that the 
initial level set function has a nontrivial effect on the final 
optimization result. 
Step 2: Elastic analysis. In this step, we solve the linear 
elastic Eqs. (20) and (21) using finite element analysis and 
get concerned displacement fields. 
Step 3: Sensitivity analysis and definition of the velocity 
field. Based on the results from elastic analysis, we can 
calculate the shape gradient density G in Eq. (37), and get 
the velocity Vn in a further step. 
Step 4: Evolve the level set surface. After acquiring the 
velocity field Vn, we can update the level set surface with 
the Hamilton-Jacobi Eq. (9).  
Step 5: Re-initialization of the level set surface. In order to 
avoid the level set surface deviating from a signed-distance 
function, we do surface re-initialization every a few steps 
using the partial differential Eq. (18). 

The above steps (Step 2 - Step 5) are repeated until the 
convergence criterion is satisfied. The above-mentioned 
procedure can be expressed by the following flowchart 
shown in the appendix. 
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6 Numerical examples 

In this section, we show several numerical examples, which 
include the design for a displacement inverter, a 
push-gripper, and a push clamp, to assess the performance 
of our level-set-based design method. These examples are 
well studied in literatures [1] and [9] with other methods, 
and thus can be used as benchmarks for our performance 
evaluation. 

6.1 Displacement Inverter 

The function of a displacement inverter is sketched in Fig. 4. 

The input displacement in∆ is induced by the external force 
Fin = 50 applied at the input port, and the output  

 
Fig. 4 A schematic of a displacement inverter 

 
Fig. 5 Iterations for the displacement inverter 
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Fig. 6 Changes in objective function J, volume ratio 
0

V
V

, geometric advantage GA and input displacement in∆ for the displacement inverter 

 

 
Fig. 7 Designs with different volume constraints 

displacement out∆  is produced in a direction opposite to 
that of in∆ . The design domain is defined within an 
80-by-80 square. Due to the symmetry, only the upper half 
of the mechanism is taken into account and is discretized 
using 80-by-40 finite elements for elastic Fig. 4. A 
schematic of a displacement inverter analysis. The elastic 
material is assumed with a dummy Young’s modulus of E = 
1 and the Poisson ratio of 0.3. The void area is assumed 
with a dummy Young’s modulus of 0.001 and the same 

Poisson ratio of 0.3. The Lagrangian multiplier µ for the 
perimeter is 2×10−6, and the Lagrangian multiplier for the 
volume constraint is 0.5. 

The optimization process is shown in Fig. 5. The initial 
boundary is represented by Fig. 5(a), the intermediate 
solutions are shown in Fig. 5(b) − 5(d). The final design is 
shown in Fig. 5(e) and 5(f). The changes in the objective 

function J, the material volume ratio 
0

V
V

, the geometric 

advantage GA and the input displacement in∆  are shown 
in Fig. 6, respectively. We also present designs with 
different volume constraints in Fig. 7. 

6.2 Push-Gripper 

We consider a design for a push-gripper in this example. Its 
function is sketched in Fig. 8, where the mechanism is 
supported at part of its left side. The input displacement is 
applied at the middle of the left side, and two vis-à-vis 
vertical output displacements are expected near the middle 
of the right side. The design domain is defined in an 
80-by-80 square, and the upper half is discretized with 
80-by-40 finite element for elastic analysis. 

Figure 9(a) − 9(d) show the iteration process and Fig. 9(e)− 
9(f) show the final result. Figure 10 shows the changes in 
the objective function, the volume ratio, the geometric 
advantage and the input displacement. 
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Fig. 8 A schematic of a push-gripper 

6.3 Push-Clamp 

The design problem for a push-clamp is sketched in Fig. 11, 
where the mechanism is supported at the left side and is 
subject to a vertical squeezing load Fin = 50 µN at the upper 
and lower right corners. A clamping force Fout is expected at 
the output port.  
A minor difference between this example and the previous 
two is that here we choose mechanical advantage 

out

in

F
MA

F
=  as our objective function instead of geometric 

 
Fig. 9 Iterations for the push-gripper 
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advantage, but the analysis process is almost the same. The 
design domain is defined in a 120-by-80 square, and the 
upper half is discretized with 122-by-42 finite element for 
elastic analysis. The elastic material is assumed with a 
dummy Young’s modulus of E = 3 GPa and the Poisson 

ratio of 0.4. The volume constraint is given as 
0

0.3V
V

= , 

and constraint on the input displacement is in 0.15 mµ∆ = . 
Different from example A and B, where the constraints are 
implemented using a fixed Lagrangian multiplier [20], in 
this example the constraints are implemented using the 
gradient projection technique [2]. 

 

Fig. 10 Changes in objective function J, volume ratio 
0

V
V

, geometric advantage GA and input displacement in∆  for the push-gripper 

 

Fig. 11 A schematic of a push-clamp 

Figure 12(a) − 12(d) show the iteration process and Fig. 
12(e) − 12(f) show the final result. Figure. 13(a) shows the 
changes in the mechanical advantage, and Fig. 13(b) shows 
the changes in volume ratio and input displacement. 

7 Finite element simulation, demonstration prototypes 
and experimental tests 

In this section, we select the push-clamp as an example for 
further analysis and experiment. Based on the conceptual 
design, we construct a CAD model and use it in Algor 
FEMPRO to simulate the displacement and stress field 
under working conditions. After that, a prototype made of 
aluminum 6061-T6 is fabricated using wire EDM. 
Experimental tests are carried out subsequently to assess its 
performance. 

7.1 Finite element simulation 

We convert Fig. 12(f) into a CAD model as shown in Fig.14. 
The dimension of the CAD model is modified to be 120 mm× 
80 mm×3 mm in order to conform to that of the prototype. 
Then  
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Fig. 12 Iterations for the Push-Clamper 

 

Fig. 13 Changes in a geometric advantage MA. b volume ratio 
0

V
V

, and 

input displacement in∆  for the push-clamp 

 
Fig. 14 The CAD model of the push-clamp 

 
Fig. 15 Settings for finite element simulation. a Boundary condition and 
force condition simulation. b A sketch for the parameters 

this CAD model is input into Algor for finite element 
analysis. The material properties are specified as those of 
aluminum. 

The boundary conditions and force conditions are set as 
Fig.15(a) shows. The concerned test parameters dx, dy, x 
and y are sketched in Fig.15(b), where dx is the input 
displacement, dy is the output displacement, x is the 
distance from the output port to the left side, and y is the 
distance between the two force-applied tips. The input force 
Fin varies arithmetically from 200 N to 2 000 N with a step 
of 200 N. The values of the experimental parameters are 
presented in Table 1. 
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Table 1 Simulation result for the push-clamp made of aluminum 
Fin/N dx/mm dy/mm σmax/(N·mm−2) 

  200 0.380 0.789    450.343 

  400 0.766 1.578    902.686 

  600 1.149 2.367  1 351.03 

  800 1.533 3.157  1 801.37 

1 000 1.921 3.945  2 251.71 

1 200 2.299 4.735  2 702.06 

1 400 2.683 5.520 3 152.4 

1 600 3.066 6.313  3 602.74 

1 800 3.449 7.102  4 053.09 

2 000 3.832 7.892  4 503.43 

 

7.2 Prototype and experimental test 

The prototype of the push-clamp is fabricated with EDM 
with the dimension of 120 mm×80 mm×3 mm, as shown in 
Fig. 16. 

 
Fig. 16 Photos of the prototypes. a Planform of the push-clamp. b Two 
push-clamp prototypes with thickness of 1 mm (the lower one) and 3 mm 

The experimental test is shown in Fig. 17. The 
push-clamp is placed horizontally. A fastening clip is used 
to produce a pair of vis-à-vis forces at the input ports. To 
avoid failure, an additional red clip is added and fixed with 
the de-facto axis area where the maximum stress usually 
appears. With different input displacement dy, the push- 
clamper will produce a corresponding output displacement 

dx. The experimental data are presented in Table 2. We plot 
the input and output displace- ment from computational 
simulation and experimental test in Fig.18. The geometric 
advantage evaluated from finite element simulation is 0.486, 
and that from experimental test is about 0.505. We can see 
in this case the stimulation results accord well with 
experiment results. But unfortunately, we have to admit that 
in some cases the stimulation results deviate from the 
experiment results. This phenomenon may be caused by 
various reasons, including the errors in mathematic model, 
finite element analysis, fabrication process, experiment 
method, or the high sensitivity of the performance with 
respect to the shape of the design, which need further 
studies in future researches. 

 
Fig. 17 Experiment setting for the push-clamp 

 
Table 2 Experiment result for the push-clamp made of aluminum 

X/mm Y/mm dx/mm dy/mm 

9.12 79  0.14 0.5 

8.86 78 0.4 1.0 

8.58 77  0.68 1.5 

8.36 76 0.9 2.0 

8.02 75  1.24 2.5 

7.76 74 1.5 3.0 

7.54 73  1.72 3.5 

7.20 72  2.06 4.0 

6.98 71  2.28 4.5 

6.74 70  2.52 5.0 

6.46 69 2.8 5.5 

6.22 68  3.04 6.0 

5.98 67  3.28 6.5 

8 Conclusions 

We propose a level-set-method based framework for the 
conceptual design of compliant mechanisms. In this method, 
the compliant mechanism design problem is recast as an 
infinite dimensional optimization problem, where the 
design variable is the geometric shape of the compliant 
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Fig. 18 Comparison of the computational and experimental results 

mechanism and the goal is to find a suitable shape in the 
admissible design space so that the objective functional can 
reach a minimum. We have shown that the proposed 
method has a promising advantage in handling topology 
changes. It provides a robust way for the conceptual design 
of compliant mechanisms. 
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Appendix  

The flowchart of the optimization algorithm(Fig. 19) 
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