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Abstract The main purpose of this paper is to solve the viscous Cahn-Hilliard
equation via a fast algorithm based on the two time-mesh (TT-M) finite element
(FE) method to ease the problem caused by strong nonlinearities. The TT-M
FE algorithm includes the following main computing steps. First, a nonlinear
FE method is applied on a coarse time-mesh τc. Here, the FE method is used
for spatial discretization and the implicit second-order θ scheme (containing
both implicit Crank-Nicolson and second-order backward difference) is used for
temporal discretization. Second, based on the chosen initial iterative value,
a linearized FE system on time fine mesh is solved, where some useful coarse
numerical solutions are found by Lagrange’s interpolation formula. The analysis
for both stability and a priori error estimates is made in detail. Numerical
examples are given to demonstrate the validity of the proposed algorithm. Our
algorithm is compared with the traditional Galerkin FE method and it is evident
that our fast algorithm can save computational time.

Keywords Fast algorithm, two time-mesh (TT-M) finite element (FE) method,
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1 Introduction

The Cahn-Hilliard equation describes the process of phase separation, first
introduced by Cahn and Hilliard in the late 1950s [3–5]. Numerical methods for
solving the Cahn-Hilliard equation provide an important tool for studying the
dynamics described by the Cahn-Hilliard equation. It has been well studied
and broadly used to investigate the coarsening dynamics of two immersible
fluids. Recently, researchers have devoted tremendous efforts to the relaxed
Cahn-Hilliard system, i.e., the viscous Cahn-Hilliard (VCH) system and its

Received March 7, 2020; accepted August 25, 2021
Corresponding author: Danxia WANG, E-mail: 2621259544@qq.com



690 Danxia WANG et al.

perturbed form with the hyperbolic relaxation (HR) effect (referred to as the
perturbed viscous Cahn-Hilliard equation). Formally, the governing equation
of the VCH-HR system is slightly different from the Cahn-Hilliard equation
by incorporating two extra terms, including a strong damping (or viscosity)
term and a hyperbolic relaxation term (or inertia). The viscous term was first
proposed by Novick-Cohen [31] in order to introduce an additional regularity
and some parabolic smoothing. It can be viewed as a singular limit of the
phase field equations for phase transitions [9]. The hyperbolic relaxation term
was proposed by Galenko et al. [10–15,23] in order to describe strong non-
equilibrium decomposition generated by rapid solidification under supercooling
into the spinodal region occurring in certain materials (e.g., glasses). Since
the VCH system contains the viscosity, it is mathematically more intractable
compared to the Cahn-Hilliard systems [21,32,44].

Before developing efficient numerical schemes to solve the VCH system, we
notice that its reduced version, the Cahn-Hilliard equation has been used as a
model for various problems: microphase separation of diblock copolymers (two
or more different polymer chains linked together [8]); spinodal decomposition
[20] (a mechanism for the phase separation of a mixture of liquids or solids
from one thermodynamic phase); image inpainting (a process of reconstructing
lost parts of images [2]); phase-field modeling of tumor growth simulation [38];
volume reconstruction [26]; topology optimization [45]; co-continuous binary
polymer microstructures [6]; microstructures with elastic inhomogeneity [42],
and multiphase fluid flows [19,24,25].

It is noticed that, despite a great deal of work done for the numerical
solution of the classical Cahn-Hilliard system, almost all researches related to
the VCH or VCH-HR system were focused on the theoretical analysis of partial
differential equation with very few algorithm design or numerical analysis. This
is due to the numerical difficulties of proper discretization for the viscous effect,
besides the regular stiffness issue induced by the nonlinear double well
potential. Therefore, an efficient and accurate time marching scheme is
required. The invariant energy quadratization (IEQ) approach has been
proposed to solve the VCH-HR equation [40].

This paper is mainly devoted to improve the speed of the numerical
calculation for viscous Cahn-Hilliard system. Zhang and Qiao [43] discussed
a finite difference scheme and proposed an adaptive time-stepping technique to
quickly solve the 2D Cahn-Hilliard equation. He et al. [17] proposed a large
time-stepping methods. Novo et al. [1], Layton [22], and Xu et al. [30,39]
introduced the two-level type methods. The basic idea of the two-level method
is to first solve the nonlinear equation in the coarse-level subspace and then
solve the linear equation in the fine-level subspace. Therefore, the two-level
method can achieve better accuracy with less CPU time. Recently, Liu et al.
[29] has proposed a fast two time-mesh (TT-M) finite element (FE) algorithm
for time fractional water wave model, which has been developed to deal with
the time-consuming problem of nonlinear iteration used in the standard non-
linear Galerkin FE method for the nonlinear term. Based on two-grid finite
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element discretization and a recent subgrid-scale model, Shang [33] analyzed
a two-level subgrid stabilized Oseen iterative method for the convection
dominated Navier-Stokes equations. Wang et al. [35] have proposed a fast
time Two-Mesh Algorithm for Allen-Cahn equation.

Here, our work is to use similar idea as in [29] for solving the viscous Cahn-
Hilliard equation:

ut = −∆w + g, in Ω× (0, T ],

w = ε2∆u− f(u)− βut, in Ω× (0, T ],

∂u

∂n
=
∂w

∂n
= 0, on ∂Ω× (0, T ],

u(·, 0) = u0, in Ω,

(1.1)

where ε is a given parameter, ut =
∂u

∂t
, n is the outward normal, and β > 0

is the viscosity parameter, it becomes the classical Cahn-Hilliard system when
β = 0. f(u) is usually of the form f(u) = u3 − u and Ω ∈ Rd, d = 2. Here, u
is the concentration of one of the two substances in the mixture and is known
as the phase variable, and g is external force. Our aim is to introduce a similar
fast TT-M FE algorithm as proposed in [35] for water wave to solve viscous
Cahn-Hilliard equation. The time derivative is approximated by a second-order
scheme [28] derived based on the idea of the second-order-schemes in literature
(see Galerkin FE method by Wang et al. [37] and finite difference schemes by
Gao et al. [16]).

The organization of the rest of this paper is as follows. In Section 2, we
provide some definitions of norms and lemmas. In Section 3, we give the
numerical scheme of fast TT-M FE algorithm with second-order θ scheme. In
Section 4, we implement the analysis of stability for the proposed scheme. In
Section 5, we analyze the error estimates in detail. We present some numerical
experiments in Section 6. Finally, we do some simple summaries for the
numerical methods.

2 Theoretical preparation

In this section, we state the necessary abstract for the analysis of subsequent
proof. We denote the inner products and the norms in space L2(Ω) and H1(Ω)
as follows:

(u, v) =

∫
Ω
u(x)v(x)dx, ‖u‖ = ‖u‖L2(Ω),

‖u‖H1 =

(∫
Ω
|u|2dx+

∫
Ω
|Du|2dx

)1/2

, |u|H1 =

(∫
Ω
|Du|2dx

)1/2

.

To derive a fully discrete TT-M FE scheme, we first split the time
interval [0, T ] into a coarse uniform partition with the nodes tn = nMτ (n =
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0, 1, . . . , N), which satisfy 0 = t0 < t1 < · · · < tN = T with the fine time step
size τ = T/(nM) for some positive integer M > 2, where τc = Mτ is the coarse
time mesh step size. Let un = u(·, tn). Then the time-second order θ method
[28] is

Dτu(tn−θ) =
(3− 2θ)un − (4− 4θ)un−1 + (1− 2θ)un−2

2τ
, n > 2,

and for the first time level, we use the Crank-Nicolson discrete scheme

∂1/2u =
u1 − u0

τ
.

Lemma 1 [29] For a sufficiently smooth function u(t) = u(·, t) ∈ C3[0, T ] and
any θ ∈ [0, 1/2], the above approximation of first-order derivative at time tn−θ
is of second-order convergence, i.e.,

ut(tn−θ) = Dτu(tn−θ) +Rn−θt , n > 2, ut(t1/2) = ∂1/2u+ E1, n = 1,

where
‖Rn−θt ‖ 6 Cτ2, ‖E1‖ 6 Cτ2,

with the constant C independent of τ.

Lemma 2 [29] For a sufficiently smooth function u(t) = u(·, t) ∈ C2[0, T ] and
function f(t) ∈ C2[0, T ], at time tn−θ, the approximate formula

u(tn−θ) = (1− θ)u(tn) + θu(tn−1) + En−θ2 ,

f(u(tn−θ)) = (1− θ)f(u(tn)) + θf(u(tn−1)) + En−θ3 ,

holds for any θ ∈ [0, 1/2], n > 1, where

‖En−θ2 ‖ 6 Cτ2, ‖En−θ3 ‖ 6 Cτ2.

We take the following notations:

fn−θ(u) = (1− θ)f(un) + θf(un−1), un−θ = (1− θ)un + θun−1.

In this paper, referring [27,34,36], we assume that potential function F (u)
whose derivative f(u) is uniformly bounded, i.e.,

max
u∈R
|f ′(u)| 6 L.

3 Numerical scheme

Let

H1
E(Ω) =

{
u ∈ H1(Ω)

∣∣∣ ∂u
∂n

= 0 on ∂Ω
}
.
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Using the above θ method, the temporal semidiscrete scheme for (1.1) is as
follows. Find

un : [0, T ] 7→ H1
E , wn : [0, T ] 7→ H1

E ,

such that for any v, q ∈ H1
E , when n = 1,(u1 − u0

τ
, v
)
− (∇w1/2(u),∇v) =

(g1 + g0

2
, v
)
,

−ε2(∇u1/2,∇q)− (f1/2(u), q)− β
(u1 − u0

τ
, q
)

= (w1/2(u), q),

where

u1/2 =
u0 + u1

2
, f1/2(u) =

f(u0) + f(u1)

2
, g1/2 =

g0 + g1

2
;

when n > 2,

(Dτu
n−θ, v)− (∇wn−θ(u),∇v) = (gn−θ(u), v),

−ε2(∇un−θ,∇q)− (fn−θ(u), q)− β(Dτu
n−θ, q) = (wn−θ(u), q),

with u0 = u0(x, y).
Next, we define Vh as the subspace of H1

E(Ω), i.e.,

Vh = {v ∈ H1
E : v|e ∈ Pk(x, y)},

where Pk(x, y) is the space of polynomials of degree at most k ∈ Z+. The fully
discrete scheme for (1.1) is as follows. Find

Un : [0, T ] 7→ Vh, Wn : [0, T ] 7→ Vh,

such that for any vh, qh ∈ Vh, when n = 1,(U1 − U0

τ
, vh

)
− (∇W 1/2(U),∇vh) =

(g1 + g0

2
, vh

)
,

−ε2(∇U1/2,∇qh)− (f1/2(U), qh)−
(
β
U1 − U0

τ
, qh

)
= (W 1/2(U), qh),

(3.1)

where

U1/2 =
U0 + U1

2
, f1/2(U) =

f(U0) + f(U1)

2
;

when n > 2,

(DτU
n−θ, vh)− (∇Wn−θ(U),∇vh) = (gn−θ, vh),

−ε2(∇Un−θ,∇qh)− (fn−θ(U), qh)− β(DτU
n−θ, qh) = (Wn−θ(U), qh),

(3.2)

with U0 = uh0(x, y).
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To improve the computation efficiency of the FE discrete system (3.1) and
(3.2), we consider the following TT-M system based on FE method. Here, τc is
the coarse time-mesh step, and τ is the fine time-mesh step. We now give the
TT-M algorithm for the Cahn-Hilliard equation in three steps.

Step 1 The coarse time-mesh numerical approximations UnC and Wn
C are

obtained by the following equations: when n = 1,

(U1
C − U0

C

τc
, vh

)
− (∇W 1/2(UC),∇vh) =

(g1 + g0

2
, vh

)
, (3.3a)

−ε2(∇U1/2
C ,∇qh)− (f1/2(UC), qh)− β

(U1
C − U0

C

τc
, qh

)
= (W 1/2(UC), qh), (3.3b)

where

U
1/2
C =

U0
C + U1

C

2
, f1/2(UC) =

f(U0
C) + f(U1

C)

2
;

when n > 2:

(DτcU
n−θ
C , vh)− (∇Wn−θ(UC),∇vh) = (gn−θ, vh), (3.4a)

−ε2(∇Un−θC ,∇qh)− (fn−θ(UC), qh)− β(DτcU
n−θ
C , qh)

= (Wn−θ(UC), qh), (3.4b)

with U0
C = uh0(x, y), an appropriate approximation of u0(x, y).

Step 2 Obtain the values between Un−1
C and UnC (n = 1, 2, . . . , N − 1) on the

fine time-mesh by the Lagrange’s interpolation, where UmI (m = 1, 2, . . . ,M, . . . ,
2M, . . . , NM) are the interpolated results and m is the fine time-mesh index.

Step 3 By using the interpolated results UmI , the following linear systems on
the fine time-mesh with step τ are solved to find

UmF : [0, T ] 7→ Vh, Wm
F : [0, T ] 7→ Vh,

for any vh ∈ Vh, qh ∈ Vh, when m = 1,

(U1
F − U0

F

τ
, vh

)
− (∇W 1/2(UF ),∇vh) =

(g1 + g0

2
, vh

)
, (3.5a)

−ε2(∇U1/2
F ,∇qh)− 1

2
(f(U1

I ) + (U1
F − U1

I )fu(U1
I ), qh)

−1

2
(f(U0

F ), qh)− β
(U1

F − U0
F

τ
, qh

)
= (W 1/2(UF ), qh); (3.5b)
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when m > 2,

(DτU
m−θ
F , vh)− (∇Wm−θ(UF ),∇vh) = (gm−θ, vh), (3.6a)

− ε2(∇Um−θF ,∇qh)− (1− θ)(f(UmI ) + (UmF − UmI )fu(UmI ), qh)

− θ(f(Um−1
F ), qh)− β(DτU

m−θ
F , qh)

= (Wm−θ(UF ), qh), (3.6b)

where fu is the derivative of f about u.

4 Analysis of stability

Lemma 3 [41] For series {un} and 0 6 θ 6 1/2, the following inequalities
hold:

(Dτu
n−θ, un−θ) >

1

4τ
(H[un]−H[un−1]), n > 2,

H[un] >
1

1− θ
‖un‖2, n > 2,

where

H[un] = (3−2θ)‖un‖2− (1−2θ)‖un−1‖2 +(2−θ)(1−2θ)‖un−un−1‖2, n > 1.

Lemma 4 For series {un} and 0 6 θ 6 1/2, the following inequalities hold:

(∇Dτu
n−θ,∇un−θ) > 1

4τ
(L[un]− L[un−1]), n > 2, (4.1)

L[un] >
1

1− θ
‖∇un‖2, n > 2,

where

L[un] = (3− 2θ)‖∇un‖2 − (1− 2θ)‖∇un−1‖2

+ (2− θ)(1− 2θ)‖∇un −∇un−1‖2, n > 1.

Proof It is obvious that the operator Dτu
n−θ can be rewritten as

Dτu
n−θ = (2− 2θ)

un − un−1

τ
− (1− 2θ)

un − un−2

2τ
.

By using equalities

(a− b)a =
1

2
[a2 − b2 + (a− b)2], (a− b)b =

1

2
[a2 − b2 − (a− b)2],
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the following inequality holds:

(∇Dτu
n−θ,∇un−θ)

= (∇Dτu
n−θ, (1− θ)∇un + θ∇un−1)

= (1− θ)
[
(2− 2θ)

(∇un −∇un−1

τ
,∇un

)
− (1− 2θ)

(∇un −∇un−2

2τ
,∇un

)]
+ θ
[3− 2θ

2

(∇un −∇un−1

τ
,∇un−1

)
− 1− 2θ

2

(∇un−1 −∇un−2

τ
,∇un−1

)]
= (1− θ)

[1− θ
τ

(‖∇un‖2 − ‖∇un−1‖2 + ‖∇un −∇un−1‖2)

− 1− 2θ

4τ
(‖∇un‖2 − ‖∇un−2‖2 + ‖∇un −∇un−2‖2)

]
+ θ
[3− 2θ

4τ
(‖∇un‖2 − ‖∇un−1‖2 − ‖∇un −∇un−1‖2)

− 1− 2θ

4τ
(‖∇un−1‖2 − ‖∇un−2‖2 − ‖∇un−1 −∇un−2‖2)

]
> (1− θ)

[1− θ
τ

(‖∇un‖2 − ‖∇un−1‖2 + ‖∇un −∇un−1‖2)

− 1− 2θ

4τ
(‖∇un‖2 − ‖∇un−2‖2 + 2‖∇un −∇un−1‖2

+ 2‖∇un−1 −∇un−2‖2)
]

+ θ
[3− 2θ

4τ
(‖∇un‖2 − ‖∇un−1‖2 − ‖∇un −∇un−1‖2)

− 1− 2θ

4τ
(‖∇un−1‖2 − ‖∇un−2‖2 − ‖∇un−1 −∇un−2‖2)

]
=

3− 2θ

4τ
(‖∇un‖2 − ‖∇un−1‖2)− 1− 2θ

4τ
(‖∇un−1‖2 − ‖∇un−2‖2)

+
2θ2 − 5θ + 2

4τ
(‖∇un −∇un−1‖2 − ‖∇un−1 −∇un−2‖2)

=
1

4τ
(L[un]− L[un−1]).

In addition, we have

L[un] = (2θ2 − 7θ + 5)‖∇un‖2 + (2θ2 − 3θ + 1)‖∇un−1‖2

− 2(2θ2 − 5θ + 2)(∇un,∇un−1)

> (2θ2 − 7θ + 5)‖∇un‖2 + (2θ2 − 3θ + 1)‖∇un−1‖2

−
[
(2θ2 − 3θ + 1)‖∇un−1‖2 +

2θ2 − 5θ + 2

2θ2 − 3θ + 1
‖∇un‖2

]
>

1

1− θ
‖∇un‖2. �

Theorem 1 Under the condition τc 6 T/N, for the coarse time-mesh system
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(3.3a)-(3.3b) and (3.4a)-(3.4b), the following stability inequality holds:

‖UnC‖2 + ‖∇UnC‖2 6 C‖U0
C‖2 + C‖∇U0

C‖2 + Cτc

n∑
k=0

‖gk‖2. (4.2)

Proof Taking vh = Un−θC in (3.4a), we have

(DτcU
n−θ
C , Un−θC )− (∇Wn−θ(UC),∇Un−θC ) = (gn−θ, Un−θC ). (4.3)

Taking qh = ∆Un−θC in (3.4b), we have

−ε2(∇Un−θC ,∇∆Un−θC )− (fn−θ(UC),∆Un−θC )− (βDτcU
n−θ
C ,∆Un−θC )

= (Wn−θ(UC),∆Un−θC ). (4.4)

Combing (4.3) and (4.4), we get

(DτcU
n−θ
C , Un−θC ) + ε2(∆Un−θC ,∆Un−θC )− (βDτcU

n−θ
C ,∆Un−θC )

= (fn−θ(UC),∆Un−θC ) + (gn−θ, Un−θC ).

Using the Cauchy-Schwarz inequality and the Young inequality, we have the
following estimate:

|(fn−θ(UC),∆Un−θC )| 6 1

4ε2
‖fn−θ(UC)‖2 + ε2‖∆Un−θC ‖2

6
1

4ε2
‖(1− θ)f(Un−1

C ) + θf(UnC)‖2 + ε2‖∆Un−θC ‖2

6
(1− θ)2

2ε2
‖f(Un−1

C )‖2 +
θ2

2ε2
‖f(UnC)‖2 + ε2‖∆Un−θC ‖2

6 C(‖Un−1
C ‖2 + ‖UnC‖2) + ε2‖∆Un−θC ‖2. (4.5)

By Lemmas 3, 4, and (4.5), the following inequality is obvious:

1

4τc
(H[UnC ]−H[Un−1

C ]) +
β

4τc
(L[φn]− L[φn−1])

6 |(DτcU
n−θ
C , Un−θC )|+ β|(∇DτcU

n−θ
C ,∇Un−θC )|

6 C(‖UnC‖2 + ‖Un−1
C ‖2) + C(‖gn−θ‖2 + ‖Un−θC ‖2)

6 C(‖UnC‖2 + ‖Un−1
C ‖2) + C(‖gn‖2 + ‖gn−1‖2), n > 2. (4.6)

Adding up inequality (4.6) from 2 to n, one obtains

1

4τc
(H[UnC ]−H[U1

C ]) +
β

4τc
(L[UnC ]− L[U1

C ])

6 C

n∑
k=2

‖UkC‖2 + C

n∑
k=2

‖Uk−1
C ‖2 + C

n∑
k=2

‖gk‖2 + C

n∑
k=2

‖gk−1‖2

6 C

n∑
k=1

‖UkC‖2 + C

n∑
k=1

‖gk‖2.
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By the triangle inequality and the Young inequality, we have

H[U1
C ] = (3− 2θ)‖U1

C‖2 − (1− 2θ)‖U0
C‖2 + (2− θ)(1− 2θ)‖U1

C − U0
C‖2

6 C‖U1
C‖2 + C‖U0

C‖2,

L[U1
C ] = (3− 2θ)‖∇U1

C‖2 − (1− 2θ)‖∇U0
C‖2 + (2− θ)(1− 2θ)‖∇U1

C −∇U0
C‖2

6 C‖∇U1
C‖2 + C‖∇U0

C‖2.

By Lemmas 3, 4, and the above inequality, we have

1

1− θ
‖UnC‖2 +

β

1− θ
‖∇UnC‖2 6 H[UnC ] + βL[UnC ]

6 Cτc

n∑
k=1

‖UkC‖2 + Cτc

n∑
k=1

‖gk‖2 + H[U1
C ] + βL[U1

C ]

6 Cτc

n∑
k=1

‖UkC‖2 + Cτc

n∑
k=1

‖gk‖2 + C‖U1
C‖2 + C‖U0

C‖2

+ C‖∇U1
C‖2 + C‖∇U0

C‖2.

Next, to estimate ‖U1
C‖2 + ‖∇U1

C‖2, taking

vh =
U1
C + U0

C

2
, qh = ∆

U1
C + U0

C

2
,

in (3.3a) and (3.3b), respectively, and adding the results yields

(U1
C − U0

C

τc
,
U1
C + U0

C

2

)
+ ε2

(
∆
U1
C + U0

C

2
,∆

U0
C + U1

C

2

)
−
(f(U0

C) + f(U1
C)

2
,∆

U0
C + U1

C

2

)
− β

(U1
C − U0

C

τc
,∆

U0
C + U1

C

2

)
=
(g1 + g0

2
,
U1
C + U0

C

2

)
. (4.7)

And using the above similar analysis, one has

‖U1
C‖2 + ‖∇U1

C‖2 6 C‖U0
C‖2 + C‖∇U0

C‖2 + Cτc(‖g0‖2 + ‖g1‖2). (4.8)

By combining (4.1) and (4.7) with (4.8), the following inequality holds, i.e., for
sufficiently small τc and β, one has

‖UnC‖2 + ‖∇UnC‖2 6 C‖U0
C‖2 + C‖∇U0

C‖2 + Cτc

n∑
k=1

‖UkC‖2 + Cτc

n∑
k=0

‖gk‖2.

Finally, the use of the discrete Gronwall inequality proves (4.2). �



Fast algorithm for viscous Cahn-Hilliard equation 699

Theorem 2 Under the condition τ 6 T/(MN), for the fine time-mesh system
(3.5a)-(3.5b) and (3.6a)-(3.6b), the following stability inequality holds:

‖UmF ‖2 + ‖∇UmF ‖2 6 C
(
‖U0

C‖2 + ‖∇U0
C‖2 + ‖U0

F ‖2 + ‖∇U0
F ‖2 + τ

m+M∑
k=0

‖gk‖2
)
.

(4.9)
Proof Taking vh = Um−θF in (3.6a), we have

(DτU
m−θ
F , Um−θF )− (∇Wm−θ(UF ),∇Um−θF ) = (gm−θ, Um−θF ). (4.10)

Taking qh = ∆Um−θF in (3.6b), we have

− ε2(∇Um−θF ,∇∆Um−θF )− (1− θ)(f(UmI ) + (UmF − UmI )fu(UmI ),∆Um−θF )

− θ(f(Um−1
F ),∆Um−θF )− β(DτU

m−θ
F ,∆Um−θF )

= (Wm−θ(UF ),∆Um−θF ). (4.11)

Combining (4.10) and (4.11), we get

(DτU
m−θ
F , Um−θF ) + ε2(∆Um−θF ,∆Um−θF )

− (1− θ)(f(UmI ) + (UmF − UmI )fu(UmI ),∆Um−θF )

− θ(f(Um−1
F ),∆Um−θF )− β(DτU

m−θ
F ,∆Um−θF ) = (gm−θ, Um−θF ).

By the similar method applied to (4.2), we can obtain the following inequality
easily:

H[UmF ]−H[U1
F ] + βL[UmF ]− βL[U1

F ]

6 Cτ
m∑
k=2

(‖UkF ‖2 + ‖Uk−1
F ‖2) + Cτ

m∑
k=2

(‖gk‖2 + ‖gk−1‖2) + Cτ

m∑
k=1

‖UkI ‖2

6 Cτ
m∑
k=1

‖UkF ‖2 + Cτ
m∑
k=1

‖gk‖2 + Cτ
m∑
k=1

‖UkI ‖2. (4.12)

Let n = dk/Me, the smallest integer that is equal to or greater than k/M. Using
the interpolation, we can estimate the Lagrange interpolation term ‖UkI ‖, i.e.,

UkI = λkU
n−1
C + (1− λk)UnC , λk = n− k

M
∈ [0, 1), (4.13)
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τ

m∑
k=1

‖UkI ‖2 6 τ
m∑
k=1

‖λkUn−1
C + (1− λk)UnC‖2

6 Cτ
m∑
k=1

(‖Un−1
C ‖2 + ‖UnC‖2)

6 Cτ
Mdm/Me∑
k=1

(‖Un−1
C ‖2 + ‖UnC‖2)

= Cτ

dm/Me−1∑
l=0

(l+1)M∑
k=1+lM

(‖Un−1
C ‖2 + ‖UnC‖2)

= Cτ

dm/Me−1∑
l=0

(l+1)M∑
k=1+lM

(‖U lC‖2 + ‖U l+1
C ‖2)

= CMτ

dm/Me−1∑
l=0

(‖U lC‖2 + ‖U l+1
C ‖2)

6 Cτ
n∑
l=0

‖U lC‖2

6 Cτ
n∑
l=0

(
‖U0

C‖2 + ‖∇U0
C‖2 + Cτc

l∑
k=0

‖gk‖2
)

6 Ctn‖U0
C‖2 + Ctn‖∇U0

C‖2 + Cτcτ
n∑
k=0

n∑
l=k

‖gk‖2

6 C‖U0
C‖2 + C‖∇U0

C‖2 + Cτ
n∑
k=0

‖gk‖2

6 C‖U0
C‖2 + C‖∇U0

C‖2 + Cτ

m+M∑
k=0

‖gk‖2. (4.14)

By (4.12) and (4.14), the following inequality holds:

1

1− θ
‖UmF ‖2 +

β

1− θ
‖∇UmF ‖2 6 H[UmF ] + βL[UmF ]

6 H[U1
F ] + βL[U1

F ] + C‖U0
C‖2 + C‖∇U0

C‖2

+ Cτ
m∑
k=1

‖UkF ‖2 + Cτ
m+M∑
k=0

‖gk‖2.

The following inequality is obvious by the triangle inequality and the Young
inequality:

H[U1
F ] = (3− 2θ)‖U1

F ‖2 − (1− 2θ)‖U0
F ‖2 + (2− θ)(1− 2θ)‖U1

F − U0
F ‖2

6 C‖U1
F ‖2 + C‖U0

F ‖2,
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L[U1
F ] = (3− 2θ)‖∇U1

F ‖2 − (1− 2θ)‖∇U0
F ‖2 + (2− θ)(1− 2θ)‖∇U1

F −∇U0
F ‖2

6 C‖∇U1
F ‖2 + C‖∇U0

F ‖2.
By the above inequality, we have

1

1− θ
‖UmF ‖2 +

β

1− θ
‖∇UmF ‖2

6 H[UmF ] + βL[UmF ]

6 H[U1
F ] + βL[U1

F ] + Cτ
m∑
k=1

‖UkF ‖2 + Cτ
m+M∑
k=0

‖gk‖2 + C‖U0
C‖2 + C‖∇U0

C‖2

6 C‖U1
F ‖2 + C‖U0

F ‖2 + C‖∇U1
F ‖2 + C‖∇U0

F ‖2

+Cτ

n∑
k=1

‖UkF ‖2 + Cτ

m+M∑
k=0

‖gk‖2 + C‖U0
C‖2 + C‖∇U0

C‖2. (4.15)

By taking

vh =
U1
F + U0

F

2
, qh = ∆

U1
F + U0

F

2
,

in (3.5a) and (3.5b), respectively, and adding the results, ‖U1
F ‖2 and ‖∇U1

F ‖2
can be estimated using the above similar analysis:

‖U1
F ‖2 + ‖∇U1

F ‖2 6 C‖U0
F ‖2 + C‖∇U0

F ‖2 + Cτ(‖g0‖2 + ‖g1‖2). (4.16)

By (4.15) and (4.16), and combing (4.10) and (4.11), we have

‖UmF ‖2 + ‖∇UmF ‖2 6 C‖U0
F ‖2 + C‖U0

C‖2 + C‖∇U0
C‖2 + C‖∇U0

F ‖2

+ Cτ
m∑
k=1

‖UkF ‖2 + Cτ
m∑
k=1

‖∇UkF ‖2 + Cτ
m+M∑
k=0

‖gk‖2.

By using the discrete Gronwall inequality, the proof of (4.9) is done. �

5 Error analysis

Definition 1 The orthogonal projection operator Ph : H1
E(Ω)→ Vh is defined

as
B(u− Ph(u), v) = 0, u ∈ H1

E(Ω), ∀ v ∈ Vh.

Lemma 5 [7] For any u, ut ∈ L2(0, T ;H2), there exists a unique Phu ∈ Vh
such that for 0 < t 6 T,

‖u− Phu‖+ h‖u− Phu‖1 + ‖(u− Phu)t‖+ h‖(u− Phu)t‖1 6 Ch2.

Theorem 3 Suppose that the solution of initial problem (1.1) and the fine
time-mesh problem (3.4a)-(3.4b) are u and UmC , respectively. Then, with the
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assumption u ∈ C3(0, T,H2(Ω)), there exists a positive constant C independent
of τc, τ, and h such that

‖u(tm)− UmC ‖ 6 C(τ2
c + h2). (5.1)

Proof First, we rewrite the weak form of the initial system (1.1) is as follows.
For any v, q ∈ H1

E(Ω), when n = 1,

(ut(t1/2), v)− (∇w(t1/2),∇v) = (g(t1/2), v),

−ε2(∇u(t1/2),∇q)− (f(u(t1/2)), q)− β(ut(t1/2), q) = (w(t1/2), q),

or

(∂1/2u, v)− (∇w(t1/2),∇v) + (E1, v) = (g1/2, v) + (E
1/2
2 , v), (5.2a)

− ε2(∇u(t1/2),∇q)− (f1/2(u), q)− β(∂1/2u, q)

= (E
1/2
3 , q) + β(E1, q) + (w(t1/2), q); (5.2b)

when n > 2,

(ut(tn−θ), v)− (∇w(tn−θ),∇v) = (g(tn−θ), v),

−ε2(∇u(tn−θ),∇q)− (f(u(tn−θ), q)− β(ut(tn−θ), q) = (w(tn−θ), q),

or

(Dτcu
n−θ, v)− (∇w(tn−θ),∇v) + (Rn−θt , v) = (gn−θ, v) + (En−θ2 , v), (5.3a)

− ε2(∇u(tn−θ),∇q)− (fn−θ(u), q)− β(Dτcu
n−θ, q)

= (En−θ3 , q) + β(Rn−θt , q) + (w(tn−θ), q), (5.3b)

where

ut(t1/2) = ∂1/2u+E1, g(tn−θ) = gn−θ+En−θ2 , f(u(tn−θ)) = fn−θ(u)+En−θ3 .

Subtracting (5.3a)-(5.3b) from (3.4a)-(3.4b), and letting

UnC − u(tn) = (UnC − Phu(tn)) + (Phu(tn)− u(tn)) =: ξnc + ρnc ,

we have

(Dτcξ
n−θ
c , v)− (∇Wn−θ(UC)−∇w(tn−θ)(u),∇v) + (Dτcρ

n−θ
c , v)

= (Rn−θt , v)− (En−θ2 , v), (5.4a)

−ε2(∇ξn−θc ,∇q)− (fn−θ(UC)− fn−θ(u), q)− β(Dτcξ
n−θ
c , q)− β(Dτcρ

n−θ
c , q)

= (Wn−θ(UC)− w(tn−θ)(u), q)− (En−θ3 , q)− β(Rn−θt , q). (5.4b)
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By using v = ξn−θc in (5.4a), q = ∆ξn−θc in (5.4b), and adding them, we have

(Dτcξ
n−θ
c , ξn−θc ) + ε2(∆ξn−θc ,∆ξn−θc )

= (fn−θ(UC)− fn−θ(u),∆ξn−θc ) + β(Dτcρ
n−θ
c + Dτcξ

n−θ
c ,∆ξn−θc )

+ (Rn−θt − En−θ2 −Dτcρ
n−θ
c , ξn−θc )− (En−θ3 ,∆ξn−θc )− β(Rn−θt ,∆ξn−θc )

=: J1 + J2 + · · ·+ J5.

Next, we estimate J1, J2, . . . , J5 :

J1 = (fn−θ(UC)− fn−θ(u),∆ξn−θc )

=
1

ε2
‖(1− θ)(f(UnC)− f(un)) + θ(f(Un−1

C )− f(un−1))‖2 +
ε2

4
‖∆ξn−θc ‖2

6
C

ε2
‖UnC − un‖2 +

C

ε2
‖Un−1

C − un−1‖2 +
ε2

4
‖∆ξn−θc ‖2,

J2 = β(Dτcρ
n−θ
c + Dτcξ

n−θ
c ,∆ξn−θc )

6
2β2

ε2
(‖Dτcρ

n−θ
c ‖2 + ‖Dτcξ

n−θ
c ‖2) +

ε2

4
‖∆ξn−θc ‖2,

J3 = (Rn−θt − En−θ2 −Dτcρ
n−θ
c , ξn−θc )

6 ‖Rn−θt ‖2 + ‖En−θ2 ‖2 + ‖Dτcρ
n−θ
c ‖2 +

1

2
‖ξn−θc ‖2,

J4 = −(En−θ3 ,∆ξn−θc ) 6
1

ε2
‖En−θ3 ‖2 +

ε2

4
‖∆ξn−θc ‖2,

J5 = −β(Rn−θt ,∆ξn−θc ) 6
β2

ε2
‖Rn−θt ‖2 +

ε2

4
‖∆ξn−θc ‖2.

Putting everything together, we have

|(Dτcξ
n−θ
c , ξn−θc )| 6 C

ε2
‖UnC − un‖2 +

C

ε2
‖Un−1

C − un−1‖2

+
2β2

ε2
(‖Dτcρ

n−θ
c ‖2 + ‖Dτcξ

n−θ
c ‖2) + ‖Rn−θt ‖2 + ‖En−θ2 ‖2

+ ‖Dτcρ
n−θ
c ‖2 +

1

2
‖ξn−θc ‖2 +

1

ε2
‖En−θ3 ‖2 +

β2

ε2
‖Rn−θt ‖2.

By using Lemma 3, the following estimate is obtained:

1

4τc
(H[ξnc ]−H[ξn−1

c ]) 6 |(Dτcξ
n−θ
c , ξn−θc )|

6 C‖UnC − u(tn)‖2 + C‖Un−1
C − u(tn−1)‖2

+C(‖Dτcρ
n−θ
c ‖2 + ‖Dτcξ

n−θ
c ‖2 + ‖ξn−θc ‖2)

+C(‖En−θ2 ‖2 + ‖En−θ3 ‖2 + ‖Rn−θt ‖2). (5.5)
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Adding up inequality (5.5) from 2 to n, we get

H[ξnc ]−H[ξ1
c ]

6 Cτc

n∑
j=1

‖U jC − u(tj)‖2 + Cτc

n∑
j=2

(‖Dτcρ
j−θ
c ‖2 + ‖Dτcξ

j−θ
c ‖2 + ‖ξj−θc ‖2)

+Cτc

n∑
j=2

(‖Ej−θ2 ‖2 + ‖Ej−θ3 ‖2 + ‖Rj−θt ‖2)

6 Cτc

n∑
j=1

(‖ξjc‖2 + ‖ρjc‖2) + Cτc

n∑
j=2

‖Dτcρ
j−θ
c ‖2 + Cτc

n∑
j=2

‖Dτcξ
j−θ
c ‖2

+Cτc

n∑
j=2

‖ξj−θc ‖2 + Cτc

n∑
j=2

(‖Ej−θ2 ‖2 + ‖Ej−θ3 ‖2 + ‖Rj−θt ‖2). (5.6)

By Lemma 3 and using the discrete Gronwall inequality, (5.6) is formulated as
(n > 2)

‖ξnc ‖2 6 Cτc

n∑
j=1

‖ρjc‖2 + Cτc

n∑
j=2

(‖Ej−θ2 ‖2 + ‖Ej−θ3 ‖2 + ‖Rj−θt ‖2)

+ Cτc

n∑
j=2

‖Dτcρ
j−θ
c ‖2 + C‖ξ1

c‖2

6 Cτc

n∑
j=1

‖ρjc‖2 + Cτc

n∑
j=2

(‖Ej−θ2 ‖2 + ‖Ej−θ3 ‖2 + ‖Rj−θt ‖2)

+ Cτc

n∑
j=2

‖Dτcρ
j−θ
c − ∂tρj−θc ‖2 + Cτc

n∑
j=2

‖∂tρj−θc ‖2 + C‖ξ1
c‖2.

By Lemmas 2 and 5, one obtains

‖ξnc ‖2 6 Ctnh4 + Ctnτ
4
c + Ctnτ

4
c + C‖ξ1

c‖2 6 Ch4 + Cτ4
c + C‖ξ1

c‖2. (5.7)

Next, as in the previous analysis to estimate ‖ξ1
c‖2, subtracting (5.2a)-(5.2b)

from (3.3a)-(3.3b), we get

(∂1/2ξc, v)− (∇W 1/2(UC)−∇w(t1/2)(u),∇v) + (∂1/2ρc, v)

= (E1, v)− (E
1/2
2 , v), (5.8a)

− ε2(∇ξ1/2
c ,∇q)− (f1/2(UC)− f1/2(u), q)− β(∂1/2ξc, q)− β(∂1/2ρc, q)

= (W 1/2(UC)− w(t1/2)(u), q)− (E
1/2
3 , q)− β(E1, q). (5.8b)
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By using v = ξ
1/2
c in (5.8a), q = ∆ξ

1/2
c in (5.8b), and adding them, we have

(∂1/2ξc, ξ
1/2
c ) + ε2(∆ξ1/2

c ,∆ξ1/2
c )

− (f1/2(UC)− f1/2(u),∆ξ1/2
c )− β(∂1/2ξc,∆ξ

1/2
c )

= β(∂1/2ρc,∆ξ
1/2
c ) + (E1 − E1/2

2 , ξ1/2
c )− (E

1/2
3 ,∆ξ1/2

c )

− (∂1/2ρc, ξ
1/2
c )− β(E1,∆ξ

1/2
c ).

By the similar analysis, one can derive

‖ξ1
c‖2 6 C(τ4

c + h4) + C‖U0
C − u0‖2. (5.9)

By (5.7) and (5.9), the following inequality holds:

‖ξnc ‖2 6 C(τ4
c + h4). (5.10)

Combining (5.10) with the property of the orthogonal projector Ph, we complete
the proof of (5.1). �

Theorem 4 Suppose that the solutions of initial problem (1.1) and the fine
time-mesh problem (3.5a)-(3.5b) and (3.6a)-(3.6b) are u and UmF , respectively.
Then, with the assumption u ∈ C3(0, T,H2(Ω)), there exists a positive constant
C independent of τc, τ, and h such that

‖u(tm)− UmF ‖ 6 C(τ4
c + τ2 + h2). (5.11)

Proof We first estimate the error ‖u(tm)−UmI ‖ on the fine time-mesh. By the
notations introduced in (4.13), we have

UmI = λmU
n−1
C + (1− λm)UnC ,

u(tm) = λmu
n−1 + (1− λm)un + Cτ2

c utt(ϑm), ϑm ∈ (tn−1, tn).
(5.12)

With (5.12) and (5.1), the following result holds by the triangle inequality:

‖u(tm)− UmI ‖ 6 C(τ2
c + h2).

Next, we replace n with m and τc with τ in (5.3a)-(5.3b), and subtract it from
(3.6a)-(3.6b). We have

(Dτξ
m−θ
f , v) + (Dτρ

m−θ
f , v)− (∇Wm−θ(UF )−∇w(tm−θ)(u)),∇v)

= (Rm−θt , v)− (Em−θ2 , v),

− ε2(∇ξm−θf ,∇q)− β(Dτξ
m−θ
f , q)− β(Dτρ

m−θ
f ,4ξm−θf )

− (1− θ)(f(UmI ) + (UmF − UmI )fu(UmI )− f(um), q)

− θ((f(Um−1
F )− f(um−1)), q)

= (Wm−θ(UC)− w(tm−θ)(u), q)− (Em−θ3 ,∇q)− β(Rm−θt , q).
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By choosing v = ξm−θf , q = ∆ξm−θf , and adding them, we have

(Dτξ
m−θ
f , ξm−θf ) + (Dτρ

m−θ
f , ξm−θf ) + ε2(∆ξm−θf ,∆ξm−θf )

= (1− θ)(f(UmI ) + (UmF − UmI )fu(UmI )− f(um),∆ξm−θf )

+ θ(f(Um−1
F )− f(um−1),∆ξm−θf ) + β(Dτξ

m−θ
f ,∆ξm−θf )

+β(Dτρ
m−θ
f ,∆ξm−θf )− (Em−θ3 ,∆ξm−θf )

−β(Rm−θt ,∆ξm−θf ) + (Rm−θt , ξm−θf )− (Em−θ2 , ξm−θf ), (5.13)

where

UmF − u(tm) = (UmF − Phu(tm)) + (Phu(tm)− u(tm)) = ξmf + ρmf .

Using Taylor expansion, we estimate the first term on the right-hand-side of
(5.13) as follows

‖f(um)− f(UmI )− (UmF − UmI )fu(UmI )‖
= ‖fu(UmI )[(um − UmI )− (UmF − UmI )] + Cfuu(ηm)(um − UmI )2‖
= ‖fu(UmI )(um − UmF ) + Cfuu(ηm)(um − UmI )2‖
= ‖fu(UmI )(ξmf + ρmf ) + Cfuu(ηm)(um − UmI )2‖
6 C(‖ξmf ‖+ ‖ρmf ‖) + C‖um − UmI ‖2L4(Ω). (5.14)

Combining (5.13) and (5.14) with the similar analysis applied to (5.1), for n > 2,
we have

‖ξmf ‖2 6 C(τ4 + τ8
c + h4) + C‖U0

F − u0‖2 + C‖ξ1
f‖2. (5.15)

Next, as in the previous analysis to estimate ‖ξ1
f‖2, we replace n with m, τc

with τ in (3.3a)-(3.3b), then we subtract (5.2a)-(5.2b) from (3.3a)-(3.3b):

(∂1/2ξf , v)− (∇W 1/2(UF )−∇w(t1/2)(u),∇v) + (∂1/2ρf , v)

= (E1, v)− (E
1/2
2 , v), (5.16a)

− ε2(∇ξ1/2
f ,∇q)− (f1/2(UF )− f1/2(u), q)− β(∂1/2ξf , q)− β(∂1/2ρf , q)

= (W 1/2(UF )− w(t1/2)(u), q)− (E
1/2
3 , q)− β(E1, q). (5.16b)

By using v = ξ
1/2
f in (5.16a), q = ∆ξ

1/2
f in (5.16b), and adding them, we have

(∂1/2ξf , ξ
1/2
f ) + ε2(∆ξ

1/2
f ,∆ξ

1/2
f )

− (f1/2(Uf )− f1/2(u),∆ξ
1/2
f )− β(∂1/2ξf ,∆ξ

1/2
f )

= (E1, ξ
1/2
f )− (E

1/2
2 , ξ

1/2
f )− (E

1/2
3 ,∆ξ

1/2
f )

− β(E1,∆ξ
1/2
f )− (∂1/2ξf , ρ

1/2
f ) + β(∂1/2ρf , ξ

1/2
f ).
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Using the above technique again, we can get

‖ξ1
f‖2 6 C(τ4 + τ8

c + h4) + C‖U0
F − u0‖2. (5.17)

Combining (5.15) and (5.17) with the property of the orthogonal projector Ph,
we complete the proof of (5.11). �

6 Numerical experiments

In this section, we present some numerical examples to illustrate the theoretical
results obtained in the previous section. We study the effects of θ and β values
on the spatial convergence orders and compare the CPU time of the Galerkin
method and the TT-M FE method. The behavior of the exact solution and
the TT-M numerical solution are demonstrated via visualization. All tests are
obtained by the package Freefem++ [18].

6.1 Convergence results

In this part, we verify the theoretical error estimates by numerical examples,
i.e., verification of the order of spatial convergence of the viscous Cahn-Hilliard
equation using the TT-M method by examples. We take the P1 finite element
space, and choose the initial condition

u0 = e cos(πx) cos(πy),

the exact solution
u(x, y, t) = ecos t cos(πx) cos(πy).

We can compute the external force term in the equation.

6.1.1 Order of convergence in space

Tables 1–3 show that the spatial convergence order is consistent with the
theoretical value for different β value. The parameters used in our simulation
are

ε = 0.3, θ = 0.2, τc = 10τ =
1

20
, T = 1,

β = 0, 0.001, 0.01, h =
1

16
,

1

32
,

1

64
.

Table 1 Spatial convergence rate of numerical results of TT-M: β = 0

h ‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1

relative error rate relative error rate

1/16 0.104671 0.201608

1/32 0.0243144 2.105 0.0966592 1.065
1/64 0.00603877 2.009 0.0479912 1.010
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Table 2 Spatial convergence rate of numerical results of TT-M: β = 0.001

h ‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1

relative error rate relative error rate

1/16 0.104686 0.201582

1/32 0.0243551 2.103 0.0966518 1.060
1/64 0.00608312 2.001 0.047988 1.010

Table 3 Spatial convergence rate of numerical results of TT-M: β = 0.01

h ‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1

relative error rate relative error rate

1/16 0.104837 0.201357

1/32 0.0247716 2.081 0.0966 1.059
1/64 0.00666528 1.893 0.0479904 1.009

Table 1 lists the results based on TT-M FE method for β = 0 and h =
1/16, 1/32, 1/64. The spatial convergence orders computed from relative
errors ‖u− UF ‖/‖u‖ and ‖u− UF ‖H1/‖u‖H1 are close to 2 and 1, respectively.
Results for β = 0.001 and 0.01 are listed in Tables 2 and 3, respectively. We
get the same conclusion according to the similar analysis as that discussed
for Table 1. We also observe that the spacial convergence rate is almost same,
when β takes different values. These numerical results imply that our numerical
algorithm is correct.

Tables 4–7 show that the spatial convergence order is consistent with the
theoretical value for different θ value. The parameters used in our simulation
are

ε = 0.3, β = 0.01, τc = 10τ =
1

20
, T = 1,

θ = 0, 0.2, 0.4, 0.5, h =
1

8
,

1

16
,

1

32
.

Table 4 lists the results based on TT-M FE method for θ = 0 and h =
1/8, 1/16, 1/32. The spatial convergence orders computed from relative
errors ‖u− UF ‖/‖u‖ and ‖u− UF ‖H1/‖u‖H1 are close to 2 and 1, respectively.
Results for θ = 0.2, 0.4, and 0.5 are listed on Tables 5, 6, and 7, respectively.
The same conclusion can be obtained. These numerical results imply that our
numerical algorithm is correct.

Table 4 Spatial convergence rate of numerical results of TT-M: θ = 0

h ‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1

relative error rate relative error rate

1/8 0.858158 0.616371

1/16 0.236553 1.859 0.299096 1.043
1/32 0.0324659 2.865 0.0991513 1.59
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Table 5 Spatial convergence rate of numerical results of TT-M: θ = 0.2

h ‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1

relative error rate relative error rate

1/8 0.388401 0.448404

1/16 0.104837 1.889 0.201357 1.155
1/32 0.0247716 2.081 0.0966 1.059

Table 6 Spatial convergence rate of numerical results of TT-M: θ = 0.4

h ‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1

relative error rate relative error rate

1/8 0.335496 0.40981

1/16 0.0950239 1.819 0.197356 1.054
1/32 0.0245207 1.954 0.0965279 1.031

Table 7 Spatial convergence rate of numerical results of TT-M: θ = 0.5

h ‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1

relative error rate relative error rate

1/8 0.333468 0.408707

1/16 0.0948542 1.813 0.197361 1.050
1/32 0.0245138 1.952 0.0965818 1.031

6.1.2 Order of convergence in time

Table 8 shows that the time convergence order is consistent with the theoretical
value for different θ value. We choose parameters as follows:

ε = 0.3, θ = 0, 0.2, 0.4, 0.5, β = 0.1, τ = h =
1

9
,

1

16
,

1

25
,

1

36
, T = 1.

The time convergence orders computed from errors ‖u−UF ‖ is close to 2. These
numerical results imply that our numerical algorithm is correct.

Table 9 shows that the time convergence order is consistent with the
theoretical value for different β value. We choose parameters as follows:

ε = 0.3, τ2
c = τ = h =

1

9
,

1

16
,

1

25
,

1

36
, β = 0, 0.01, θ = 0.5, T = 1.

The time convergence orders computed from errors ‖u− UF ‖ is close to 2.

6.1.3 Comparison between TT-M FE method and Galerkin FE
method on CPU time

In this part, the CPU time of the traditional Galerkin FE method and the
TT-M FE method are compared. We take parameters

θ = 0.5, β = 0.01, ε = 0.3, τ = 10τc =
1

200
, h =

1

8
,

1

16
,

1

32
.

From Table 10, one can see that our numerical algorithm can substantially
reduce the CPU time while producing equally accurate numerical results.
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Table 8 Temporal convergence rate of numerical results of TT-M: β = 0.1

θ τ = h ‖u− UF ‖ rate

0 1/9 0.271629

1/16 0.0950813 1.824
1/25 0.0407967 1.895
1/36 0.0209129 1.832

0.2 1/9 0.27205
1/16 0.0936853 1.852
1/25 0.0387008 1.980
1/36 0.0186608 2.000

0.4 1/9 0.272465
1/16 0.0940023 1.849
1/25 0.039034 1.969
1/36 0.0188599 1.994

0.5 1/9 0.27231
1/16 0.0940378 1.847
1/25 0.0390698 1.968
1/36 0.0189 1.991

Table 9 Temporal convergence rate of numerical results of TT-M: θ = 0.5

β τ = h ‖u− UF ‖ rate

0 1/9 0.278024

1/16 0.0943529 1.878
1/25 0.0396985 1.939
1/36 0.0189656 2.025

0.01 1/9 0.278574
1/16 0.0948477 1.872
1/25 0.0401712 1.925
1/36 0.01947771 1.985

Table 10 CPU time of TT-M FE method and Galerkin FE method: θ = 0.5

h FE(s) TT-M(s)

‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1 CPU ‖u− UF ‖/‖u‖ ‖u− UF ‖H1/‖u‖H1 CPU

1/8 0.333532 0.408677 36.74 0.333468 0.408707 11.86

1/16 0.0948615 0.197356 92.518 0.0948542 0.197361 36.858
1/32 0.0245146 0.0965814 395.162 0.0245138 0.0965818 162.789

6.2 Influence of M on CPU time and error

To check the computational efficiency of the fast TT-M FE method, we consider
the impact of parameter M on CPU time. Fig. 1 plots the CPU time versus
the value of M for parameters

ε = 1, β = 0.01, θ = 0.5, τ =
1

400
, h =

1

20
, T = 1.

One can see that the computing time of the fast TT-M FE method gradually
decreases as M increases from 2 to 20, which indicates higher computational
efficiency for greater value of M, and one can know that the most efficient
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calculation is produced at M = 20, and when M tends to value M = 20, the
CPU changes very slowly.

Next, we check the possible influence of M on the computational accuracy.
Using the same set of parameters as in Fig. 1, we compute the error versus value
of M in Fig. 2. One clearly sees that the parameter M has little influence on
the computational accuracy. Therefore, when using the TT-M FE method, we
can select the appropriate value of M to improve the computational efficiency
without affecting the accuracy.

Fig. 1 CPU(M) based on θ = 0.5 Fig. 2 Error(M) based on θ = 0.5

7 Summary

In this paper, we apply the fast TT-M FE method to the nonlinear viscous
Cahn-Hilliard equation. Theoretical stability analysis and error estimates of
the method are provided in detail. Numerical examples are given to verify
these theoretical results. The comparisons of CPU time is made between the
TT-M FE method and the Galerkin FE method, and we study the effect of
the parameter M. It is worth noticing that for the second-order θ scheme with
β = 0, the spatial convergence orders computed from ‖u−UF ‖ and ‖u−UF ‖H1

are close to 2 and 1, respectively. When β = 0.001, 0.01 have similar results.
All of the numerical results show that our fast TT-M FE method is effective
and efficient.
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