
Front. Math. China 2022, 17(4): 571–590
https://doi.org/10.1007/s11464-021-0915-8

Complete moment convergence for
weighted sums of widely orthant-dependent
random variables and its application in
nonparametric regression models

Lu CHENG, Junjun LANG, Yan SHEN, Xuejun WANG

School of Mathematical Sciences, Anhui University, Hefei 230601, China

© Higher Education Press 2022

Abstract We establish some results on the complete moment convergence for
weighted sums of widely orthant-dependent (WOD) random variables, which
improve and extend the corresponding results of Y. F. Wu, M. G. Zhai, and
J. Y. Peng [J. Math. Inequal., 2019, 13(1): 251–260]. As an application of
the main results, we investigate the complete consistency for the estimator
in a nonparametric regression model based on WOD errors and provide some
simulations to verify our theoretical results.
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1 Introduction

Let {Xn, n > 1} be a sequence of random variables defined on a fixed
probability space (Ω,F , P ). Among many statistical problems and applications,
people often assume that the random variables are independent. However, this
assumption sometimes is impractical. Hence, many scholars introduced various
dependence structures to obtain more accurate results in the former decades.
One of the most important dependence structures is widely orthant dependence
(WOD), which was introduced by Wang et al. [22]. Now, let us recall the
concept of WOD random variables.

Definition 1.1 Random variables X1, X2, . . . are said to be widely upper
orthant dependent (WUOD) if for each n > 1, there exists some finite real
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number gU (n) such that, for all xi ∈ (−∞,+∞), i = 1, . . . , n,

P (X1 > x1, . . . , Xn > xn) 6 gU (n)
n∏
i=1

P (Xi > xi); (1.1)

they are said to be widely lower orthant dependent (WLOD) if for each n > 1,
there exists some finite real number gL(n) such that, for all xi ∈ (−∞,+∞), i =
1, . . . , n,

P (X1 6 x1, . . . , Xn 6 xn) 6 gL(n)
n∏
i=1

P (Xi 6 xi); (1.2)

they are said to be WOD if they are both WUOD and WLOD. The real numbers
gU (n), gL(n), n > 1, are called dominating coefficients.

If gU (n) = gL(n) = M for all n > 1, where M > 1 is a positive constant,
then the sequence {Xn, n > 1} of random variables is said to be extended
negatively dependent (END), which was introduced by Liu [15]. It is clear to
see that WOD structure contains END structure.

Since the concept of WOD random variables was introduced, many authors
have been devoted to the study of the probability limit properties of WOD
random variables. For example, Wang and Cheng [27] presented some basic
renewal theorems for a random walk with widely dependent increments; Shen
[17] established the Bernstein type probability inequality of WOD random
variables; Wang et al. [25] studied the complete convergence of WOD random
variables, and gave its application in the nonparametric regression models;
Wang and Hu [23] studied some consistency problems of the nearest neighbor
kernel density estimation under WOD samples; Wu et al. [31] investigated the
complete moment convergence for arrays of rowwise WOD random variables;
Shen et al. [18] studied the asymptotic properties for the estimators of
survival function and failure rate function based on WOD samples; Wu et al. [30]
studied the Lr convergence, complete convergence, and complete moment
convergence for arrays of rowwise WOD random variables under some
conditions of R-h-integrability; Chen and Sung [4] established the Spizer-type
law of large numbers for WOD random variables; and Lu et al. [16] studied
the complete f -moment convergence for WOD random variables. The main
purpose of this work is to further study the complete moment convergence for
WOD random variables, which is more general than complete convergence.

The concept of complete convergence was introduced by Hsu and Robbins
[7] as follows: a sequence {Xn, n > 1} of random variables converges completely
to a constant C if

∞∑
n=1

P (|Xn − C| > ε) <∞, ∀ ε > 0.

By the Borel-Cantelli lemma, we immediately obtain that Xn → C almost
surely (a.s.). For more details about complete convergence, one can refer to
[9,11,21,24,35] among others.
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Recently, Wu et al. [33] obtained the following result on complete
convergence for weighted sums of END random variables.

Theorem A Let {Xn, n > 1} be a sequence of identically distributed END
random variables with EX1 = 0, and let {ank, n > 1, 1 6 k 6 n} be an array
of real numbers satisfying

n∑
k=1

a2nk = O(n−α) (1.3)

and
max
16k6n

|ank| = O(n−α) (1.4)

for some p > 2 and α ∈ [1/p, 1). If

E|X1|p <∞, (1.5)

then
∞∑
n=1

nαp−2P

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣ > ε

)
<∞, ∀ ε > 0.

Although conditions (1.3)–(1.5) are rather basic, the identical distribution
assumption seems to be too strong and the END setting is not wide enough.
On the other hand, it is also very desirable to improve the conclusion of
Theorem A. The main purpose of this paper is to extend Theorem A from
complete convergence to complete moment convergence for WOD random
variables. In addition, the condition of identical distribution is replaced by
stochastic domination. Furthermore, the meaningful case 1 < p < 2 is also
established in this paper, which was not considered by Wu et al. [33]. As an
application of our main results, we present a result on complete consistency for
the weighted estimator in a nonparametric regression model based on WOD
errors.

The concept of complete moment convergence mentioned above was
introduced by Chow [5] as follows. Let {Xn, n > 1} be a sequence of random
variables and an, bn, q > 0. If

∞∑
n=1

anE{b−1n |Xn| − ε}q+ <∞, ∀ ε > 0,

then q-th moment convergence is said to hold for {Xn, n > 1}. It is well
known that complete moment convergence implies complete convergence. For
more details about the complete moment convergence, we refer the readers to
[3,12,14,28,32] among others.

The following concept of stochastic domination will be used in this paper.

Definition 1.2 A sequence {Xn, n > 1} of random variables is said to be
stochastically dominated by a random variable X, if there exists a positive
constant C such that

P (|Xn| > x) 6 CP (|X| > x), ∀x > 0, n > 1.
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This paper is organized as follows. Some preliminary lemmas are stated
in Section 2. In Section 3, we provide our main results and their proofs. An
application to nonparametric regression models and numerical simulations are
presented in Section 4.

Throughout this paper, let C be a positive constant not depending on n,
which may be different in various places. Denote

(log x)+ = log max{x, e}, x+ = max{x, 0}, x− = max{−x, 0},

and let I(A) be the indicator function of the set A. An = O(Bn) stands for
|An| 6 C|Bn| for all n > 1. Let g(n) = max{gU (n), gL(n)} be the dominating
coefficients of the WOD sequence.

2 Preliminary lemmas

To prove the main results of this paper, we need the following important
lemmas. The first one is a basic property for WOD random variables, which
was established by Wang et al. [25].

Lemma 2.1 Let {Xn, n > 1} be a sequence of WOD random variables
with the dominating coefficients g(n). If {fn, n > 1} is a sequence of all
nondecreasing (or nonincreasing) functions, then {fn(Xn), n > 1} is also a
sequence of WOD random variables with the same dominating coefficients g(n).

By [26, Corollary 2.3] and [20, Theorem 2.3.1], we can obtain the following
Rosenthal-type maximum inequality and Marcinkiewicz-Zygmund type
maximum inequality for WOD random variables.

Lemma 2.2 Let p > 1 and {Xn, n > 1} be a sequence of zero mean WOD
random variables with the dominating coefficients g(n) and E|Xn|p < ∞ for
each n > 1. Then there exist positive constants C1(p) and C2(p) depending only
on p such that

E

(
max
16k6n

∣∣∣ k∑
i=1

Xi

∣∣∣)p 6 C1(p)(log n)p+

n∑
i=1

E|Xi|p + C2(p)g(n)(log n)p+

·



n∑
i=1

E|Xi|p, 1 6 p 6 2,( n∑
i=1

EX2
i

)p/2
, p > 2.

The following lemma is essential in proving our main results, which was
obtained by Wu et al. [29].

Lemma 2.3 Let {Yi, 1 6 i 6 n} and {Zi, 1 6 i 6 n} be two sequences of
random variables. Then, for any q > r > 0 and ε, a > 0, the following two
inequalities hold:
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E

(∣∣∣ n∑
i=1

(Yi + Zi)
∣∣∣− εa)r

+

6 Cr
(
ε−q +

r

q − r

)
ar−qE

∣∣∣ n∑
i=1

Yi

∣∣∣q + CrE
∣∣∣ n∑
i=1

Zi

∣∣∣r,
E

(
max
16k6n

∣∣∣ k∑
i=1

(Yi + Zi)
∣∣∣− εa)r

+

6 Cr

(
ε−q +

r

q − r

)
ar−qE

(
max
16k6n

∣∣∣ k∑
i=1

Yi

∣∣∣q)+ CrE

(
max
16k6n

∣∣∣ k∑
i=1

Zi

∣∣∣r),
where

Cr =

{
1, 0 < r 6 1,

2r−1, r > 1.

By the integration by parts, we can get the following property for stochastic
domination. The first inequality is due to Adler and Rosalsky [1] and the second
inequality is due to Adler et al. [2].

Lemma 2.4 Let {Xn, n > 1} be a sequence of random variables which is
stochastically dominated by a random variable X. Then, for any α, b > 0, the
following two statements hold:

E|Xn|αI(|Xn| 6 b) 6 C1[E|X|αI(|X| 6 b) + bαP (|X| > b)],

E|Xn|αI(|Xn| > b) 6 C2E|X|αI(|X| > b),

where C1 and C2 are positive constants. Consequently,

E|Xn|α 6 CE|X|α,

where C is a positive constant.

3 Main results and their proofs

Before presenting the main results, we list two assumptions as follows.

(A.1) {Xn, n > 1} is a sequence of zero mean WOD random variables
which is stochastically dominated by a random variable X with dominating
coefficients g(n), n > 1.

(A.2) {ank, n > 1, 1 6 k 6 n} is an array of real numbers satisfying (1.3)
and (1.4) for some p > 1 and α ∈ [1/p, 1).

Theorem 3.1 Assume that (A.1) and (A.2) are satisfied. If

g(n) = O(nλ) for some λ > 0 (3.1)

and E|X|p <∞, then

∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣− ε)
+

<∞, ∀ ε > 0. (3.2)
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Proof Without loss of generality, we assume ank > 0 for all k = 1, . . . , n.
Otherwise, we will use ank+ and ank− instead of ank, respectively.

For fixed n > 1 and for 1 6 k 6 n, denote

Ynk = −nαI(Xk < −nα) + nαI(Xk > nα) +XkI(|Xk| 6 nα),

Znk = nαI(Xk < −nα)− nαI(Xk > nα) +XkI(|Xk| > nα).

Noting that EXk = 0, we have

Xk = Ynk − EYnk + Znk − EZnk. (3.3)

Take

q >


max

{2(αp+ λ− 1)

α
, p
}
, p > 2,

max
{2(αp+ λ− 1)

α(p− 1)
, 2
}
, 1 < p < 2.

Therefore, we obtain by (3.3) and Lemma 2.3 that

∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣− ε)
+

6 C

∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ank(Ynk − EYnk)
∣∣∣q)

+
∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ank(Znk − EZnk)
∣∣∣)

=: I1 + I2.

To prove the desired result (3.2), we only need to show I1, I2 < ∞. For I2,
it follows by (1.4), Lemma 2.4, the definition of Znk, and E|X|p <∞ that

I2 =
∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ank(Znk − EZnk)
∣∣∣)

6 C
∞∑
n=1

nαp−2−α
n∑
k=1

E|Znk|

6 C
∞∑
n=1

nαp−1−αE|X|I(|X| > nα)

= C

∞∑
n=1

nαp−1−α
∞∑
k=n

E|X|I(kα < |X| 6 (k + 1)α)

= C
∞∑
k=1

E|X|I(kα < |X| 6 (k + 1)α)
k∑

n=1

nαp−1−α
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6 C
∞∑
k=1

E|X|pI(kα < |X| 6 (k + 1)α)

6 CE|X|p

<∞. (3.4)

Next, we estimate I1. For each n > 1, it follows by Lemma 2.1 that
{ank(Ynk − EYnk), 1 6 k 6 n} is still a sequence of WOD random variables
with the same dominating coefficients. Hence, by Lemma 2.2, we obtain

I1 6 C
∞∑
n=1

nαp−2(log n)q+

[ n∑
k=1

E|ank(Ynk − EYnk)|q

+ g(n)

( n∑
k=1

E(ank(Ynk − EYnk))2
)q/2]

=: I11 + I12.

For I11, by Lemma 2.4, E|X|p <∞, and Markov’s inequality, we have

I11 = C
∞∑
n=1

nαp−2(log n)q+

n∑
k=1

|ank|qE|Ynk − EYnk|q

6 C
∞∑
n=1

nαp−2(log n)q+

n∑
k=1

|ank|qE|Ynk|q

6 C
∞∑
n=1

nαp−2(log n)q+

n∑
k=1

|ank|q[nαqP (|Xk| > nα) + E|Xk|qI(|Xk| 6 nα)]

6 C
∞∑
n=1

nαp−2(log n)q+

(
max
16k6n

|ank|q−2
)

·
n∑
k=1

a2nk[n
αqP (|Xk| > nα) + E|Xk|qI(|Xk| 6 nα)]

6 C
∞∑
n=1

nαp−2−α−α(q−2)+α(q−p)(log n)q+E|X|p

6 C
∞∑
n=1

nα−2(log n)q+

<∞. (3.5)

Now, we will show I12 <∞.
Case 1 p > 2.

Noting that q > 2(αp+ λ− 1)/α, by the Cr inequality, Lemma 2.4, and
EX2 <∞, we have
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I12 6 C
∞∑
n=1

nαp−2(log n)q+g(n)

( n∑
k=1

a2nkEY
2
nk

)q/2
6 C

∞∑
n=1

nαp−2(log n)q+g(n)

·
( n∑
k=1

a2nk[n
2αP (|Xk| > nα) + EX2

kI(|Xk| 6 nα)]

)q/2
6 C

∞∑
n=1

nαp−2(log n)q+g(n)

·
( n∑
k=1

a2nk[EX
2
kI(|Xk| > nα) + EX2

kI(|Xk| 6 nα)]

)q/2
6 C

∞∑
n=1

nαp−2(log n)q+g(n)

( n∑
k=1

a2nk

)q/2
(EX2)q/2

6 C
∞∑
n=1

nαp−2−
αq
2
+λ(log n)q+

<∞. (3.6)

Case 2 1 < p < 2.
Similar to the proof of (3.6), and noting that q > 2(αp+ λ− 1)/(α(p− 1)),

we have

I12 6 C
∞∑
n=1

nαp−2(log n)q+g(n)

( n∑
k=1

a2nk

)q/2
· [n2αP (|Xk| > nα) + EX2

kI(|Xk| 6 nα)]q/2

6 C
∞∑
n=1

nαp−2−
αq
2
+λ+

(2−p)αq
2 (log n)q+(E|X|p)q/2

6 C

∞∑
n=1

nαp−2−
αq
2
+λ+

(2−p)αq
2 (log n)q+

< ∞.

The proof is completed. �

Corollary 3.1 Assume that the conditions of Theorem 3.1 are satisfied. Then

∞∑
n=1

nαp−2P

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣ > ε

)
<∞, ∀ ε > 0. (3.7)

Proof According to Theorem 3.1, we have
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∞ >
∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣− ε)
+

=

∞∑
n=1

nαp−2
∫ ∞
0

P

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣− ε > t

)
dt

>
∞∑
n=1

nαp−2
∫ ε

0
P

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣− ε > t

)
dt

> ε
∞∑
n=1

nαp−2P

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣ > 2ε

)
,

which yields (3.7). The proof is completed. �

Remark 3.1 Compared with Theorem A, we have the following extensions or
improvements: (i) the END setting is extended to the WOD setting satisfying
(3.1); (ii) the restriction on p is relaxed from p > 2 to p > 1; (iii) the identical
distribution is weakened by stochastic domination; (iv) the complete moment
convergence is stronger than complete convergence.

Theorem 3.1 deals with the complete 1-st moment convergence. The next
two theorems consider the case of complete r-th moment convergence, where
r > 1.

Theorem 3.2 Assume that (A.1) and (A.2) are satisfied. Let 2 6 r 6 p. If

g(n) = O(nλ) for some λ ∈
[
0, 1− α+

(r
2
− 1
)

(αp− α)
)

(3.8)

and E|X|p <∞, then

∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣− ε)r
+

<∞, ∀ ε > 0. (3.9)

Proof We use the same notations as those in the proof of Theorem 3.1. Taking
q > max{2(αp+ λ− 1)/α, p}, by Lemma 2.3, we have

∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ankXk

∣∣∣− ε)r
+

6 C
∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ank(Ynk − EYnk)
∣∣∣q)

+C
∞∑
n=1

nαp−2E

(
max
16j6n

∣∣∣ j∑
k=1

ank(Znk − EZnk)
∣∣∣r)

=: I1 + I2. (3.10)



580 Lu CHENG et al.

It is clear to see that I1 <∞ follows immediately from (3.5) and (3.6). Then
we only need to prove I2 < ∞. For each n > 1, it follows by Lemma 2.1 that
{ank(Znk − EZnk), 1 6 k 6 n} is still a sequence of WOD random variables
with the same dominating coefficients. Hence, by Lemma 2.2, we have

I2 6 C
∞∑
n=1

nαp−2(log n)r+

[ n∑
k=1

E|ank(Znk − EZnk)|r

+ g(n)

( n∑
k=1

E(ank(Znk − EZnk))2
)r/2]

=: I21 + I22.

By the definition of Znk and E|X|p <∞, we have

I21 6 C
∞∑
n=1

nαp−2(log n)r+

n∑
k=1

|ank|rE|Znk|r

6 C
∞∑
n=1

nαp−2(log n)r+

n∑
k=1

|ank|rE|Xk|rI(|Xk| > nα)

6 C
∞∑
n=1

nαp−2(log n)r+

n∑
k=1

|ank|2|ank|r−2E|X|rI(|X| > nα)

6 C
∞∑
n=1

nαp−2−α(r−2)−α+α(r−p)(log n)r+E|X|p

6 C
∞∑
n=1

nα−2(log n)r+

<∞. (3.11)

Similar to the proof of (3.11), and noting that λ < 1−α+ ( r2 − 1)(αp−α),
we obtain

I22 6 C

∞∑
n=1

nαp−2(log n)r+g(n)

( n∑
k=1

a2nkEZ
2
nk

)r/2
6 C

∞∑
n=1

nαp−2(log n)r+g(n)

( n∑
k=1

a2nkEX
2
kI(|Xk| > nα)

)r/2
6 C

∞∑
n=1

nαp−2(log n)r+g(n)

( n∑
k=1

a2nkEX
2I(|X| > nα)

)r/2
6 C

∞∑
n=1

nαp−2−
αr
2
+
α(2−p)r

2 (log n)r+g(n)(E|X|p)r/2
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6 C

∞∑
n=1

n(αp−α)(1−
r
2
)+(α−2)+λ(log n)r+

< ∞.
The proof is completed. �

Remark 3.2 When p > 2, it can been seen that condition (3.8) on the
dominating coefficients is stronger than (3.1). However, Theorem 3.2 considers
the complete moment convergence of higher order than that of Theorem 3.1 in
the case of p > 2.

Theorem 3.3 Assume that (A.1) is satisfied. Let {ank, n > 1, 1 6 k 6 n} be
an array of real numbers satisfying (1.3). If for some p ∈ (1, 2) and r ∈ (1, p],

g(n) = O(nλ) for some λ ∈
[
0,

(1− α)r

2

)
(3.12)

and E|X|p <∞, then (3.9) holds.

Proof We use the same notations as those in the proof of Theorem 3.1. Taking
p < q < 2, by Lemma 2.3, we have (3.10). Noting that q < 2, by Lemma 2.2,
we have

I1 6 C
∞∑
n=1

nαp−2(C + Cg(n))(log n)q+

n∑
k=1

E|ank(Ynk − EYnk)|q.

It follows from Hölder’s inequality and (1.3) that for any β ∈ (0, 2),

n∑
k=1

|ank|β 6
( n∑
k=1

a2nk

)β/2( n∑
k=1

1

)1−β
2

6 Cn−(αβ−2+β)/2. (3.13)

Noting that q > p and λ < (1 − α)r/2, we have q > 2λ/(1 − α). It follows
from (3.13), Lemma 2.4, and E|X|p <∞ that

I1 6
∞∑
n=1

nαp−2g(n)(log n)q+

n∑
k=1

|ank|qE|Ynk|q

6 C

∞∑
n=1

nαp−2g(n)(log n)q+

·
n∑
k=1

|ank|q[nαqP (|Xk| > nα) + E|Xk|qI(|Xk| 6 nα)]

6 C
∞∑
n=1

nαp−2g(n)(log n)q+

n∑
k=1

|ank|qE|X|pnα(q−p)

6 C
∞∑
n=1

n
αq
2
−1− q

2
+λ(log n)q+

< ∞.
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Now, we show I2 < ∞. Similar to the proof of I1 < ∞, it can be argued
that

I2 6 C
∞∑
n=1

nαp−2(C + Cg(n))(log n)r+

n∑
k=1

E|ank(Znk − EZnk)|r.

Noting that λ < (1− α)r/2, by (3.13) and Lemma 2.4, we have

I2 6 C

∞∑
n=1

nαp−2g(n)(log n)r+

n∑
k=1

|ank|rE|Znk|r

6 C

∞∑
n=1

nαp−2+λ(log n)r+

n∑
k=1

|ank|rE|X|rI(|X| > nα)

6 C

∞∑
n=1

n
αr
2
−1− r

2
+λ(log n)r+E|X|p

6 C
∞∑
n=1

n
αr
2
−1− r

2
+λ(log n)r+

< ∞.

The proof is completed. �

Remark 3.3 When 1 < p < 2, it can be seen that condition (3.12) on the
dominating coefficients is stronger than that in (3.1). However, condition (1.4)
is removed and Theorem 3.3 considers the complete moment convergence of
higher order than that of Theorem 3.1 in the case of 1 < p < 2.

4 An application in nonparametric regression model

4.1 Theoretical result

In what follows, we apply the result of Corollary 3.1 to a nonparametric
regression model and investigate the complete consistency for the non-
parametric regression estimator based on WOD errors.

Consider the nonparametric regression model

Ynk = f(xnk) + εnk, k = 1, . . . , n, (4.1)

where xnk are known fixed design points from a given compact set A ⊂ Rm
for some m > 1, f(·) is an unknown regression function defined on A, and εnk
are random errors. Assume that for each n > 1, (εn1, . . . , εnn) have the same
distribution as (ε1, . . . , εn). As an estimator of f(·), the following weighted
regression estimator will be considered:

fnj(x) =

j∑
k=1

Wnk(x)Ynk, j = 1, . . . , n, x ∈ A ⊂ Rm, (4.2)
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where Wnk(x) = Wnk(x;xn1, . . . , xnn), k = 1, . . . , n, are the weight functions.
In the case of j = n, the above estimator with constant weight was first

introduced by Stone [19] and next adapted by Georgive [6] to the fixed design
case. Since then, estimator (4.2) has been researched by many scholars. One
can refer to [8,13,34,36] among others.

For any function f(x), we denote by c(f) the set of continuity points of the
function f on A. The symbol ‖X‖ is the Euclidean norm. For any fixed point
x ∈ A, the following assumptions on weight functions Wnk(x) will be used:

(H1) max16j6n |
∑j

k=1Wnk(x)− 1| → 0 as n→∞;

(H2)
∑n

k=1 |Wnk(x)| 6 C <∞ for all n;

(H3)
∑n

k=1 |Wnk(x)| |f(xnk) − f(x)|I(‖xnk − x‖ > a) → 0 as n → ∞ for
all a > 0.

Based on the assumptions above, we can get the following result on complete
consistency for the maximum of the nonparametric regression estimator fnj(x).

Theorem 4.1 Let 0 < α < 1 and {εn, n > 1} be a sequence of zero mean
WOD random errors which is stochastically dominated by a random error X
with dominating coefficients g(n) = O(nλ) for some λ > 0. Suppose that
conditions (H1)–(H3) hold. If

max
16k6n

|Wnk(x)| = O(n−α) (4.3)

and E|X|2/α <∞, then for any x ∈ c(f),

max
16j6n

|fnj(x)− f(x)| → 0 completely as n→∞. (4.4)

Proof For any a > 0 and x ∈ c(f), it follows from (4.1) and (4.2) that

max
16j6n

|Efnj(x)− f(x)| 6 max
16j6n

∣∣∣ j∑
k=1

Wnk(x)(f(xnk)− f(x))
∣∣∣

+ |f(x)| max
16j6n

∣∣∣ j∑
k=1

Wnk(x)− 1
∣∣∣

6
n∑
k=1

|Wnk(x)| |f(xnk)− f(x)|I(‖xnk − x‖ 6 a)

+
n∑
k=1

|Wnk(x)| |f(xnk)− f(x)|I(‖xnk − x‖ > a)

+ |f(x)| max
16j6n

∣∣∣ j∑
k=1

Wnk(x)− 1
∣∣∣. (4.5)

Since x ∈ c(f), for any r > 0, there exists a θ > 0, such that |f(x′)− f(x)| < r
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when ‖x′ − x‖ < θ. Setting 0 < a < θ in (4.5), we have

max
16j6n

|Efnj(x)− f(x)| 6 r

n∑
k=1

|Wnk(x)|+ |f(x)| max
16j6n

∣∣∣ j∑
k=1

Wnk(x)− 1
∣∣∣

+

n∑
k=1

|Wnk(x)| |f(xnk)− f(x)|I(‖xnk − x‖ > a),

which, together with (H1)–(H3) and the arbitrariness of r > 0, yields that

lim
n→∞

max
16j6n

|Efnj(x)− f(x)| = 0. (4.6)

In view of (4.6), to prove (4.4), it suffices to show for all ε > 0,

∞∑
n=1

P

(
max
16j6n

∣∣∣ j∑
k=1

Wnk(x)εk

∣∣∣ > ε

)
<∞. (4.7)

By (4.3) and (H2), we have

n∑
k=1

W 2
nk(x) 6 max

16k6n
|Wnk(x)|

n∑
k=1

|Wnk(x)| 6 Cn−α. (4.8)

We will apply Corollary 3.1 with Xk = εk, ank = Wnk, and p = 2/α. In view of
(4.8), we obtain (4.2) immediately. The proof is completed. �

Remark 4.1 Compared with [34, Theorem 2.3], we consider a more
generalized WOD setting and the moment condition on random errors is weaker
than that in [34]. Therefore, Theorem 4.1 extends and improves [34, Theorem
2.3] to some extent.

Remark 4.2 Compared with [36, Theorem 1.1], assumption (H1) is stronger
than that in [36]. However, we obtain a much stronger conclusion (4.4) than
that in [36] under the nearly same conditions.

4.2 Numerical simulation

In this subsection, we present a simulation study based on model (4.1). Since
assumption (H1) is too strong to satisfy, we replace (H1) by assumption (H′1)
as follows:

n∑
k=1

Wnk(x)→ 1, n→∞. (4.9)

Therefore, we focus on the consistency for the estimator

fnn(x) =

n∑
k=1

Wnk(x)Ynk. (4.10)
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It is obvious to see that (4.10) is a special case of (4.2). According to
Theorem 4.1, it is easy to see that the estimator fnn(x) converges to f(x)
completely. Now, we will show the numerical performance of fnn(x). First, let
us recall the concept of the nearest neighbor weight function as follows.

Put A = [0, 1] and let xnk = k/n, k = 1, . . . , n. For any x ∈ A, we rewrite
|xn1 − x|, . . . , |xnn − x| as follows:

|xn,R1(x) − x| 6 · · · 6 |xn,Rn(x) − x|.

If |xnk−x| = |xnj−x|, then |xnk−x| is located before |xnj−x| when xnk < xnj .
Let 1 6 kn 6 n, the nearest neighbor weight function is defined as

Wnk(x) =


1

kn
, |xnk − x| 6 |xn,Rkn (x) − x|,

0, otherwise.

For any fixed n > 3, let (ε1, . . . , εn) ∼ Nn(0,Σ), where 0 represents zero vector
and

Σ =


1 + θ2 −θ 0

−θ . . .
. . .

. . .
. . . −θ

0 −θ 1 + θ2


n×n

.

By [10], it can be seen that (ε1, . . . , εn) is an NA vector for each n > 3 with
finite moment of any order, and thus is a WOD vector. We choose casually
that θ = 0.7, kn = bn1/2c, where bxc stands for the integer part of x, and
α = 0.4 in Theorem 4.1. As is stated in [25], assumptions (H′1), (H2), and (H3)
hold true, besides condition (4.3) is easy to be checked. Taking the sample
sizes as n = 100, 200, 300, respectively, we use Matlab software to compute the
estimator fnn(x) of f(x) for 400 times. Figs. 1–3 are the comparison of fnn(x)
and f(x) with f(x) = cos(2πx) and Figs. 4–6 are the comparison of fnn(x) and
f(x) with f(x) = −x3.

For fixed points x = 0.25, 0.5, 0.75, we take the sample sizes as n = 800, 1200,
1600 and use the Matlab software to compute the Mean Square Error (MSE)
of the fnn(x) with 400 times experiments, which is shown in Table 1.

Table 1 MSE of estimator fnn(x)

f(x) x n

800 1200 1600

0.25 0.004981199 0.003750069 0.002819992

cos(2πx) 0.5 0.005251874 0.004430218 0.003085777
0.75 0.004597972 0.003594320 0.003366705

0.25 0.005267617 0.003654640 0.003501542
−x3 0.5 0.004772634 0.003786893 0.002803920

0.75 0.005263979 0.004598840 0.003023554
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Fig. 1 Comparison of fnn(x) and f(x) = cos(2πx) with n = 100
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Fig. 2 Comparison of fnn(x) and f(x) = cos(2πx) with n = 200
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Fig. 3 Comparison of fnn(x) and f(x) = cos(2πx) with n = 300
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Fig. 4 Comparison of fnn(x) and f(x) = −x3 with n = 100
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Fig. 5 Comparison of fnn(x) and f(x) = −x3 with n = 200
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Fig. 6 Comparison of fnn(x) and f(x) = −x3 with n = 300
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It can be seen that no matter whether f(x) = cos(2πx) or f(x) = −x3,
the goodness of fit increases with the increasing of sample size. On the other
hand, for fixed points x = 0.25, 0.5, 0.75, the MSE of the estimator fnn(x)
decreases as the sample size increases. These results basically consistent with
our theoretical result obtained in this paper.
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