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Abstract The enumeration of lattice paths is an important counting model
in enumerative combinatorics. Because it can provide powerful methods and
technical support in the study of discrete structural objects in different disci-
plines, it has attracted much attention and is a hot research field. In this
paper, we summarize two kinds of the lattice path counting models that are
single lattice paths and family of nonintersecting lattice paths and their
applications in terms of the change of dimensions, steps, constrained condi-
tions, the positions of starting and end points, and so on. (1) The progress of
classical lattice path such as Dyck lattice is introduced. (2) A method to
study the enumeration of lattice paths problem by generating function is
introduced. (3) Some methods of studying the enumeration of lattice paths
problem by matrix are introduced. (4) The family of lattice paths problem
and some counting methods are introduced. (5) Some applications of family
of lattice paths in symmetric function theory are introduced, and a related
open problem is proposed.

Keywords Enumeration of lattice paths, generating function, matrix, family
of lattice paths, symmetric function
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1 Introduction

Enumeration of lattice path is one of the important combinatorial counting
models. Its appeal is that in the small scale, lattice paths look like a mathematical
doodle, but when the scale of the problem of enumeration of lattice path is
relatively large, it becomes complex and difficult [61]. On the one hand,
lattice path counting can provide a powerful method and technical support in
the study of discrete structures involved in chemistry, physics, probability
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theory and computer science. On the other hand, lattice path counting has
many unproven and undiscovered properties, so it has always attracted much
attention and is still a very active and hot research field.

The aim of enumeration of lattice path is to study how to find the number
of paths in the integer lattice of specified dimension, from the starting point
to the end point, under the selected set of steps and restrictions [44]. It is
mainly affected by the following four factors: (1) dimension; (2) step sets;
(3) restriction (constraint) conditions; (4) the position and the number of the
starting point and the ending point.

The research of the model of the enumeration of lattice path starts from
“ballot problem”, “Duchon’s club model” and “gambler’s ruin problem” [61].
Since then, lattice path model has been applied and permeated into different
fields of mathematics. Maps, graphs, trees, permutations, lattice polygons,
Young tableaux, continued fractions, integer partition, queues, etc., can be
expressed in lattice paths ways. In computer science, the stacks, trees, permu-
tation and combination [4], random walk and queuing theory in probability
theory, model of certain polymers in chemistry, and the analysis polymeric
structures in quantum mechanics and statistical mechanics can all be studied
by lattice path counting model. Catalan number, Motzkin number, Schroder
number, i.e., are the result of the numbers of the enumeration of lattice path.

For different step sets, destination end points, restriction conditions,
restriction areas (such as the whole plane, right half plane [44], first quadrant
[8,11,46], ribbon [15], wedge [47], cone [2,22], etc.), since the self-avoiding
walk [2,22,47,61], space dimension [7,9,33,41], exact formula, asymptotic
expression [10,54] count on many aspects, such as lattice path model is stud-
ied. The generating function [5], complex analysis [13], analytical combinatorial
mathematics such as probability analysis method [1,18,20,23,33,38,66], transfer
matrix [58], counting matrix [6], permanent [6,11], immanant [46], Pfaffian
[32,36], tree [61], group represented by algebra combination methods [4,46,62].
The asymptotic and exact counting formulas or conjectures of many lattice
path counting models are obtained by means of computational software and
mathematical experiments. In this paper, we mainly review the existing
results on two types of lattice path counting problems in two-dimensional
Euclidean space integer lattice, where the starting point is the coordinate
origin, the end point is any point in the first quadrant, and the steps are
horizontal and vertical steps, oblique upward or downward, respectively.
(1) The family of lattice path satisfying certain constraints when the starting
point and the destination point are uniquely determined. (2) The starting
point and destination point are not uniquely determined, but are multiple
disjoint lattice path family that vary in a specified set.

This paper is arranged as follows. Section 2 introduces the preliminary
conceptions of lattice path counting and related research progress, and lists
several classic lattice path counting, such as simple steps and non-simple
steps. In Section 3, the lattice path counting problem is studied by generating
functions. In Section 4, the lattice path counting problem is studied by matri-
ces. Section 5 discusses the counting problem of lattice path family. For the
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counting problem of disjoint lattice path family, the counting method is
determined by permanent and determinant of the counting matrix, Pfaffian
formula and immanant in two cases: the starting point and the destination
point are certain and uncertain. Section 6 discusses the application of the
disjoint lattice path family counting model to representation theory, and
state a related open problem.

2 The preliminary conceptions and some examples

2.1 Some conceptions and its examples

Definition 2.1 In a coordinate system, a line parallel to a specified direction
(such as a coordinate axis) and passing through an integer point on the coordinate
axis is called a lattice line, and any point where the intersection of two lattice
lines is an integer coordinate (that is, each coordinate is an integer) is called
a lattice point.

Definition 2.2 A lattice path is a line that starts from a lattice point
and moves along a lattice line to a specified lattice point. For the sequence
of P={Py,P,---,P.} where P, € Z? for i=1,---,k, consist a lattice path,
P, is starting point, P, 1is destination point. The vectors (}TP{,
PPy, ---,P,_1P;) are called steps, and the set of steps is called a step set, k
is the number of steps in a lattice path, we call size or length of the lattice
path. A step where the components of the coordinate have absolute values
of 1 or 0 (not all 0) is called a simple step, otherwise it is called a non-
simple step. We use “rook”, “knight”, “bishop” and “queen” in chess to
distinguish different situations of non-simple steps.

In the first quadrant (including coordinate axis), from the start at (a,b) to
the destination point (n,m) with step sets {(1,0),(0,1)} of the lattice paths
have ("*‘::’:*b). In particular, the lattice path from the point (0,0) to the
point (n,n), located above the z-axis and below the line y =z, the famous
Dyck lattice path, which number is the first nth Catalan number
Cn =745 (%"). In general, C(n,m) is denoted for the number of lattice paths
from the beginning (0,0) to the end (n,m).

In the first quadrant, the number of lattice paths from the start at (0,0) to
the destination point (n,m), step sets {(1,0),(0,1),(1,1)} is Delannoy [3]

which denoted by D(n,m),

o= ()0

d=0

In particular, when the restricted areas is above x axis and under the lines
y =2z (including the boundaries), the starting point is (0,0), the destination
point is (n,n), the number of the lattice paths is the nth large Schroder
number S,, (Table 1), that is
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Table 1 Lattice paths of Catalan and large Schroder

kind step start point destination point The first few terms
Catalan C,, (1,0), (0,1) (0,0) (n,n) 1,1,2,5,14, 42,132
Large Schréder S, (1,0), (0,1), (1, 1) (0,0) (n,n) 1,2, 6,22, 90,394, 1806

5 . 1(%) <n+k>
21\ k )\ 2k

If we take symmetry transformation along the line y = z, scale increase to
V2, and the coordinate system counterclockwise 45°, large Schroder lattice
path, the corresponding set to {(1,1),(1,—1),(2,0)}, starting point (0,0) is not
changed, the destination (n,n) transforms to (2n,0), restricted areas for =z
axis above and linear y =z under infinite triangle (including its boundaries).
At this time from starting point (0,0) to the destination (2n,0) of the lattice
path is nth large Schréder number S,. Catalan, its step set {(1,1),(1,—-1)},
starting point (0,0) is not changed, destination (n,n) transforms to (2n,0),
restricted areas for z axis above and linear y =2z under infinite triangle
(including its boundaries). For odd number n, at this time from starting
point (0,0) cannot reach point (n,0), namely the corresponding count
number is 0. In order to discuss the convenience, we delete those 0. From the
starting point (0,0) to the destination point (2n,0), the number of the lattice
paths is the nth Catalan numbers C,. Thus, we call n be the half length of
the lattice path.

Let step set be {(1,0),(1,1),(1,—1)}. Then the number of lattice path from
start point (0,0) to destination point (n,0) in the first quadrant (include x
axis) is the nth Motzkin numbers M, its formula is

5] n
Mn = C 5
(31)e

k=0

where C) is kth Catalan number.

Table 2 gives the first few terms of lattice paths of Catalan, Motzkin and
large Schroder in the infinite triangle.

Narayana number [62] N(n,k) is the number of the lattice paths, which
start point (0,0) to destination (2n,0), its step set be {(1,1),(1,—1)},
restricted areas compose z axis above and linear y =z under infinite triangle
(including its boundaries), has k peaks (the adjacent step of (1,1)(1,—1) is
called a peak). There are N(n,1)+ N(n,2)+---+ N(n,n) = C,.

Lukasiewicz path is a typical non-simple step, its step set is {(1,-1),

Table 2 Lattice paths of Catalan, Motzkin and large Schroder

kind step start point destination point The first few terms
Catalan C,, (1,1),(1,—1) (0,0) (2n,0) 1,1,2,5,14,42,132
Motzkin M,, (1,1), (1, —1),(1,0) (0,0) (n,0) 1,1,2,4,9,21,51

Large Schroder S, (1,1),(1,-1),(2,0) (0,0) (2n,0) 1,2,6,22,90, 394, 1806
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(1,0),(1,1),(1,2),(1,3), ---}, restricted area is composed by x axis not below
(i.e., in the first quadrant and z axis). Consider the number of lattice paths
from (0,0) to (n,0). knight’s step set is {(2,3),(3,2)}, restricted areas in the
first quadrant, considering from (0,0) to (n,n), lattice paths. The
Lukasiewicz path model can convert trees into lattice paths [61].

In the counting problem of tree and forest objects in combinatorics, the
most famous parking function related shuffle conjecture [60] is used in the
description of Dyck lattice path (see Figure 1 in [60] for details). In addition,
there are partially directed lattice path models such as partially directed path,
directed tree, directed vesicles, and so on. The generating functions of lattice
path counting sequences are closely related to statistical mechanics, for exam-
ple: the limiting free energy can be studied through the radius of convergence
of the generating function, and the quantity of the thermodynamic scaling
property is related to the asymptotic property of the generating function [39].
By studying the directed lattice counting model in the wedge region enclosed
by the y axis and a diagonal line, the thermodynamic properties of the corre-
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Fig. 1 (a) Catalan number and corresponding numbers of the lattice paths from (0,0) to
(5,5); (b) the lattice is transformed symmetrically along the line y = x, and the scale is
enlarged by v/2, when the coordinate system is rotated counterclockwise 45°, the
corresponding Catalan numbers and the number of lattice paths from (0,0) to (10,0) are
obtained; (c) is the same as (b), large Schroder number is the number of lattice paths which
starting (0,0) to (10,0); (d) is the same as (b), Motzkin number is the number of lattice
paths which starting (0,0) to (7,0), where the interact point marked o, that means they
don’t intersect here, no marked o, that means they intersect here.
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sponding polymer can be studied. Statistical mechanics studies the overall
behavior of matter composed of a large number of particles. Entropy is a
measure of the disorder of the system, and its definition includes the number
of all possible microstates [47]. The generating functions for counting
sequences of different microstates are an effective tool for studying lattice
models of polymers. The parameters of the generating functions depend on
energy. In combinatorial models, one focuses on the free energy density of
each node or edge and its limit.

2.2 The advance of the related research topic

The periodicity of a lattice in Definition 1.1 stems from its translation invariance
and can therefore be expressed by a recursive relation. In [28], the concept of
graph lattice is introduced, which relates the graph to the lattice and the
walk on the graph to the lattice path. The recurrence relation is a very
convenient tool to study the lattice path counting problem, and it can be
used to solve the two-dimensional lattice path counting problem related to
the binary recurrence relation. Figure 1 shows that 4 kinds correspond to
Catalan number C(h,k), large Schroder number S(h,k), the lattice path of
Motzkin number M (h,k) and the calculation process of the first seven terms.
Their recurrence relations (where 0<k <h) and the corresponding initial
conditions are shown in Table 3.

We can extend the method in the case of simple steps to the case of non-
simple steps. For example, the graph lattice proposed in [28], the transfer
matrix method [58], the recurrence relation, and the count of random walk
paths in the graph are used to study the lattice counting problem in the
special case of non-simple steps. At present, there is no effective unified
method for the general lattice counting problem of non-simple steps, and only
some special cases can be studied. For example, in Z2, when the restricted
region is the left of the line y =z — 1 in the first quadrant, the step is like a
rook, bishop, spider, and the starting point is the origin and the destination
point is (m,n), the generating function of the corresponding sequence of
lattice counts is algebraic. And there can be an explicit expression [41,45].
The paper [40] studies the numbers of the paths from the point of view of
recurrence relation for “rook” path counting. However, there is no result
about the general endpoint [41]. Starting from Z? [27], we study the lattice
counting problem of “rook” and “queen”, and extend the problem to the
general high dimensional case by means of an open problem, which needs to
be studied.

There are also some other results on the lattice path counting problem. For

Table 3 The recurrence relations and initial conditions

kind recurrence relation initial condition
Catalan C(h,k) = C(h —1,k) + C(h,k — 1) C(,0) =1, i =0,1,2,-
Catalan C(h,k)=C(h—1,k—1)+C(h—1,k+1) C(i,i)y=1, i=0,1,2,--
Large Schroder S(h,k) =S(h—1,k—1)+S(h—1,k—1)+S(h—2,k) S(i,i) =1, 1=0,1,2,---

Motzkin M(h,k)=M(h—1,k—1)+M(h—1,k—1)+M(h—1,k) M(i,i)=1,i=0,1,2,---
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Chung-Feller theorem of Dyck path, Ma and Yeh [49] were studied in depth,
and several generalized forms of refinements were obtained. Eu et al. [29]
gave Taylor expansions of several types of lattice path generating functions,
and proved that the weighted free Schréder path also has Chung—Feller prop-
erty. Guo [37] studied the extension of Chung—Feller theorem in the case of
variable slope piecewise linear boundary pairs with k defects, consisting of a
limited periodic moving path from the origin to (n,m) lattice and a weak m
ordered split of n. Yan [65] studied four simple steps of two-dimensional
lattice counting formulas, and gave a bijective relationship between the
number of lattice and m-defect lattice path. Lu [48] discussed the counting of
k-chromatically inclined Dyck path. Du [26] improved two identities on
(n,m)-Dyck path. Zhao [69] generalized Koroljuk formula [43] to the lattice
path counting explicit formula.

Lattice path models were used in proving combinatorial identity, tree
structure, permutation with forbidden pattern, partition and so on. For
example, Stanley [59] listed 214 equivalent combinatorial structures to Dyck
lattice. Chen team [19—21,38] has made great achievements in lattice paths
counting, combinatorial proof of identities, and forbidden permutation. Deng
[24] characterized permutations with forbidden patterns by canonical reduced
decomposition, then by labelling and decomposing the corresponding lattice
paths, he gave the bijections between them.

3 Using generating function study lattice path counting problem

Generating function establishes the bridge between discrete mathematics and
continuous mathematics. It is one of the most effective tools to study lattice
paths counting and has become a classical tool to solve discrete combinatorial
mathematics problems [12]. The symbolic method [33] is used to directly
transform the structured description of the lattice counting model into the
functional equation or system of equations [25] satisfied by the generating
function. When the functional equation can be solved and the generating
function is relatively simple, the accurate counting formula can be obtained
through the Taylor expansion of the generating function.

Example 3.1 Let W denotes from (0,0) to finish (2n,0) Dyck path
collection. Let’s talk about that by what’s called “First passage decomposi-
tion” [61]. The Dyck path is either 0 in length, that is, the beginning and
end points are the same (denoted by the letter ), or not less than 2 in
length. Length is equal to the 2 Dyck path, the first step must be (1,1),
the second step is necessarily (1,—1). A Dyck path longer than 2 must
contain points on the z axis except the starting point. Set z( is in addition
to the starting point of the first z in the points on the axis, the following
investigation from the starting point the way to zy start is (1,1)
(expressed in U ), the last step is to (1,1) (D) with the way, they are still
Dyck path. This is what is called “First passage”. The subsequent path
from X, to the destination (2n,0) is still a Dyck path. So you get
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W = \s/ UUXWlXDXWQ,
empty path  First passage

where W; and W, are still Dyck path sets.
C(x) =1+ 2°C(z)>

The resulting generating function is C(z) = 1=¥%15742% which is the branch and

2x2
arrive at the final solution.
By using the generalized Newton binomial theorem, we obtain its power
series expansion (Taylor’s expansion): C(z)=> ", #1(2:)9:2” For the half-
length n, the generating function is

i 1 (2n)$n:1—m:

C(x).
—=n +1\n 2x (x)

For some special bivariate generating functions, the expansion of the inverse
series can be obtained by combinatorial inversion.

Kernel method is an effective method [1,38,56] to obtain generating functions
by solving functional equations. It originated from Exercise 2.2.1.4 in Donald
E. Knuth’s “The Art of Computer Programming” and was later independently
rediscovered by many people and called Kernel method [56]. The algebraic
expression of the ordinate of a step is called the step polynomial. If step set is
{(ay,b1), (az,b2),- - -}, then step polynomial is P(x) = 2** + 22 + - ... For Example
3.2 below, its step set is {(1,1),(1,-1)}, P(z) =z + 1. According to step poly-
nomial and iteration relation, the function equation of multivariate generating
function can be obtained. For some variable associations, the denominator
(numerator) is equal to zero. Since we know that the expansion of power
series must exist, the numerator (denominator) must be equal to zero, and
the equation corresponding to the denominator (numerator) being equal to
zero is called the kernel equation [56]. For Example 3.2 Dyck lattice path,
step on polynomial P(z), said K(z,z) =1—2P(z) for kernel, K(z,z)=0 for
kernel equation.

Kernel method is based on recurrence relation and boundary value condition
or initial value condition to obtain the function equation of multivariate
generating function. According to the sense of the generating function, the
denominator is equal to 0 for some association of variables (i.e., the so-called
kernel equation is obtained from the step polynomial). Since the power series
expansion is known to exist, the numerator must also be equal to 0. From
this, the generating function for the special case can be obtained, and then
the generating function for the general case can be obtained, as Example 3.2.

Example 3.2 For Dyck lattice path, its set is {(1,-1),(1,1)}. Natural
number 7, n satisfy conditions 0 < r < n, from starting point (0,0) to (n,:)
restricted areas is the first quadrant (not below z axis) goes to a(n,i). Let
fi(z) be the generating function of a(n,i) sequence of number of lattice
paths which starting (0,0) to (n,I). Let z,2 be two variables, we denote
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Yonsoa(n, i)z with  fi(z). By the recursive relations a(n,i)=a(n -1,
i—1)4a(n—1,i+1) and boundary value conditions a(n,n) =1, we obtain:
a(n,i)z" = za(n — 1, — 1)2" " + za(n — 1,i +1)2"
Z a(n,i)z" = z Z aln—1,i—1)2""1 + 2 Z aln —1,i+1)z"" 1,
n>=0 n=0 n>=0
fi(z) = 2fica(2) + 2fina (2),
fo(Z) =1+ fl(Z)

For the generating function F(z,x) =3 -, fa(2)2", we multiply both sides of
the second last expression above by 2° and sum them, with the last expres-
sion, we obtain

F(z,2) = zaF(z,x) + g[F(z, z)— F(z,0)] + 1.

There is
zF(2,0) — x

22 —x+z

F(z,x) =

Thus, the step polynomial is P(z) := L+, kernel equation is 1—zP(z) =
1—2z(2 4 ) =0, namely zz? —z + z = 0. Solving it we obtain two roots as

1—+v1—4z22 _1+\/1—422

Tr1 = xT9
2z ’ 2z

We call a root whose value also tends to 0 as z tends to 0 a small root.
Here z; is a small root, namely when z,2 —0, x— 21 ~x — 2 Since it is
known that the generating function must exist, the numerator must be equal
to 0, namely zF(z,0) —z; =0, there is

1—+/1—422

F(z,0) = 5,7

This is exactly the generating function corresponding to Catalan number in
Dyck path, that is, the conclusion in Example 3.1. By substituting this into
the expression for F(z,z), the generating function in the general case can be
obtained:

F(z,z)= ! = !

2z —2) Z<x1+m>'

2z

Hou [38] solved the binary linear recursive relation system by kernel method,
and solved the counting problem with two permutation conditions simultane-
ously. It is difficult to solve general bivariate and multivariate generating
function equations. For example, the generating function equation of knight
path in [14] remains to be studied.

The paper [61] gave a hierarchical classification of generating functions:

{rational} C {algebraic} C {D-finite/holonomic}.

Here are the definitions of these three types of functions:
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Definition 3.3 A formal powerseries F'(z) isrationalifthere exist polynomials

P(2),Q(z), with Q(z) # 0, such that F(z) = gg;.

Definition 3.4 A formal power series F(z) is algebraic if there exist
polynomials Py(0), Pi(z), ---, Ps(z), not all 0, such that

Py(x)F(z)* + Py F(2) + -+ + Py(z)F(x) + Py(z) = 0.

The smallest positive integer d for which this equation holds is called the
degree of F.

Definition 3.5 A formal power series F(z) is D-finite or holonomic, if
there exist polynomials Py(z), Pi(z),- -, Pi(z), with the property Py(x)#0,
such that

Py(z)F(z) D + Py 1 F(z)@ Y + ... 4 P (2)F(x)Y + Py(z) = 0,

where F(z)™) and m =d,d—1,---,1 is the order of the differential equation.

For the study of lattice counting in two-dimensional Euclidean space, the
following results have been obtained.

Theorem 3.1 [14] Let S be a finite subset of Z? that is symmetric with
respect to the z-axis and has small height variations. Let (ig,jo) € N?. Then the
length generating function for walks that start from (ig,jo), take their steps in
S and stay in the first quadrant is D-finite.

Theorem 3.2 [14] The length generating function for walks that start from
(1,1), take their steps in {(—1,2),(2,—1)} and always stay in the first quadrant
(knight walks) is not D-finite. Nor is the generating function for knight walks
that end on the z-axis.

Bousquet-Mélou [13,14] have also studied other types of knight and shown
that their generating functions are D-finite, the explicit expressions for generating
functions and counting sequences cannot be obtained. By means of an affine
transformation [61], we first transform the lattice path counting problem
under non-simple step set into a lattice path counting problem under simple
step set, and then apply the transfer matrix method to get the counting
formula. The partial results are shown in the sequence A277248 [30].

For the general case, in two papers [1,12], that have been shown that the
counting generating functions for the 23 walks of 2% kinds with small steps
confined in a quarter-plane and associated with a finite group of birational
transformations are D-finite. The lattice model restricted in the first quadrant
is fundamentally different in the case of 79 kinds, where 23 species are finite
groups and 56 kinds are infinite groups. In paper [46], Riemannian surface,
universal covering, meromorphic branches and other analytical methods are
used to prove this classification. Zhang [68] gave five mock theta functions by
using the Bailey pair. Identities are established between the double sums and
classical mock theta functions. Bostan [10] proposed an experimental mathe-
matics approach leading to the computer-driven discovery of various conjectures
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about structural properties of generating functions coming from enumeration
of restricted lattice walks in 2D and in 3D. Various conjectures are given
from the structural properties of their algebraic equations, differential equations
and asymptotic formulas. See Table 1-3 in Appendix of [10] for details.
Recently Bousquet-Mélou [11] has given an elementary constructive proof of
the proposition that the generating functions of Gessel models are algebraic
functions. Though 23 of these kinds of situations have been proved to be
correct [53,41,54], but the others are open problems.

4 Using matrix study lattice path counting problem

It is an important method in algebraic combinatorics to study the lattice
path counting problem by means of matrix and its determinant, permernent,
Pfaffian, immanant, etc. There are many good results.

Definition 4.1 Let a = (aj,a2,---,a,), b= (b1,b2,---,b,) be integer num-
ber sequences, which satisfy that a; <ax < - <an, by <by<---<b, and

b <a;, i=1,2,---,n. We call nxn matrix ((‘”_b”“

0 as countin
gt ))1<i,j<n &

matrix.

Theorem 4.1 [44] In the lattice area enclosed by the lattice path {(1,
a1)(2,a2) - (n,a,)} (its ith ordinate of step is a;) and the lattice path
{(1,01)(2,b2) -+ - (n,b,)} (its ith ordinate of step is b;), for step (1,0) or (0,1),
ith step (that is, through the lattice point (i,y)) ordinate satisfying b; <y < a;,
the number of lattice paths from (0,b1) to (n,a,) is equal to the determinant of

the counting matriz
a; —b; +1
deti<ij<n o .
s ((j—z’ﬂ))

Figure 2 shows the specified lattice path {(1,2)(2,2)(3,2)(4,6)(5,6)(6,6)},
which length is n=6 in the area enclosed by two lattice paths
{(1,3)(2,5)(3,7)(4,8)(5,8)(6,8)} and {(1,0)(2,1)(3,1)(4,4)(5,5)(6,5)}.

Another kind of lattice path counting problem can be solved by using
Theorem 4.1 and Dummy path technique.

Theorem 4.2 [44] Suppose that Cy,Cs,---,C, are the points of divergence
in Z*. Then the number of lattice paths from (a,b) to (c,d) which do not go
on the point Cy,Cs, -+ ,C, equal to

deti<ij<nt1(|L(A; — Ei)l),

where |L(A; — E;)| denotes the number of lattice paths from A; to E,.
A1 = (a7b),A2 = Cl," . 7An+1 = Cn,El = (C,d),EQ = Cl,"' ,En+1 = Cn

Example 4.1 [31] For Dyck path, let a=(0,1,---,n), b=(0,0,---,0). Acc-
ording Theorem 4.1, we obtain the determinant representation of Catalan
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[

|
|
L >
0 1 2 3 5 6

4
Fig. 2 The specified lattice path {(1,2)(2,2)(3,2)(4,6)(5,6)(6,6)}, which length is n =6
in the area enclosed by two lattice paths {(1,3)(2,5)(3,7)(4,8)(5,8)(6,8)} and
{(1,0)(2,1)(3,1)(4,4)(5,5)(6,5)} -

number as follows:

a; +1 )
ctrcisen( (7)) =teticisan((, 0, )

Example 4.2 [55, (s,t)-Tennis Ball Problem| At the first turn, there are
s tennis balls marked 1,2,---,s. Player throw ¢ (¢t <s) of them onto the
lawn. At the second turn, tennis balls marked s+ 1,5+2,---,2s are added,
with the remaining s—t¢ balls there are 2s—+t tennis balls, he throws
another t tennis balls onto the lawn. This goes on for n turns. How many
possible scenarios are there for nt tennis balls on the lawn at the end?
Author in paper [55] has shown that case number is equal to the desires of
from the origin to ((s —t)n,tn), step sets {E = (1,0),N = (0,1)}, between z -
axis and boundary (N!E*~t)" of the way.
t, ifi=1,2,---,5—1t

2t, ifi=s—t+1,---,2(s—1);
a; = .

:nt, ifi=m-1)(s—t)+1,---,n(s—1t).

Thus, we obtain that det1<i7j<(sft)n((j‘fﬁ1))-

5 Study the enumeration of families of lattice paths

The problem of enumeration of lattice paths from one starting point to one
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destination point is discussed above. From now we discuss the problem of
counting the families of lattice paths from the starting point to the ending
point when there are multiple starting points and multiple ending points.

It is necessary to understand the concept of compatible point in two fami-
lies. In the Z? lattice, two lattice points are listed: u = (uy,ug, -+ ,u,) and
v=(v1,vs, ---,v.). Here, r can be any positive integer, when 1<i<j<r,
1<k<l<r, if from u; to v every lattice path must intersects with every
paths from wu; to vy, says u compatible with v, if any two points are vertices
of graph G, we say u G-compatible with v.

5.1 Lattice path family counting problem with specified start and end
points

Disjoint lattice path counting was first obtained by Lindstrom, later it was
rediscovered by Gessel and Viennot [34,35] from the perspective of integer
plane partition, and became a research hot spot. Disjoint path families appear
in the form of vicious Walkers in statistical mechanics and Kekule structures
in hexagonal ring diagrams in organic chemistry. Xu [64] proposed the
concepts of complete forcing sets and complete forcing numbers of graphs,
and obtained explicit formulas of hexagonal chain graphs. Zhang [67] studied
the d-matching problem for a special class of 3-uniform hypergraphs.

Theorem 5.1 [6] Let G be a directed acyclic graph with n designated origin
and destination nodes, and let H be the n x n matriz, whose (i,5)-entry is the
number of paths from the ith origin to the jth destination. The following statements
hold:

(a) The number of n-paths is equal to the permanent of H.

(b) If G is nonpermutable, the number of nonintersecting n-paths is equal to
the determinant of H.

Example 5.1 [6] We define an n-path to be a collection of n paths from a
set of n origins to a set of n destinations. To compute the number of 4-
paths in our example, we first find the number of ways that each ant can
reach each morsel. In the example these numbers can be computed easily
using calculations similar to those that arise in Pascal’s triangle (see
Fig. 3(a)(b)(c)(d)(e)). We record the information in a square matrix H
whose (i,j)-entry a;; is the number of ways that Ant i can reach Morsel j.
Applying Theorem 5.1, one obtains a counting matrix H as follows:

14 6 1 0
1 20 15 6 1
H_1520156

6 15 20 14

Then the number of 4 lattice path families from the starting point O4,0Op,O¢
and Op to the ending point A, B,C,D is equal to the permernent of the
matrix H, per(H) = 171361.

As shown in Fig. 3, this is a compatible diagram. The number of 4-disjoint
lattice path families from the starting point O4,0p,0c and Op to the
ending point A,B,C,D is equal to the determinant of the matrix H,
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(d) A ()

Fig. 3 Four disjoint lattice paths with definite starting and ending points and details of
the number of solutions from each starting point to the end point

det(H) = 889.

Using the counting method of disjoint lattice path families to evaluate the
determinant of Hankel matrix has become a hot topic in recent years. In 2019,
Wang [63] explored the problem of evaluating the determinant of Hankel
matrix with the convolution power of Catalan number by finding shifted periodic
continued fractions. The relevant research progress can also be referred to the
references listed in [63].

5.2 Lattice path family counting problem with undetermined starting point
or (and) end point

Consider the following cases: (1) the starting point is specified and the ending
point is selected from a given set; (2) The starting point is selected from the
given set, and the end point is specified; (3) The starting point and end point
are selected from two sets respectively. In this case, the Pfaffian formula is
used to count the disjoint lattice path families.

To give a Pfaffian definition, we first introduce perfect matching of sets [50].
Here is a simple example to illustrate: For collection A ={1,2,3,4,5,6},
nn={{1,2},{3,5},{4,6}} is a perfect matching to A. The matching of
A=1{1,2,3,4,5,6} can be realized geometrically by drawing points labelled
1,2,3,4,5,6 along a line, and then connecting any two points whose labels are
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paired in the matching by a curve, this is so-called Brauer diagram. Any two
pairs 4,k and 7,/ in a matching for which i < j < k <[ are called a crossing of
the matching. The sign sgn of a matching n is (—)¢, where ¢ is the number
of crossings of . In Fig. 4, ¢=1, sgnt= —1.

In general, upper triangular matrix A = (a;;)1<i<;j<2n Pfaffian defined

Pf(A) = Z sgn 7 H a;j.

7t is a perfect matching of {1,2,-- ,2n} {i,j}emn

There is a formula about A, det(4 — AT) = Pf(4)2.

Different from the case of Theorem 5.1, when the end of the disjoint lattice
path family is not determined, Theorem 10.13.5 in [44] gives the relation
between the generating function and Pfaffian formula.

Theorem 5.2 [44] Let G be a directed, acyclic graph with a weight function
w on its edges. Let A= (A1,As, -+ ,As,) and E = (E1,Es,---) be sequences of
vertices in G. Then

Z sgn (0)GF(Lg(As, — E | non-intersecting; w) = Pfi<icj<on(Qa (4, j;w)),

€S2y

where Lg(A, — F |non-intersecting) is the set of all families (Py, P, -+, Pyy,) of

non-intersecting paths, P; connecting A,; with Ey, i=1,2,..,2n and

k1 < ko < ..kan, and Qg(i,j;w) is the generating function >, w(P)w(P")
(P/7P/I)

for all pairs (P',P") of non-intersecting lattice paths, where P’ connects A;

with some Ej and P" connects A; with some Ep, with k <.

For other cases, such as the number of lattice paths in the lattice path
family is odd, and the starting point and (part of) ending point are not deter-
mined, you can refer to [44].

Pfaffian can be described as a signed weight generating function of a
complete graph. The quotient ring of a Pfaffian polynomial ring of fixed size
in a generic skem-symmetric matrix was studied in [36], that is, the Pfaffian
ideal. Based on the number of turning points from north to east of disjoint
lattice path, three determinant formulas are given to calculate the Hilbert
series and Hilbert functions of Pfaffian rings and a closed multiplication
formula for them. For Pfaffian numbers whose elements in lattice paths count
matrix are combinatorial numbers, how to give its calculation formula
remains to be studied. Carrozza and Tanasa [16] used the expression of Pfaffians
as Grassmann integral to generalize a series of formulas relating generating
function of paths in digraphs to Pfaffians. They derived the famous
Lindstrom-Gessel-Viennot formula in the general case of a graph with cycle

JN

1 2 3 4 5 6
Fig. 4 A perfect matching of A ={1,2,3,4,5,6}
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and extended Stembridge’s conclusion. Feng [32] obtained an explicit expression
of the number of perfect matching of 8.6.4 lattices with toroidal boundary by
enumerating Pfaffians. However, the Kekule structures counting of the
general lattice graph, especially the hexagonal multi-coronal graph of benzene
hydrocarbons, remains to be studied.

6 Application of disjoint lattice path families counting model in symmetric

function theory

Suppose that X\ is a partition of the positive integer n, namely n = A+
Ao+ -+ A, where A\ > X2 > - > X\ >0, denoted as XA = (A1, Ag,--- , Ar). The
squares in the Young tableaux of X\ are filled with elements in {1,2,--- ,n},
and satisfy the relation of no decrease in rows and strict increase in columns.
This is the form A= (A, ---,)\.), n-semistandard tableaux of shape
A=A, ,0), T.

A wvariable sequence, X = (x1,---,1,), defined n-semistandard
Young tableaux 7T rights expression of w(T)=T]][;_; xﬂk(T’k), the weight
expression in Fig. 5 w(T) = z{xew3z47526. Through the weight expression, the
Schur function is obtained. By means of this symmetric function, the lattice
path counting model is related to the group representation theory. Definition
based on partition s)(X) = )", w(T), in addition to

det(z) " )n

ij=1
det(x?_j)zjzl ’

SA

and to express Schur function by completely homogeneous symmetric func-
tion. For more details, you can refer to [57].

Gessel and Viennot [34,35] through the following bijection in n - semistandard
Young tableaux T correspondence between r lattice paths P = (P, ---,P.),
which is a disjoint paths family [35,57]: The first i row element in 7' in turn
as a convert from wu; = (—i,1), v; = (N —i,m), i =1,2,--- ,r, the height of the
level step of the path of P;. Fig. 5 shows the bijection between the three
lattice path family and the 6-semistandard Young tableaux with shape
A = (4,3,2) and the corresponding weight expression w(T) = z{roz3r42576.

Theorem 6.1 [57, Jacobi-Trudi determinant] Let the m-degree completely
homogeneous symmetric function be h,,(X). Then

sx(X) = det(hy;+j-i(X))

T
ij=1"

The content of group representation theory can be enriched by the study of
finite group representation theory related to lattice path counting, such as
Young diagram, Brauer diagram, Pfaffian, immanant and so on. For example,
Macdonald polynomial [17,52], which is important in algebraic combinatorics,
can connect the integrable models of geometry and mathematical physics and
obtain the irreducible center representation fragments of the detailed decom-
position in these two fields. In supersymmetric field theory in physics,
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Fig. 5 Bijection between 3-disjoint lattice path and 6-semistandard Young tableax and
corresponding weight expression w(7') = x%mmuxswg

Macdonald’s function corresponds to the topological vertex graph, which is
the structure of supersymmetric theory itself. See “Supersymmetric theory of
special function (3) topology vertex with Macdonald’s function” . However,
the general formula used at present is expressed by the monomial symmetric
function rather than the Schur symmetric function. Since the irreducible
properties are expressed by Schur symmetric functions, the Schur symmetric
function expressions can explicitly describe the underlying structure of the
representation, and their decomposition can be read directly from the corre-
sponding Schur function expressions.

In the theory of representation, we study how to transform symmetric
functions into expressions based on Schur functions, and study the positivity
and combinatorial significance of their coefficients. Schur function is the most
important basis in the ring of symmetric functions. There are many mathematical
problems about the expansion of the Schur basis of symmetric functions. Of
particular interest is obtaining combinatorial descriptions with positive coeffi-
cients in various expansions of the Schur basis, exemplified by the famous
Littlewood-Richardson rule [51]. For ease of expression, we give the following
definition.

Definition 6.1 [42] A symmetric function is said to be Schur positive if it
can be represented by nonnegative linear combinations of Schur functions.

Definition 6.2 For a matrix M = (M;;), whose elements are symmetric
polynomials, M is said to be completely Schur positive if the determinant
of each of its square submatrices is Schur positive.

Lauren Williams proposes an open problem.

Open Problem We already know that Jacobi-Trudi matrix is completely
Schur positive. Can you find anything else like this matrix?

Acknowledgements This paper was supported by the National Natural Science Foundation
of China (Grant No. 11571155).
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