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1 Introduction

Let CP™ be the complex projective space endowed with the Fubini-Study metric
of constant holomorphic sectional curvature 4 and let M be a Riemann surface.
A conformal minimal immersion f : M — CP" satisfying some assumptions on
the Gaussian curvature K and the Kahler angle  was widely studied. It is well
known that up to a rigid motion, a linearly full conformal minimal immersion
of two-sphere with constant curvature in CP" belongs to the Veronese sequence
proved by Bando and Ohnita [1] and Bolton et al. [2]. The Kéhler angle plays an
important role in studying minimal surfaces in a Kéhler manifold [5], as it gives
a measure of the failure of f to be a holomorphic map. That is, f is holomorphic
if and only if § = 0 on M, while f is anti-holomorphic if and only if § = 7 on
M. Ohnita [13] classified minimal surfaces with constant Gaussian curvature
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and constant Kédhler angle in CP™. Kenmotsu and Masuda [7] studied the
local behaviour of the Kihler angle in CP?, which satisfies an overdetermined
system of ordinary differential equations. They showed the Kéhler angle must
be constant if the Gaussian curvature is constant. Together with Ohnita’s
results [13], all such minimal surfaces in CP? were classified. Bolton et al. [2]
conjectured that if the Kéhler angle # of the minimal immersion f : §% — CP"
is constant such that 6 # 0, 7, 7, then its Gaussian curvature K is also constant.
They gave an affirmative answer to this conjecture for n < 4. Ogata [11,12]
showed that the conjecture holds if the Gaussian curvature is bounded below
by a constant determined by the Kéahler angle. Mo [10] verified the conjecture
under the added assumption that |cosf| > i. However, Li [8] gave three
families of counterexamples of minimal immersion from two-sphere into CP0
with constant Kéhler angle 6 # 0, 5,7 and nonconstant Gaussian curvature.
Therefore, the conjecture does not hold in general.

In this paper, we would like to study pinching about the square norm S of
the second fundamental form for minimal surfaces with constant Kéhler angle in
CP™. This is inspired by the well-known Simons inequality, which is an integral
inequality about S. More precisely, for a closed n-dimensional submanifold M"™
of the unit sphere S™*?, Simons [14] computed the Laplacian of the square norm

of its second fundamental form S and obtain the following integral inequality

A

where x1 is the volume element of M™ with respect to the induced metric on
M™. As an application, if S satisfies the pinching condition 0 < § < 27"71/10
on M"™, then either S = 0 and M" is totally geodesic, or S = ﬁ. All
minimal submanifolds with S = 77 were classified by Chern et al. [4]. For
a totally real minimal submanifold M™ in CP", Chen and Ogiue proved that
it § < 2’1‘{/171 holds on M™, then M" is totally geodesic [3]. Ludden et al. [9]
determined the Clifford torus that is not totally geodesic in CP2. Tanno [15]
obtained a Simons-type inequality about a compact complex submanifold M™

immersed into CP""P as follows,

/ (35— (n+2)]S *1>0.
Consequently, complex submanifolds with .S = ”TH were completely determined
such that M™ is imbedded as a complex hyperquadric Q; in CP'*P, where @,
is a complex submanifold of CP?.

The complex Grassmann manifold G(k,n) is the space of all k-dimensional
complex subspaces in C". When k = 1, G(1,n) is just the complex projec-
tive space CP™ 1. The complex hyperquadric Q,, is a complex submanifold of
CP™ ! and is defined by

Qn:{[zz(zlv"'aszrQ)] GCP”—H ‘ Z%+"'+Z721+2:O}a



A Simons-type Integral Inequality for Minimal Surfaces 3

where [Z = (21, 22, . .., Znt2)] is the homogeneous coordinates of CP" !, G(k,n)
and @), are two important symmetric spaces. They have natural Kéhlerian met-
ric with non constant holomorphic sectional curvature when k is not equal to
1. Recently, we studied pinching results about S for holomorphic curves in the
complex Grassmann manifold G(2,n) [17] and minimal surfaces with constant
Kahler angle in @y, [16].

The purpose of this paper is to establish a Simons-type inequality for mini-
mal surfaces with constant Kahler angle in CP™ and characterize all the associ-
ated pinching immersions. In Section 2, we study the geometry of a conformal
minimal immersion f : M — CP"™ by moving frames, where M is a Riemann
surface. In Section 3, we compute the Laplacian of S (Theorem 3.2) and obtain
a Simons-type integral inequality for a closed minimal surface with constant
Kéhler angle (Theorem 3.4). In Section 4, if S satisfies a pinching condition,
it is shown that both K and S are constant (Theorem 4.1). Moreover, we
determine all the minimal surfaces as follows:

Main Theorem. Let M be a compact Riemann surface without boundary and
f: M — CP™ be a conformal minimal immersion neither holomorphic nor
antiholomorphic. If its Kdhler angle 6 is constant and the square norm S of
the second fundamental form satisfies the pinching condition

3
152 —(1+2cos?0)S + 15cos® fsin? 0 — 8k < 0

on M, where k is a globally defined invariant relative to the first and second
fundamental forms, then up to a rigid motion, f(M) is one of following
(i) f(T?) c CP? with k=%, S =2, cosf =0 and K =0, or

8’
(11) f(S2) C CP4 wlth K'/:O, S: %, COS9 :0 andK: %’ or
(lll) f(SZ) C (CPQ thh FL:O, S:O’ COSQZ() andK: 1’ or
(iv) f(S?) C CP? with k=0, S =18 cos =1 and K = %, or
(v) £(S?) C CP3 with k=0, S =4 cosf = —1 and K = 2.

Remark. Example (i) is the Clifford torus in CP? given in [9]; examples (ii)
and (iii) are the middle elements of Veronese sequences in CP* and CP? given
in [2], respectively; examples (iv) and (v) are the second and third elements of
Veronese sequence in CP? given in [2], respectively.

2 Preliminaries

Throughout this paper, 1 denotes the imaginary unit +/—1, and we will agree
on the following ranges of indices:

0<ABC,...<n, 1<aB,7,...<n.

We firstly study the geometry of CP™ = U(n + 1)/(U(1) x U(n)). Let
e = (ep,€1,...,6n) € U(n + 1). Its Maurer—Cartan forms are denoted by
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(Qap) = e tde. Tts structure equations are given by
n J—
dQAB:—ZQAc/\QCB, Qup + Qpa =0. (2.1)
C=0

The Fubini—Study metric on CP" is
n
g = ZQOCQOM Qo = Qao-
a=1
The structure equations of (CP", g) are given by
n
A ==Y OagA Qs Oup+ Opa =0,
B=1
where O3 = Q03 — Qoodap are the connection forms. Its curvature forms W,z
are given by
n . n .
Vo =dOas+ > Oy AOys = Qu AQs+0a5 Y 0y AQ,.
y=1 v=1

Let f : M — CP™ be a conformal minimal immersion from a Riemann
surface M, and e : U C M — U(n + 1) be a local frame along f, i.e., f = [eq].
Set w = e*Q2. The induced metric on M is

n
ds?\/l = frg= Zwawa = pPY, (2.2)

a=1

where ¢ is a local form of (1,0)-type. The Levi-Civita connection form of
(M,ds?,), denoted by p, is characterized by

dp=1ip A . (2.3)
The Gauss curvature K is given by
i
dp = §K<,0/\¢. (2.4)
Define local complex-valued functions X, and Y, as following
wa = Xop + Y, 0. (2.5)

Put X = (Xy,...,X,), Y = (Y1,...,Y,,) € C". The Hermitian inner product
of C" is denoted by (, ). By (2.2) and (2.5), we have

XP2+[Y[?P=1, (X,Y)=0. (2.6)
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The Kéhler angle 6 : M — [0, 7] (see [5]) satisfies the equation
cos = | X|> — Y% (2.7)

Therefore, f is holomorphic if # = 0; f is anti-holomorphic if § = 7; and f is
totally real if § = 5. By (2.1), (2.5) and (2.7), we have

dwop = —cosbp N p. (2.8)

Taking exterior derivative on both sides of equations in (2.5) and using (2.1)
and (2.3), we get
DX, ANp+ DY, AP =0, (2.9)

where

n
DX, = dXo — Xa(woo — ip) + Y wapXg,
B=1

n
DY = dYy — Ya(woo + ip) + Y was¥p.
B=1
From (2.9), by using the Cartan’s lemma,
DXy = aqp +bap, DYy = bap + ca,

where a., b, and ¢, are locally complex-valued smooth functions. Since f is
minimal if and only if b, = 0 for all «, then

n
dXa — Xa(woo — ip) + ZwaﬁXﬁ = G
B=1

’ (2.10)
dY, — Yo (woo + ip) + Zw(ng = CoP-
B=1
Put a = (ai,...,a,) and ¢ = (c1,...,¢,) € C". By the second equation in
(2.6), we obtain
(X,c) + (Y, a) = 0. (2.11)

We denote by S the square norm of the second fundamental form of f, which
is given by

n n
S=4(la]’ + [cf*), where [a]> = [aa| [c* =) |cal®.
a=1 a=1

Let é : U — U(n + 1) be another moving frame along f such that é = eU,
where U = diag{e'", T}, n is a local real-valued function and 7' is a local U(n)-
valued function. If we put a hat on the corresponding quantities relative to the
new frame é, we have

X=eVXT, Y=eYT, a=eMal, é&=c T (2.12)
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Together with (2.11) and (2.12), it is easy to check that
=X, 0)f = [(Y.a) (2.13)

is a globally defined invariant on M, which will be used in the pinching condition
later.

3 Fundamental Equations

In this section, A = %d % d denotes the Laplace-Beltrami operator of (M, ¢p),
where * is Hodge star operator of (M, ¢p), and we will compute the Laplacian
of | X|?, |Y]?, |a|? and |c|?. Taking the exterior derivative of the first equation
in (2.10), and using (2.1), (2.3), (2.8) we get the Codazzi equations of f as
follows,

Da,, = dag — aq(woo — 21ip) + Zwaﬁag

B=1

K —3cosf—1
=010+ Xa=———5———, (3.1)

n
Deo = deg — eo(woo + 21p) + Z WaBCA

B=1

_ K +3cosf —1
=Ca 1P+ Yo———, (3.2)

2

where aq,1,¢q,1 are local complex-valued smooth functions. From (2.10) we
have

n n

AXP? = (Xatap + Xaba?), d[Y? =) (VacaP+ Yalap).  (3.3)

a=1 a=1
As xp = —ip, xp = ip, from (3.3) we have

n n

«d| X = -1 (Xatap — Xa@a®), *d[YP =1 (YacaP — Yalap). (34)

a=1 a=1

Taking exterior derivative of the first equation in (3.4), we get

dxd|X|* = -i ) [dXa Atap + Xad(aap) — dXa A GaP — Xad(@ap))-

«

Using (2.10), (3.1) and the formula *(¢1 A ¢2) = 1, we have

AlX|? =2|X*(K —3cosf — 1) + 4]a>. (3.5)
Similarly, we derive

AlY|? = 2|Y]*(K +3cosf — 1) + 4|c|*. (3.6)
From (2.6), (2.7), (3.5) and (3.6), we obtain
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Theorem 3.1. Let f: M — CP" be a conformal minimal immersion from
a Riemann surface M into CP™. Then the Gauss equation and Laplacian of
cos O are given by

K =1+3cos?0 —2(|a]* + |c|?),
Acosf = 2cosO(K — 4) + 4(|al* — |c]?),

where K is the Gaussian curvature of the induced metric and 6 is the Kdahler
angle of the immersion.

Remark. The two formulas (3.7) and (3.8) were firstly derived by Chern and
Wolfson [5] and then by Jiao and Peng [6].

From (3.1) and (3.2) we have
dlal* = Po + Pp, dle]’ = Qv +Qg, (3.9)

where

K —3cosf —1 K +3cosf —1
e R e e

(3.10)
with a1 = (ai1,...,an1) and ¢ = (c11,...,¢p,1) € C". By Hodge star
operator, we have

P=<(aj,a)+(a,X)

dxdla2 = 1 [d(Pp) — d(Py)], dxdlc = 1 [d(@F) — d(Qp)] -
Routine computations give

(X,a) (K — 3cosf)

— |5, — 2, 11
dlaip,a) = |5 — P pAPD (3.11)
where
2 > laf 2
Sa = [(X,a)|” — [(Y,a)|]” — T(BK —5cosf —1)—la;]”. (3.12)
Besides, one can compute that
K — —1
B30 Lag, x)
K —3cosf—1 X|?
——% [\a\2+|2|(K—30089—1) AP, (3.13)
and
K —3cosf —1 _ (X,a)0(K —3cos0)
d<2) A{ap, X) = — ) 5% YAP. (3.14)
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Define a new operator

_ (X,a) 0 n (X,a) 0

= — —. 1
Y28 9z 02X Oz (3-15)
From (3.11)—(3.15) it follows that
Ala]* = 4|a]?*(2K —4cosf — 1) + | X|*(K — 3cosf — 1)?
—4[(X,a)|* + 4[(Y,a)|> + 4D, (K — 3cos0) + 4|a|*. (3.16)
Similarly, we can compute that
(Y,c) O(K + 3cosb) _
=15, — AP, 3.17
d(ep, e1) = |Se = “53 o pAP (3.17)
where
2 2 lef 2
Se =Y, c)|” — [{X,c)|* — —(BK +5cosf — 1) — |c1]°. (3.18)

2

We also have

0—1
K+ 3c2os A(Y o, )
K -1 K
- _% [|c|2 + V]2 (2 +cosf — \YP)] OAT,  (3.19)
and
K +3cosf —1 _ (Y,c) O(K +3cosfl)  _
d<2> AN Y, c)=— ) 5% P AP. (3.20)
Define

Vi o (Ve) D
2\ 0z 2\ 0z
From (3.9), (3.10), (3.17)—(3.21), we obtain

D¢ =

(3.21)

Alc]* = 4[c]*(2K +4cosf — 1) + |Y[*(K + 3cos 0 — 1)* — 4/(Y, c)|?
+4[(X, c)|? + 4D (K + 3cosb) + 4lc1|?. (3.22)

From (3.16) and (3.22), we get

Theorem 3.2. Let f : M — CP"™ be a conformal minimal immersion. Then

1

EAS = (2K —1)S — 16cosf(|al* — |c|?) + (K — 1)® — 6K cos* §
+15 COSQG - 4’<X7 a>’2 - 4‘<Y7 C)’Q + 4‘<Y7 a>’2 + 4’<X7 C)’Q
+4|a|? +4lc1)? + 2Da(K —2cos0) + 2D (K +2cosf).  (3.23)
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In the following, we always assume that the Kéahler angle 6 is constant.
Form (2.6) and (2.7), both |X| and |Y| are constant. Then (3.3) implies that

(X,a) = (Y,c) = 0. (3.24)

From (3.15) and (3.21), Dy = De = 0. Besides, from (3.8) we have

1
la]? — |c|* = 5 c08 04— K). (3.25)

By (3.24) and (3.25), equation (3.23) becomes
1
1S =(2K -1)S+ (K - 1)2 + (2K — 17) cos* 0
+A[Y, a)” + 4[(X, o) P + 4l + dle ] (3.26)
Substituting Gauss equation (3.7) into (3.26) and using (2.13), we obtain

Theorem 3.3. Let f : M — CP™ be a conformal minimal immersion with
constant Kahler angle. Then

1
ZAS = —2524—(1—#2 cos® 0)S+15 cos?® §(cos? —1)+8k+4|a 1 |*+4|c1|?, (3.27)

where k is a globally defined invariant on M given by (2.13).
Integrating (3.27) on M and using Stokes’ theorem, we get
Theorem 3.4. Let M be a compact Riemann surface without boundary and

f: M — CP™ be a conformal minimal immersion. If its Kahler angle 0 is
constant, then

3
/ [452 — (14 2c0s?6)S 4 15cos? fsin?0 — 8| *1 > 0.
M

For § = 0 or 7, by Theorem 3.4, it is easy to get

Theorem 3.5. Let M be a compact Riemann surface without boundary and
f: M — CP"™ be a holomorphic or anti-holomorphic immersion. Then

/ S(S—4) x1>0.
M

Remark. Theorem 3.5 is a special case for m = 1 of Theorem 1 in [15].
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4 Proof of Main Theorem

In this section, we will characterize minimal surfaces with constant Kéhler angle

6 € (0,7) in CP™ satisfying a pinching condition as follows.

Theorem 4.1. Let M be a compact Riemann surface without boundary and
f i+ M — CP™ be a conformal minimal immersion with constant Kdhler angle

0 € (0,m). If
ZSQ — (14 2c0s?6)S + 15cos? fsin? 0 — 8k < 0

holds on M, then K, |a| and |c| are all constant.

Proof. By (3.27), Theorem 3.4 and (4.1), we have
252 — (1 +2cos?60)S + 15cos® fsin? 0 — 8k = 0,

and
a;=cC1 = 0.

Using (4.2), equations in (3.1) and (3.2) become

n
K —3cosf—1_
Da, = dag — aq(woo — 21ip) + Zwaﬁaﬁ = Xafgo,
B=1
and
n
K +3cosf —1
Deo = deg — eo(woo + 21p) + Zw(w% = Yaf

B=1
From (3.24) and (4.3),
n n
Zaadaa = |a|*(woo — 2ip) — Z GaWaBas.
a=1 a,f=1

Combining with (2.1), we have

da)* =) (Gadan + aadda) =0,

a=1

(4.1)

(4.4)

which implies |a|? is constant. By the same way, from (4.4), one can prove that
|c|? is constant, too. Therefore, S is constant. By (3.7), K is also constant. [J
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By (2.6) and (2.12), there exists a moving frame [5] such that
0 .0
w1 = COS 5(,0, wop = sin §g0, wWa0 =0, 3<a<n. (4.5)
As 0 is constant, substituting (4.5) in (2.10), we have

DX; = cos g(ip — wop + wi1) = a1,
DX, = cos gwgl = asyp, (4.6)
DX, = cos gwal =aqp, 3 < a<n,

and
DY; = sin ng =19,
DY, = —sin §(ip + woo — wa2) = &2, (4.7)
DY, =sin gwag =cp, 3<a<ln.

Since sinf # 0, from (4.6) and (4.7) it follows that

ip—woo+wi1 =0, ip+woy—wo =0, (4.8)

and
al = Cp = 0. (4.9)
Furthermore, there exists a moving frame such that
— [ - 9B
w31 = seC 5a3yp, W32 = CSC5C3¢,
wa1 =0, wgo = csc gC4¢, az > c4 >0, (4.10)

Wal1 =0, wa=0, 5<a<ln.

Taking exterior derivative of equations in (4.8), we have
0
K —3cosf — 1+ 2sec? §|a\2 =0, l|a*=]agl*+ a3/’
and 9
K +3cosf — 1+ 2csc? §|c|2 =0, |c|*=]c1]® +]es|® + el
It follows that g 9
K — 1+ sec? §]a]2 + csc? §|c|2 =0.

Using (4.3), (4.5), (4.9) and (4.10), equations in (4.3) become
(Dai = wizas + wizag = cos § E=3¢0=15

Das = das + a2(2ip — woo + LUQQ) + wagag = 0,

Dag = dag + a3(2ip — woo + w33) + wszaz =0, (4.11)
Day = wazas + wazaz = 0,

(Dag = wazaz =0, 5<a<n,
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and

D¢y = deg — e1(woo + 2ip — wi1) +wiges = 0,

Dco = wa1c1 4+ wazes 4+ waygcy = sin g%

12
Decg = deg — Cg(u.)oo + Qip) 4+ ws1c1 + wazcs + wagcy = 0, (4.12)

Dcy = dey — C4(W00 + 2ip) + wy3c3 4+ wyqcy = 0,

Dcoy = wases + waucs =0, 5 < a<n.

From (2.11), (4.5)—(4.7), (4.9) and (4.10) we get

cos gél =(X,c) =—(Y,a) = —sin gCLQ- (4.13)

From (4.10), was = —csc g&;»,(p. By the second equation in (4.11),
dag + a2(2ip + w11 —wa2) =0 (mod ). (4.14)

On the other hand, taking exterior derivative of the second equation in (4.6),
and using (4.5) and (4.10) give

dag + az(ip +wir —wa2) =0 (mod ). (4.15)
Therefore, as is a function of analytic type, i.e., either as is identically zero, or
it only vanishes at finitely many points.
4.1 Caseaz #0

Case I. Suppose ap vanishes at finitely many points. By (4.13), ¢; vanishes
at finitely many points, too. By (4.14) and (4.15), we have

p=0, K=0. (4.16)

By (4.8),
Woo = W11 = W22. (4.17)

From (3.7) and (3.25),
1
laf® + |cf* = 5(1 +3cos?0), |al®— |c|* =2cosb.

By (4.14), (4.16) and (4.17), we get dag = 0 (mod ¢). Thus ag, a3 =
Va2 — Jaz|? and ¢; are constant. By (4.10), wog = — csc Ses. From (4.11),

a3C3 CSC ggp =0,

- 0
az(wsz — woo) = —a2C3 Csc 50, (4.18)
wa2a2 + wyzaz = 0,

wazaz =0, 5<a<n.
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As w33 — wgp is a pure imaginary 1-form, from the second equation in (4.18),
we have c¢g = 0 because as # 0. So that ¢4 = /|c|? — |c¢1|? is constant. From
(4.12),

Ww34C4 = —C7 S€C ga3<p,
c4(waa — woo) =0, (4.19)
wWaacs =0, 5 < a<n.

We claim that as must be identically zero. In fact, if ag # 0, by the first
equation in (4.19) we have ¢4 # 0. From (4.18) and (4.19),

W44 = W33 = W00, Wa3 = Waed — 0, 5 § (e § n. (4.20)
In summary, by (4.5), (4.10), (4.17) and (4.20), we have
Woo = W11 = W2 = W33 = W44, Waa =0, 0<A<4, S5<a<n (4.21)

and its Maure-Cartan forms are given by

woo — CoS g¢ —sin %(p 0 0
0 60— — 0 —
Ccos gcp wan —8eC 5a2p — SecC 5a3p 00
S5y sec gach w22 0 —cscgeap | (4.22)
0 sec 5asyp 8 w33 —up
0 0 CSC 5C4p up W44

faz
2 ¢y

where u = sec 5% ¢;. By (4.22), one can compute that

dwog = —cosfp A p,

dwir = (cos? § —sec? Ylal?)p A B,
dwas = (—sin? & + csc? §c|?)p A B, (4.23)

dwsz = (sec” Glaz|* + [ul*)p A B,

(dwag = —(esc? Glea® + [ul)p A P

From (4.21) and (4.23),
20, o 2 20 2
sec §]a3| + |ul® = —csc §|C4| — Jul®. (4.24)

From (4.24), we get a contradiction ag = ¢4 = 0.

Thus, we have ag = 0. By the second equation in (4.18), w3z = 0 and c¢3 = 0.
By the third equation in (4.18), wqo = 0. Thus ¢4 = 0. In summary, if f is
linearly full, then n = 3 and there exists a moving frame such that
g¢ —sin ggo
CcOs gcp w11 — sec gﬁg¢ ,
sin g¢ sec gagcp w9

wWoo — COS
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and
dwOo = dwn = dw22.
From (4.23),
0 0 6 6
—cosf = cos® = —sec? ~|a|]? = —sin? = + sec? ~|al?.
2 2 2 2
One can get
cosf =0, la=lc2=1 k=2
) 47 8'

Up to a rigid motion, f(M) is the Clifford torus in CP? given in [9], which is
explicitly given by

f:T?=8"xS' — CP?, (% e) — [1,e™, ).

4.2 Caseaz =0

If ag = 0, then wi2 =0, ¢; = 0 and a3 = |a] is constant. From (4.11) and (4.12)
we have
Das = wazaz =0,
Das = a3(2ip — woo + ws3) = 0, (4.25)
Da, = wazaz =0, 4 < a<n,

and
Decp = wizez = 0,
De3 = dez — c3(woo + 2ip — wsz) + waacq = 0,

. (4.26)
Dcy = deg — e4(woo + 2ip — wag) + wazez = 0,

Dcoy = wases + waucs =0, 5 < a<n.
Case II. If ag # 0, by (4.10) and (4.25), we get

2ip —woo +w3z3 =0, waz3=0, 4<a<n,

and

w32 = O, C3 = 0.

Thus ¢4 = |c]| is constant. From (4.26) we have
wagcqs =0, waacy =0, 5 < a<n,

and

c4(2ip + wop — waq) = 0.
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Case Ila. If ¢4 # 0, then wys = 0 and weq = 0 for all @ > 5. So, there exists
a moving frame such that

woo — Cos g¢ —sin ggp 0 0
cos 5 <,0 w11 0 — sec g|a|¢ 0
g¢ 0 wa2 0 —csc el |, (4.27)
0 sec g|a|4p 0 w33 0
0 0 csc g|c|¢ 0 W4

where
ip —woo + w11 =0,

ip +wop — w2 =0,

_ (4.28)
2ip — woo + w3z =0,
2ip 4+ woo — waq = 0.
From (4.27), it is easy to get
dwgg = —cos O A @,
dwir = (cos? & —sec? bal?)p A B,
dway = (— sin? +CSC2 Clc|®)p A, (4.29)
dwss = sec? g\aP(p NP,
dwyy = — csc? g\c|2cp AP.
From (2.4), (4.28) and (4.29),
—:K—Fcos@—kcos 9 _ sec £|a|2 0,
_ 2 202
3K — cosf +sin? § — csc? §|c|? =0, (4.30)

—K + cos 0 + sec? §|a)? = 0,
—K —cosf + csc? §lef> = 0.

One can solve (4.30) to get

1 1
K==, cos0=0, la?=|c]>?==, k=0.
- af? = [ef = 2
By the first equation in (4.29), wg is a closed. Rotating a suitable angle for e
gives wog = 0. So there exists a moving frame such that

S W
1O [go 737 ? B 0

@90 —ip 0 —5% ?
0 ﬁgo 0 —2ip 0
0 0 %@ 0 2ip

Up to a rigid motion, f(M) is the middle element of Veronese sequence in CP*
explicitly given by
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f:8% —CP,
2 [V62°,V6(|2|* — 1)7, (1 — [2*)* = 2|2*, V6(|2|* — 1)z, V627],

where z is the local coordinate of S2.
Case IIb. If ¢; = 0, then |c|?> = 0. There exists a moving frame such that

woo — COos g¢ —sin ggo 0
0 01415
Ccos g@ w11 0 —sec 5|alp
sin 5 g) w99 0
0 sec 5lalp 0 w33

We have
—& 4 cos + cos?§ —sec? 4jal? =0,

—% —COSQ—i—Sang =0,

—K + cosf + sec §|a|2 =
One can compute that

1 12
cosf ==, |a*=-"=, k=0

K= ;
7 49

| >

Up to a rigid motion, f(M) is the second element of Veronese sequence in CP3
explicitly given by

f:8% —cCp3,
z— [ - V3z,1— 2|22, (2 — |2]?)z, \/gzz},

where z is the local coordinate of S2.

Case III. If a3 = 0, then |a] = 0. By choosing a new moving frame such that
c3 > 0, and ¢, = 0 for @« > 4. Thus c3 = |c| is constant. Equations (4.26)
become

c3(2ip+woo —ws3z) =0, wasc3 =0, 5<a<n.

Case IIla. If c3 # 0, by the same arguments as Case IIb, One can compute
that 4 1 19

Up to a rigid motion, f(M) is the third element of Veronese sequence in CP3
explicitly given by

f:8% — CP?
z— [V32%,(|2)* — 2)7,1 — 2|z|, V32],

where z is the local coordinate of S2.
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Case IIIb. If c3 =0, then S = 0. We then have

—% + cos @ + cos?

—% — cos  + sin®

It follows that
K=1, cos=0, xk=0.

As wqp is closed, similarly, there exists a moving frame such that

1z 1
10 \/'5@ \/530
Y —ir 0
HP 0 ip

Up to a rigid motion, f(M) is the middle element of Veronese sequence in CP?
explicitly given by

f:8% —cCp?
2 — [—\/5?,1—|z|2,\/§z}.

Therefore, the proof of Main Theorem is finished.
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