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1 Introduction

Let CPn be the complex projective space endowed with the Fubini–Study metric
of constant holomorphic sectional curvature 4 and let M be a Riemann surface.
A conformal minimal immersion f : M → CPn satisfying some assumptions on
the Gaussian curvature K and the Kähler angle θ was widely studied. It is well
known that up to a rigid motion, a linearly full conformal minimal immersion
of two-sphere with constant curvature in CPn belongs to the Veronese sequence
proved by Bando and Ohnita [1] and Bolton et al. [2]. The Kähler angle plays an
important role in studying minimal surfaces in a Kähler manifold [5], as it gives
a measure of the failure of f to be a holomorphic map. That is, f is holomorphic
if and only if θ = 0 on M , while f is anti-holomorphic if and only if θ = π on
M . Ohnita [13] classified minimal surfaces with constant Gaussian curvature
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and constant Kähler angle in CPn. Kenmotsu and Masuda [7] studied the
local behaviour of the Kähler angle in CP 2, which satisfies an overdetermined
system of ordinary differential equations. They showed the Kähler angle must
be constant if the Gaussian curvature is constant. Together with Ohnita’s
results [13], all such minimal surfaces in CP 2 were classified. Bolton et al. [2]
conjectured that if the Kähler angle θ of the minimal immersion f : S2 → CPn
is constant such that θ 6= 0, π2 , π, then its Gaussian curvature K is also constant.
They gave an affirmative answer to this conjecture for n ≤ 4. Ogata [11, 12]
showed that the conjecture holds if the Gaussian curvature is bounded below
by a constant determined by the Kähler angle. Mo [10] verified the conjecture
under the added assumption that | cos θ| ≥ 1

5 . However, Li [8] gave three
families of counterexamples of minimal immersion from two-sphere into CP 10

with constant Kähler angle θ 6= 0, π2 , π and nonconstant Gaussian curvature.
Therefore, the conjecture does not hold in general.

In this paper, we would like to study pinching about the square norm S of
the second fundamental form for minimal surfaces with constant Kähler angle in
CPn. This is inspired by the well-known Simons inequality, which is an integral
inequality about S. More precisely, for a closed n-dimensional submanifold Mn

of the unit sphere Sn+p, Simons [14] computed the Laplacian of the square norm
of its second fundamental form S and obtain the following integral inequality∫

Mn

[(
2− 1

p

)
S − n

]
S ∗ 1 ≥ 0,

where ∗1 is the volume element of Mn with respect to the induced metric on
Mn. As an application, if S satisfies the pinching condition 0 ≤ S ≤ n

2−1/p
on Mn, then either S = 0 and Mn is totally geodesic, or S = n

2−1/p . All

minimal submanifolds with S = n
2−1/p were classified by Chern et al. [4]. For

a totally real minimal submanifold Mn in CPn, Chen and Ogiue proved that
if S ≤ n+1

2−1/n holds on Mn, then Mn is totally geodesic [3]. Ludden et al. [9]

determined the Clifford torus that is not totally geodesic in CP 2. Tanno [15]
obtained a Simons-type inequality about a compact complex submanifold Mn

immersed into CPn+p as follows,∫
Mn

[
3S − (n+ 2)

]
S ∗ 1 ≥ 0.

Consequently, complex submanifolds with S = n+2
3 were completely determined

such that Mn is imbedded as a complex hyperquadric Q1 in CP 1+p, where Q1

is a complex submanifold of CP 2.
The complex Grassmann manifold G(k, n) is the space of all k-dimensional

complex subspaces in Cn. When k = 1, G(1, n) is just the complex projec-
tive space CPn−1. The complex hyperquadric Qn is a complex submanifold of
CPn+1 and is defined by

Qn =
{

[Z = (z1, . . . , zn+2)] ∈ CPn+1
∣∣ z21 + · · ·+ z2n+2 = 0

}
,
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where [Z = (z1, z2, . . . , zn+2)] is the homogeneous coordinates of CPn+1. G(k, n)
and Qn are two important symmetric spaces. They have natural Kählerian met-
ric with non constant holomorphic sectional curvature when k is not equal to
1. Recently, we studied pinching results about S for holomorphic curves in the
complex Grassmann manifold G(2, n) [17] and minimal surfaces with constant
Kähler angle in Qn [16].

The purpose of this paper is to establish a Simons-type inequality for mini-
mal surfaces with constant Kähler angle in CPn and characterize all the associ-
ated pinching immersions. In Section 2, we study the geometry of a conformal
minimal immersion f : M → CPn by moving frames, where M is a Riemann
surface. In Section 3, we compute the Laplacian of S (Theorem 3.2) and obtain
a Simons-type integral inequality for a closed minimal surface with constant
Kähler angle (Theorem 3.4). In Section 4, if S satisfies a pinching condition,
it is shown that both K and S are constant (Theorem 4.1). Moreover, we
determine all the minimal surfaces as follows:

Main Theorem. Let M be a compact Riemann surface without boundary and
f : M → CPn be a conformal minimal immersion neither holomorphic nor
antiholomorphic. If its Kähler angle θ is constant and the square norm S of
the second fundamental form satisfies the pinching condition

3

4
S2 − (1 + 2 cos2 θ)S + 15 cos2 θ sin2 θ − 8κ ≤ 0

on M , where κ is a globally defined invariant relative to the first and second
fundamental forms, then up to a rigid motion, f(M) is one of following

(i) f(T 2) ⊂ CP 2 with κ = 1
8 , S = 2, cos θ = 0 and K = 0, or

(ii) f(S2) ⊂ CP 4 with κ = 0, S = 4
3 , cos θ = 0 and K = 1

3 , or
(iii) f(S2) ⊂ CP 2 with κ = 0, S = 0, cos θ = 0 and K = 1, or
(iv) f(S2) ⊂ CP 3 with κ = 0, S = 48

49 , cos θ = 1
7 and K = 4

7 , or
(v) f(S2) ⊂ CP 3 with κ = 0, S = 48

49 , cos θ = −1
7 and K = 4

7 .

Remark. Example (i) is the Clifford torus in CP 2 given in [9]; examples (ii)
and (iii) are the middle elements of Veronese sequences in CP 4 and CP 2 given
in [2], respectively; examples (iv) and (v) are the second and third elements of
Veronese sequence in CP 3 given in [2], respectively.

2 Preliminaries

Throughout this paper, i denotes the imaginary unit
√
−1, and we will agree

on the following ranges of indices:

0 ≤ A,B,C, . . . ≤ n, 1 ≤ α, β, γ, . . . ≤ n.

We firstly study the geometry of CPn = U(n + 1)/(U(1) × U(n)). Let
e = (e0, e1, . . . , en) ∈ U(n + 1). Its Maurer–Cartan forms are denoted by



4 Jie FEI, et al.

(ΩAB) = e−1de. Its structure equations are given by

dΩAB = −
n∑

C=0

ΩAC ∧ ΩCB, ΩAB + ΩBA = 0. (2.1)

The Fubini–Study metric on CPn is

g =
n∑

α=1

ΩαΩα, Ωα := Ωα0.

The structure equations of (CPn, g) are given by

dΩα = −
n∑
β=1

Θαβ ∧ Ωβ, Θαβ + Θβα = 0,

where Θαβ = Ωαβ −Ω00δαβ are the connection forms. Its curvature forms Ψαβ

are given by

Ψαβ = dΘαβ +
n∑
γ=1

Θαγ ∧Θγβ = Ωα ∧ Ωβ + δαβ

n∑
γ=1

Ωγ ∧ Ωγ .

Let f : M → CPn be a conformal minimal immersion from a Riemann
surface M , and e : U ⊂ M → U(n+ 1) be a local frame along f , i.e., f = [e0].
Set ω = e∗Ω. The induced metric on M is

ds2M = f∗g =
n∑

α=1

ωαωα = ϕϕ, (2.2)

where ϕ is a local form of (1, 0)-type. The Levi–Civita connection form of
(M,ds2M ), denoted by ρ, is characterized by

dϕ = iρ ∧ ϕ. (2.3)

The Gauss curvature K is given by

dρ =
i

2
Kϕ ∧ ϕ. (2.4)

Define local complex-valued functions Xα and Yα as following

ωα = Xαϕ+ Yαϕ. (2.5)

Put X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) ∈ Cn. The Hermitian inner product
of Cn is denoted by 〈 , 〉. By (2.2) and (2.5), we have

|X|2 + |Y |2 = 1, 〈X,Y 〉 = 0. (2.6)
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The Kähler angle θ : M → [0, π] (see [5]) satisfies the equation

cos θ = |X|2 − |Y |2. (2.7)

Therefore, f is holomorphic if θ = 0; f is anti-holomorphic if θ = π; and f is
totally real if θ = π

2 . By (2.1), (2.5) and (2.7), we have

dω00 = − cos θϕ ∧ ϕ. (2.8)

Taking exterior derivative on both sides of equations in (2.5) and using (2.1)
and (2.3), we get

DXα ∧ ϕ+ DYα ∧ ϕ = 0, (2.9)

where

DXα = dXα −Xα(ω00 − iρ) +
n∑
β=1

ωαβXβ,

DYα = dYα − Yα(ω00 + iρ) +

n∑
β=1

ωαβYβ.

From (2.9), by using the Cartan’s lemma,

DXα = aαϕ+ bαϕ, DYα = bαϕ+ cαϕ,

where aα, bα and cα are locally complex-valued smooth functions. Since f is
minimal if and only if bα = 0 for all α, then

dXα −Xα(ω00 − iρ) +
n∑
β=1

ωαβXβ = aαϕ,

dYα − Yα(ω00 + iρ) +

n∑
β=1

ωαβYβ = cαϕ.

(2.10)

Put a = (a1, . . . , an) and c = (c1, . . . , cn) ∈ Cn. By the second equation in
(2.6), we obtain

〈X, c〉+ 〈Y,a〉 = 0. (2.11)

We denote by S the square norm of the second fundamental form of f , which
is given by

S = 4(|a|2 + |c|2), where |a|2 =

n∑
α=1

|aα|2, |c|2 =

n∑
α=1

|cα|2.

Let ê : Û → U(n + 1) be another moving frame along f such that ê = eU ,
where U = diag{eiη, T}, η is a local real-valued function and T is a local U(n)-
valued function. If we put a hat on the corresponding quantities relative to the
new frame ê, we have

X̂ = e−iηXT, Ŷ = e−iηY T, â = e−iηaT, ĉ = e−iηcT. (2.12)
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Together with (2.11) and (2.12), it is easy to check that

κ = |〈X, c〉|2 = |〈Y,a〉|2 (2.13)

is a globally defined invariant on M , which will be used in the pinching condition
later.

3 Fundamental Equations

In this section, ∆ = ∗d ∗ d denotes the Laplace–Beltrami operator of (M,ϕϕ),
where ∗ is Hodge star operator of (M,ϕϕ), and we will compute the Laplacian
of |X|2, |Y |2, |a|2 and |c|2. Taking the exterior derivative of the first equation
in (2.10), and using (2.1), (2.3), (2.8) we get the Codazzi equations of f as
follows,

Daα = daα − aα(ω00 − 2iρ) +

n∑
β=1

ωαβaβ

= aα,1ϕ+Xα
K − 3 cos θ − 1

2
ϕ, (3.1)

Dcα = dcα − cα(ω00 + 2iρ) +
n∑
β=1

ωαβcβ

= cα,1ϕ+ Yα
K + 3 cos θ − 1

2
ϕ, (3.2)

where aα,1, cα,1 are local complex-valued smooth functions. From (2.10) we
have

d|X|2 =

n∑
α=1

(Xαaαϕ+Xαaαϕ), d|Y |2 =

n∑
α=1

(Y αcαϕ+ Yαcαϕ). (3.3)

As ∗ϕ = −iϕ, ∗ϕ = iϕ, from (3.3) we have

∗d|X|2 = −i
n∑

α=1

(Xαaαϕ−Xαaαϕ), ∗d|Y |2 = i

n∑
α=1

(Y αcαϕ− Yαcαϕ). (3.4)

Taking exterior derivative of the first equation in (3.4), we get

d ∗ d|X|2 = −i
∑
α

[dXα ∧ aαϕ+Xαd(aαϕ)− dXα ∧ aαϕ−Xαd(aαϕ)].

Using (2.10), (3.1) and the formula ∗(ϕ1 ∧ ϕ2) = 1, we have

∆|X|2 = 2|X|2(K − 3 cos θ − 1) + 4|a|2. (3.5)

Similarly, we derive

∆|Y |2 = 2|Y |2(K + 3 cos θ − 1) + 4|c|2. (3.6)

From (2.6), (2.7), (3.5) and (3.6), we obtain
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Theorem 3.1. Let f : M → CPn be a conformal minimal immersion from
a Riemann surface M into CPn. Then the Gauss equation and Laplacian of
cos θ are given by

K = 1 + 3 cos2 θ − 2(|a|2 + |c|2), (3.7)

∆ cos θ = 2 cos θ(K − 4) + 4(|a|2 − |c|2), (3.8)

where K is the Gaussian curvature of the induced metric and θ is the Kähler
angle of the immersion.

Remark. The two formulas (3.7) and (3.8) were firstly derived by Chern and
Wolfson [5] and then by Jiao and Peng [6].

From (3.1) and (3.2) we have

d|a|2 = Pϕ+ Pϕ, d|c|2 = Qϕ+Qϕ, (3.9)

where

P = 〈a,1,a〉+ 〈a, X〉K − 3 cos θ − 1

2
, Q = 〈c, c,1〉+ 〈Y, c〉K + 3 cos θ − 1

2
,

(3.10)
with a,1 = (a1,1, . . . , an,1) and c,1 = (c1,1, . . . , cn,1) ∈ Cn. By Hodge star
operator, we have

d ∗ d|a|2 = i
[
d(Pϕ)− d(Pϕ)

]
, d ∗ d|c|2 = i

[
d(Qϕ)− d(Qϕ)

]
.

Routine computations give

d〈a,1ϕ,a〉 =

[
Sa −

〈X,a〉
2λ

∂(K − 3 cos θ)

∂z

]
ϕ ∧ ϕ, (3.11)

where

Sa = |〈X,a〉|2 − |〈Y,a〉|2 − |a|
2

2
(3K − 5 cos θ − 1)− |a,1|2. (3.12)

Besides, one can compute that

K − 3 cos θ − 1

2
d〈aϕ,X〉

= −K − 3 cos θ − 1

2

[
|a|2 +

|X|2

2
(K − 3 cos θ − 1)

]
ϕ ∧ ϕ, (3.13)

and

d

(
K − 3 cos θ − 1

2

)
∧ 〈aϕ,X〉 = −〈X,a〉

2λ

∂(K − 3 cos θ)

∂z
ϕ ∧ ϕ. (3.14)
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Define a new operator

Da =
〈X,a〉

2λ

∂

∂z
+
〈X,a〉

2λ

∂

∂z
. (3.15)

From (3.11)–(3.15) it follows that

∆|a|2 = 4|a|2(2K − 4 cos θ − 1) + |X|2(K − 3 cos θ − 1)2

− 4|〈X,a〉|2 + 4|〈Y,a〉|2 + 4Da(K − 3 cos θ) + 4|a,1|2. (3.16)

Similarly, we can compute that

d〈cϕ, c,1〉 =

[
Sc −

〈Y, c〉
2λ

∂(K + 3 cos θ)

∂z

]
ϕ ∧ ϕ, (3.17)

where

Sc = |〈Y, c〉|2 − |〈X, c〉|2 − |c|
2

2
(3K + 5 cos θ − 1)− |c,1|2. (3.18)

We also have

K + 3 cos θ − 1

2
d〈Y ϕ, c〉

= −K + 3 cos θ − 1

2

[
|c|2 + |Y |2

(
K

2
+ cos θ − |Y |2

)]
ϕ ∧ ϕ, (3.19)

and

d

(
K + 3 cos θ − 1

2

)
∧ 〈Y ϕ, c〉 = −〈Y, c〉

2λ

∂(K + 3 cos θ)

∂z
ϕ ∧ ϕ. (3.20)

Define

Dc =
〈Y, c〉

2λ

∂

∂z
+
〈Y, c〉

2λ

∂

∂z
. (3.21)

From (3.9), (3.10), (3.17)–(3.21), we obtain

∆|c|2 = 4|c|2(2K + 4 cos θ − 1) + |Y |2(K + 3 cos θ − 1)2 − 4|〈Y, c〉|2

+ 4|〈X, c〉|2 + 4Dc(K + 3 cos θ) + 4|c,1|2. (3.22)

From (3.16) and (3.22), we get

Theorem 3.2. Let f : M → CPn be a conformal minimal immersion. Then

1

4
∆S = (2K − 1)S − 16 cos θ(|a|2 − |c|2) + (K − 1)2 − 6K cos2 θ

+ 15 cos2 θ − 4|〈X,a〉|2 − 4|〈Y, c〉|2 + 4|〈Y,a〉|2 + 4|〈X, c〉|2

+ 4|a,1|2 + 4|c,1|2 + 2Da(K − 2 cos θ) + 2Dc(K + 2 cos θ). (3.23)
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In the following, we always assume that the Kähler angle θ is constant.
Form (2.6) and (2.7), both |X| and |Y | are constant. Then (3.3) implies that

〈X,a〉 = 〈Y, c〉 = 0. (3.24)

From (3.15) and (3.21), Da = Dc = 0. Besides, from (3.8) we have

|a|2 − |c|2 =
1

2
cos θ(4−K). (3.25)

By (3.24) and (3.25), equation (3.23) becomes

1

4
∆S = (2K − 1)S + (K − 1)2 + (2K − 17) cos2 θ

+ 4|〈Y,a〉|2 + 4|〈X, c〉|2 + 4|a,1|2 + 4|c,1|2. (3.26)

Substituting Gauss equation (3.7) into (3.26) and using (2.13), we obtain

Theorem 3.3. Let f : M → CPn be a conformal minimal immersion with
constant Kähler angle. Then

1

4
∆S = −3

4
S2+(1+2 cos2 θ)S+15 cos2 θ(cos2 θ−1)+8κ+4|a,1|2+4|c,1|2, (3.27)

where κ is a globally defined invariant on M given by (2.13).

Integrating (3.27) on M and using Stokes’ theorem, we get

Theorem 3.4. Let M be a compact Riemann surface without boundary and
f : M → CPn be a conformal minimal immersion. If its Kähler angle θ is
constant, then∫

M

[
3

4
S2 − (1 + 2 cos2 θ)S + 15 cos2 θ sin2 θ − 8κ

]
∗ 1 ≥ 0.

For θ = 0 or π, by Theorem 3.4, it is easy to get

Theorem 3.5. Let M be a compact Riemann surface without boundary and
f : M → CPn be a holomorphic or anti-holomorphic immersion. Then∫

M
S(S − 4) ∗ 1 ≥ 0.

Remark. Theorem 3.5 is a special case for m = 1 of Theorem 1 in [15].
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4 Proof of Main Theorem

In this section, we will characterize minimal surfaces with constant Kähler angle
θ ∈ (0, π) in CPn satisfying a pinching condition as follows.

Theorem 4.1. Let M be a compact Riemann surface without boundary and
f : M → CPn be a conformal minimal immersion with constant Kähler angle
θ ∈ (0, π). If

3

4
S2 − (1 + 2 cos2 θ)S + 15 cos2 θ sin2 θ − 8κ ≤ 0 (4.1)

holds on M , then K, |a| and |c| are all constant.

Proof. By (3.27), Theorem 3.4 and (4.1), we have

3

4
S2 − (1 + 2 cos2 θ)S + 15 cos2 θ sin2 θ − 8κ = 0,

and

a,1 = c,1 = 0. (4.2)

Using (4.2), equations in (3.1) and (3.2) become

Daα = daα − aα(ω00 − 2iρ) +
n∑
β=1

ωαβaβ = Xα
K − 3 cos θ − 1

2
ϕ, (4.3)

and

Dcα = dcα − cα(ω00 + 2iρ) +
n∑
β=1

ωαβcβ = Yα
K + 3 cos θ − 1

2
ϕ. (4.4)

From (3.24) and (4.3),

n∑
α=1

aαdaα = |a|2(ω00 − 2iρ)−
n∑

α,β=1

aαωαβaβ.

Combining with (2.1), we have

d|a|2 =
n∑

α=1

(aαdaα + aαdaα) = 0,

which implies |a|2 is constant. By the same way, from (4.4), one can prove that
|c|2 is constant, too. Therefore, S is constant. By (3.7), K is also constant. �
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By (2.6) and (2.12), there exists a moving frame [5] such that

ω10 = cos
θ

2
ϕ, ω20 = sin

θ

2
ϕ, ωα0 = 0, 3 ≤ α ≤ n. (4.5)

As θ is constant, substituting (4.5) in (2.10), we have
DX1 = cos θ2(iρ− ω00 + ω11) = a1ϕ,

DX2 = cos θ2ω21 = a2ϕ,

DXα = cos θ2ωα1 = aαϕ, 3 ≤ α ≤ n,
(4.6)

and 
DY1 = sin θ

2ω12 = c1ϕ,

DY2 = − sin θ
2(iρ+ ω00 − ω22) = c2ϕ,

DYα = sin θ
2ωα2 = cαϕ, 3 ≤ α ≤ n.

(4.7)

Since sin θ 6= 0, from (4.6) and (4.7) it follows that

iρ− ω00 + ω11 = 0, iρ+ ω00 − ω22 = 0, (4.8)

and
a1 = c2 = 0. (4.9)

Furthermore, there exists a moving frame such that
ω31 = sec θ

2a3ϕ, ω32 = csc θ
2c3ϕ,

ω41 = 0, ω42 = csc θ
2c4ϕ, a3 ≥ c4 ≥ 0,

ωα1 = 0, ωα2 = 0, 5 ≤ α ≤ n.
(4.10)

Taking exterior derivative of equations in (4.8), we have

K − 3 cos θ − 1 + 2 sec2
θ

2
|a|2 = 0, |a|2 = |a2|2 + |a3|2,

and

K + 3 cos θ − 1 + 2 csc2
θ

2
|c|2 = 0, |c|2 = |c1|2 + |c3|2 + |c4|2.

It follows that

K − 1 + sec2
θ

2
|a|2 + csc2

θ

2
|c|2 = 0.

Using (4.3), (4.5), (4.9) and (4.10), equations in (4.3) become

Da1 = ω12a2 + ω13a3 = cos θ2
K−3 cos θ−1

2 ϕ,

Da2 = da2 + a2(2iρ− ω00 + ω22) + ω23a3 = 0,

Da3 = da3 + a3(2iρ− ω00 + ω33) + ω32a2 = 0,

Da4 = ω42a2 + ω43a3 = 0,

Daα = ωα3a3 = 0, 5 ≤ α ≤ n,

(4.11)
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and 

Dc1 = dc1 − c1(ω00 + 2iρ− ω11) + ω13c3 = 0,

Dc2 = ω21c1 + ω23c3 + ω24c4 = sin θ
2
K+3 cos θ−1

2 ϕ,

Dc3 = dc3 − c3(ω00 + 2iρ) + ω31c1 + ω33c3 + ω34c4 = 0,

Dc4 = dc4 − c4(ω00 + 2iρ) + ω43c3 + ω44c4 = 0,

Dcα = ωα3c3 + ωα4c4 = 0, 5 ≤ α ≤ n.

(4.12)

From (2.11), (4.5)–(4.7), (4.9) and (4.10) we get

cos
θ

2
c1 = 〈X, c〉 = −〈Y,a〉 = − sin

θ

2
a2. (4.13)

From (4.10), ω23 = − csc θ
2c3ϕ. By the second equation in (4.11),

da2 + a2(2iρ+ ω11 − ω22) ≡ 0 (mod ϕ). (4.14)

On the other hand, taking exterior derivative of the second equation in (4.6),
and using (4.5) and (4.10) give

da2 + a2(iρ+ ω11 − ω22) ≡ 0 (mod ϕ). (4.15)

Therefore, a2 is a function of analytic type, i.e., either a2 is identically zero, or
it only vanishes at finitely many points.

4.1 Case a2 6= 0

Case I. Suppose a2 vanishes at finitely many points. By (4.13), c1 vanishes
at finitely many points, too. By (4.14) and (4.15), we have

ρ = 0, K = 0. (4.16)

By (4.8),
ω00 = ω11 = ω22. (4.17)

From (3.7) and (3.25),

|a|2 + |c|2 =
1

2
(1 + 3 cos2 θ), |a|2 − |c|2 = 2 cos θ.

By (4.14), (4.16) and (4.17), we get da2 ≡ 0 (mod ϕ). Thus a2, a3 =√
|a|2 − |a2|2 and c1 are constant. By (4.10), ω23 = − csc θ

2c3ϕ. From (4.11),
a3c3 csc θ

2ϕ = 0,

a3(ω33 − ω00) = −a2c3 csc θ
2ϕ,

ω42a2 + ω43a3 = 0,

ωα3a3 = 0, 5 ≤ α ≤ n.

(4.18)
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As ω33 − ω00 is a pure imaginary 1-form, from the second equation in (4.18),
we have c3 = 0 because a2 6= 0. So that c4 =

√
|c|2 − |c1|2 is constant. From

(4.12), 
ω34c4 = −c1 sec θ

2a3ϕ,

c4(ω44 − ω00) = 0,

ωα4c4 = 0, 5 ≤ α ≤ n.
(4.19)

We claim that a3 must be identically zero. In fact, if a3 6= 0, by the first
equation in (4.19) we have c4 6= 0. From (4.18) and (4.19),

ω44 = ω33 = ω00, ωα3 = ωα4 = 0, 5 ≤ α ≤ n. (4.20)

In summary, by (4.5), (4.10), (4.17) and (4.20), we have

ω00 = ω11 = ω22 = ω33 = ω44, ωαA = 0, 0 ≤ A ≤ 4, 5 ≤ α ≤ n. (4.21)

and its Maure–Cartan forms are given by
ω00 − cos θ2ϕ − sin θ

2ϕ 0 0

cos θ2ϕ ω11 − sec θ
2a2ϕ − sec θ

2a3ϕ 0

sin θ
2ϕ sec θ

2a2ϕ ω22 0 − csc θ
2c4ϕ

0 sec θ
2a3ϕ 0 ω33 −uϕ

0 0 csc θ
2c4ϕ uϕ ω44

 , (4.22)

where u = sec θ
2
a3
c4
c1. By (4.22), one can compute that

dω00 = − cos θϕ ∧ ϕ,
dω11 = (cos2 θ2 − sec2 θ2 |a|

2)ϕ ∧ ϕ,
dω22 = (− sin2 θ

2 + csc2 θ2 |c|
2)ϕ ∧ ϕ,

dω33 = (sec2 θ2 |a3|
2 + |u|2)ϕ ∧ ϕ,

dω44 = −(csc2 θ2 |c4|
2 + |u|2)ϕ ∧ ϕ.

(4.23)

From (4.21) and (4.23),

sec2
θ

2
|a3|2 + |u|2 = − csc2

θ

2
|c4|2 − |u|2. (4.24)

From (4.24), we get a contradiction a3 = c4 = 0.
Thus, we have a3 = 0. By the second equation in (4.18), ω32 = 0 and c3 = 0.

By the third equation in (4.18), ω42 = 0. Thus c4 = 0. In summary, if f is
linearly full, then n = 3 and there exists a moving frame such that ω00 − cos θ2ϕ − sin θ

2ϕ

cos θ2ϕ ω11 − sec θ
2a2ϕ

sin θ
2ϕ sec θ

2a2ϕ ω22

 ,
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and

dω00 = dω11 = dω22.

From (4.23),

− cos θ = cos2
θ

2
− sec2

θ

2
|a|2 = − sin2 θ

2
+ sec2

θ

2
|a|2.

One can get

cos θ = 0, |a|2 = |c|2 =
1

4
, κ =

1

8
.

Up to a rigid motion, f(M) is the Clifford torus in CP 2 given in [9], which is
explicitly given by

f : T 2 = S1 × S1 −→ CP 2, (eiu, eiv) 7−→ [1, eiu, eiv].

4.2 Case a2 ≡ 0

If a2 ≡ 0, then ω12 = 0, c1 = 0 and a3 = |a| is constant. From (4.11) and (4.12)
we have 

Da2 = ω23a3 = 0,

Da3 = a3(2iρ− ω00 + ω33) = 0,

Daα = ωα3a3 = 0, 4 ≤ α ≤ n,
(4.25)

and 
Dc1 = ω13c3 = 0,

Dc3 = dc3 − c3(ω00 + 2iρ− ω33) + ω34c4 = 0,

Dc4 = dc4 − c4(ω00 + 2iρ− ω44) + ω43c3 = 0,

Dcα = ωα3c3 + ωα4c4 = 0, 5 ≤ α ≤ n.

(4.26)

Case II. If a3 6= 0, by (4.10) and (4.25), we get

2iρ− ω00 + ω33 = 0, ωα3 = 0, 4 ≤ α ≤ n,

and

ω32 = 0, c3 = 0.

Thus c4 = |c| is constant. From (4.26) we have

ω34c4 = 0, ωα4c4 = 0, 5 ≤ α ≤ n,

and

c4(2iρ+ ω00 − ω44) = 0.



A Simons-type Integral Inequality for Minimal Surfaces 15

Case IIa. If c4 6= 0, then ω43 = 0 and ωα4 = 0 for all α ≥ 5. So, there exists
a moving frame such that

ω00 − cos θ2ϕ − sin θ
2ϕ 0 0

cos θ2ϕ ω11 0 − sec θ
2 |a|ϕ 0

sin θ
2ϕ 0 ω22 0 − csc θ

2 |c|ϕ
0 sec θ

2 |a|ϕ 0 ω33 0

0 0 csc θ
2 |c|ϕ 0 ω44

 , (4.27)

where 
iρ− ω00 + ω11 = 0,

iρ+ ω00 − ω22 = 0,

2iρ− ω00 + ω33 = 0,

2iρ+ ω00 − ω44 = 0.

(4.28)

From (4.27), it is easy to get
dω00 = − cos θϕ ∧ ϕ,
dω11 = (cos2 θ2 − sec2 θ2 |a|

2)ϕ ∧ ϕ,
dω22 = (− sin2 θ

2 + csc2 θ2 |c|
2)ϕ ∧ ϕ,

dω33 = sec2 θ2 |a|
2ϕ ∧ ϕ,

dω44 = − csc2 θ2 |c|
2ϕ ∧ ϕ.

(4.29)

From (2.4), (4.28) and (4.29),
−1

2K + cos θ + cos2 θ2 − sec2 θ2 |a|
2 = 0,

−1
2K − cos θ + sin2 θ

2 − csc2 θ2 |c|
2 = 0,

−K + cos θ + sec2 θ2 |a|
2 = 0,

−K − cos θ + csc2 θ2 |c|
2 = 0.

(4.30)

One can solve (4.30) to get

K =
1

3
, cos θ = 0, |a|2 = |c|2 =

1

6
, κ = 0.

By the first equation in (4.29), ω00 is a closed. Rotating a suitable angle for e0
gives ω00 = 0. So there exists a moving frame such that

0 − 1√
2
ϕ − 1√

2
ϕ 0 0

1√
2
ϕ −iρ 0 − 1√

3
ϕ 0

1√
2
ϕ 0 iρ 0 − 1√

3
ϕ

0 1√
3
ϕ 0 −2iρ 0

0 0 1√
3
ϕ 0 2iρ

 .

Up to a rigid motion, f(M) is the middle element of Veronese sequence in CP 4

explicitly given by
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f : S2 −→ CP 4,

z 7−→
[√

6z2,
√

6(|z|2 − 1)z, (1− |z|2)2 − 2|z|2,
√

6(|z|2 − 1)z,
√

6z2
]
,

where z is the local coordinate of S2.
Case IIb. If c4 = 0, then |c|2 = 0. There exists a moving frame such that

ω00 − cos θ2ϕ − sin θ
2ϕ 0

cos θ2ϕ ω11 0 − sec θ
2 |a|ϕ

sin θ
2ϕ 0 ω22 0

0 sec θ
2 |a|ϕ 0 ω33

 .

We have 
−K

2 + cos θ + cos2 θ2 − sec2 θ2 |a|
2 = 0,

−K
2 − cos θ + sin2 θ

2 = 0,

−K + cos θ + sec2 θ2 |a|
2 = 0.

One can compute that

K =
4

7
, cos θ =

1

7
, |a|2 =

12

49
, κ = 0.

Up to a rigid motion, f(M) is the second element of Veronese sequence in CP 3

explicitly given by

f : S2 −→ CP 3,

z 7−→
[
−
√

3z, 1− 2|z|2, (2− |z|2)z,
√

3z2
]
,

where z is the local coordinate of S2.

Case III. If a3 = 0, then |a| = 0. By choosing a new moving frame such that
c3 ≥ 0, and cα = 0 for α ≥ 4. Thus c3 = |c| is constant. Equations (4.26)
become

c3(2iρ+ ω00 − ω33) = 0, ωα3c3 = 0, 5 ≤ α ≤ n.

Case IIIa. If c3 6= 0, by the same arguments as Case IIb, One can compute
that

K =
4

7
, cos θ = −1

7
, |c|2 =

12

49
, κ = 0.

Up to a rigid motion, f(M) is the third element of Veronese sequence in CP 3

explicitly given by

f : S2 −→ CP 3,

z 7−→
[√

3z2, (|z|2 − 2)z, 1− 2|z|2,
√

3z
]
,

where z is the local coordinate of S2.
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Case IIIb. If c3 = 0, then S = 0. We then have{
−K

2 + cos θ + cos2 θ2 = 0,

−K
2 − cos θ + sin2 θ

2 = 0.

It follows that
K = 1, cos θ = 0, κ = 0.

As ω00 is closed, similarly, there exists a moving frame such that 0 − 1√
2
ϕ − 1√

2
ϕ

1√
2
ϕ −iρ 0

1√
2
ϕ 0 iρ

 .

Up to a rigid motion, f(M) is the middle element of Veronese sequence in CP 2

explicitly given by

f : S2 −→ CP 2,

z 7−→
[
−
√

2z, 1− |z|2,
√

2z
]
.

Therefore, the proof of Main Theorem is finished.
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