
Front. Math. China 2021, 16(4): 979–995
https://doi.org/10.1007/s11464-021-0907-8

Multipliers, covers, and stem extensions
for Lie superalgebras

Wende LIU1, Xingxue MIAO2

1 School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
2 School of Mathematical Sciences, Harbin Normal University, Harbin 150025, China

c©Higher Education Press 2021

Abstract Suppose that the underlying field is of characteristic different
from 2 and 3. We first prove that the so-called stem deformations of a free
presentation of a finite-dimensional Lie superalgebra L exhaust all the
maximal stem extensions of L, up to equivalence of extensions. Then we prove
that multipliers and covers always exist for a Lie superalgebra and they are
unique up to superalgebra isomorphisms. Finally, we describe the multipliers,
covers, and maximal stem extensions of Heisenberg superalgebras and model
filiform Lie superalgebras.
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1 Introduction

The notion of multipliers and covers, which is relative to stem extensions, first
appeared in Schur’s work in the group theory and then was generalized to
Lie algebra case. It proves that the theory of multipliers, covers, and stem
extensions is not only of intrinsic interest, but also of important role in
characterizing algebraic structures, such as in computing second cohomology
with coefficients in trivial modules for groups or Lie algebras.

The study on multipliers of Lie algebras began in 1990s (see [3,11], for
example) and the theory has seen a fruitful development (see [2,4,7,8,13,14,16],
for example). Among them, a typical fact analogous to the one in the group
theory is that the multiplier of a finite-dimensional Lie algebra L is isomorphic
to the second cohomology group of L with coefficients in the 1-dimensional
trivial module (see [1], for example).

The notion of multipliers, covers, and stem extensions may also be
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naturally generalized to Lie superalgebra case. In this paper, we first introduce
the notion of stem denominators and stem deformations for an extension of a
Lie superalgebra and show that all the stem deformations of a free presentation
of a finite-dimensional Lie superalgebra L coincide with all the maximal stem
extensions of L, up to equivalence of extensions. Then we show that multipliers
and covers always exist for a Lie superalgebra and they are unique up to
superalgebra isomorphisms. Finally, we describe multipliers, covers, and
maximal stem extensions for Heisenberg superalgebras of odd centers and model
filiform Lie superalgebras.

2 Stem extensions

Unless otherwise stated, we assume that the underlying field F is of
characteristic different from 2 and 3, and all (super)spaces and (super)algebras
are defined over F. Let Z2 := {0, 1} be the additive group of order 2
and V = V0 ⊕ V1 a superspace, that is, a Z2-graded vector space. For a
homogeneous element x in V, write |x| for the parity of x. The symbol |x|
implies that x has been assumed to be a homogeneous element.

Note that in a superspace, a subsuperspace always has a supplementary
subsuperspace. Moreover, if V is a superspace and W is a subsuperspace of V,
then the quotient space V/W inherits a super structure and every subsuperspace
of V/W is of form X/W, where X is a subsuperspace containing W.

Let us recall the notion of extensions of Lie superalgebras and some basic
properties. By definition, a Lie superalgebra homomorphism is both an even
linear map and an algebra homomorphism and an ideal of a Lie superalgebra
is always a Z2-graded ideal. An extension of a Lie superalgebra L by A is an
exact sequence of Lie superalgebra homomorphisms:

0→ A
α−→ B

β−→ L→ 0. (2.1)

We usually identify A with a subalgebra of B and omit the embedding map α.
Suppose that

0→ C → D
γ−→ L→ 0 (2.2)

is also an extension of L and there is a homomorphism f from extensions (2.1) to
(2.2), that is, a Lie superalgebra homomorphism f : B → D such that γ◦f = β.
Then f maps A into C and f−1(C) = A. Hereafter, we denote by f itself the
restriction f : A→ C. Then the following diagram commutes:

0 // A

f
��

// B

f
��

β // L

id
��

// 0

0 // C // D
γ // L // 0

Clearly, if f : B → D is surjective, then so is its restriction f : A→ C.
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Recall that an extension (2.1) is said to be central if A is contained in the
center Z(B) of B. If X is an ideal of A as well as B, then (2.1) induces an exact
sequence

0→ A/X → B/X
β−→ L→ 0. (2.3)

Hereafter, we denote by β itself the induced map B/X → L.
As in the Lie algebra case, a stem extension of a Lie superalgebra L is a

central extension
0→ S → T → L→ 0

such that S ⊂ [T, T ].
The following properties are analogous to the ones in Lie algebra case (see

[3], for example). Hereafter, we use a partial order in Z× Z as follows:

(m,n) 6 (k, l)⇐⇒ m 6 k, n 6 l. (2.4)

For m,n ∈ Z, we write |(m,n)| = m + n. We also view Z × Z as the additive
group in the usual way.

Lemma 1 Let L be a finite-dimensional Lie superalgebra. Suppose that

0→ S → T
γ−→ L→ 0 (2.5)

is a stem extension of L. Then the following statements hold.

(1) Suppose that sdimL = (s, t). Then both S and T are finite-dimensional
and

sdimS 6
(1

2
s(s− 1) +

1

2
t(t+ 1) + s, st

)
.

(2) S is contained in every maximal subalgebra of T.

(3) Suppose that

0→ A→ B
β−→ L→ 0 (2.6)

is an extension of L and f is a homomorphism of extensions

0 // A

f
��

// B

f
��

β // L

id
��

// 0

0 // S // T
γ // L // 0

(2.7)

Then f must be surjective.

Proof (1) See [10, Lemma 2.3].

(2) Let X be a maximal subalgebra of T. Assume conversely that S 6⊂ X.
Since S ⊂ Z(T ), one sees that S + X = T and then S ⊂ [T, T ] ⊂ X, a
contradiction.

(3) Assume conversely that f(B) 6= T. By (1), T is finite-dimensional.
Then there is a maximal subalgebra X such that f(B) ⊂ X. Note that the
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commutativity of the diagram implies that T = S + f(B). Then, by (2), we
have T ⊂ X, a contradiction. �

Let us explain that an arbitrary extension (2.6) always induces naturally a
central extension and then a stem extension of L. First, by factoring out the
ideal [A,B], we obtain a central extension

0→ A/[A,B]→ B/[A,B]
β−→ L→ 0.

Then, consider any supplementary subsuperspace of A ∩ [B,B]/[A,B] in
A/[A,B], which must be of form X/[A,B], where X is a subsuperspace of
A containing [A,B]. Clearly, X is an ideal of A as well as B. Then we have a
decomposition of ideals:

A/[A,B] = A ∩ [B,B]/[A,B]⊕X/[A,B]. (2.8)

Such a subsuperspace (ideal) X is called a stem denominator of extension (2.6).
Since X ⊂ A and β(A) = 0, we obtain an extension (2.3), which is called a
stem deformation of extension (2.6). By the following proposition, a stem
deformation of an extension is a stem extension.

Proposition 1 Let (2.6) be an extension of Lie superalgebra L. Suppose that
X is a subsuperspace of A and X ⊃ [A,B].

(1) X is a stem denominator of extension (2.6) if and only if

A = A ∩ [B,B] +X, [B,B] ∩X = [A,B]. (2.9)

(2) Suppose that X is a stem denominator of extension (2.6). Then (2.3)
is a stem extension and

A/X ∼= A ∩ [B,B]/[A,B]. (2.10)

(3) For an extension, stem denominators and stem deformations always
exist.

Proof (1) It follows from the fact that (2.9) is equivalent to (2.8).

(2) Since [A,B] ⊂ X, we have [A/X,B/X] = 0. By (2.9), it is clear that
A/X ⊂ [B/X,B/X]. Hence, (2.3) is a stem extension. While (2.10) is a direct
consequence of (2.9).

(3) By the argument before this proposition, one sees that a stem
denominator always exists and so does a stem deformation by (2). �

The following theorem tells us that if a stem extension (S) of a Lie
superalgebra L is a homomorphic image of an extension (E) of L, then (S)
must be a homomorphic image of some stem deformation of (E).

Theorem 1 Let (2.6) be an extension of L and (2.5) a stem extension of L.
Suppose that f : B → T is a homomorphism of extensions (2.7). Then there is
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a stem denominator X of extension (2.6) such that f(X) = 0 and f induces an
epimorphism of extensions

0 // A/X

f
��

// B/X

f
��

β // L

id
��

// 0

0 // S // T
γ // L // 0

Proof By Lemma 1 (3), f is surjective. Then f(A) = S and f−1(S) = A.
Since S ⊂ [T, T ], we have S ⊂ f([B,B]) and S ⊂ f(A ∩ [B,B]). Hence, S =
f(A ∩ [B,B]) and then f(A) = f(A ∩ [B,B]). Consequently,

A = A ∩ [B,B] + ker f. (2.11)

Clearly, [A,B] ⊂ ker f, since S ⊂ Z(T ). By (2.11), there is a subsuperspace
X ⊂ ker f satisfying that [A,B] ⊂ X ⊂ A such that

A = A ∩ [B,B] +X, [B,B] ∩X = [A,B].

By Proposition 1, X is the desired stem denominator. The proof is complete.
�

We shall prove an important fact, which states that a stem extension of L
must be a homomorphic image of a stem deformation of any free presentation
of L. Recall that a Lie superalgebra L always has a free presentation, that is,
an extension

0→ R→ F
π−→ L→ 0 (2.12)

with F being a free Lie superalgebra. Let (2.5) be a stem extension of L. Then
there is a homomorphism of extensions

0 // R

f
��

// F

f
��

π // L

id
��

// 0

0 // S // T
γ // L // 0

As a direct consequence of Theorem 1, we have the following result.

Theorem 2 Suppose that (2.12) is a free presentation of Lie superalgebra L
and (2.5) is a stem extension of L. Then there is a stem denominator X of
(2.12) such that f(X) = 0 and f induces an epimorphism of extensions

0 // R/X

f
��

// F/X

f
��

π // L

id
��

// 0

0 // S // T
γ // L // 0

In view of Lemma 1 (1), the following notion makes sense. A stem extension
of a finite-dimensional Lie superalgebra L,

0→ S → T → L→ 0,
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is called maximal, if among all the stem extensions of L, S is of maximal
superdimension with respect to the partial order (2.4).

Theorem 3 Let L be a finite-dimensional Lie superalgebra and (2.12) a free
presentation. Then, up to equivalence of extensions, the stem deformations of
(2.12) exhaust all the maximal stem extensions of L.

Proof Let

0→M → C
γ−→ L→ 0 (2.13)

be a maximal stem extension of L. By Theorem 2, there is an epimorphism f
of extensions

0 // R/X

f
��

// F/X

f
��

π // L

id
��

// 0

0 //M // C
γ // L // 0

where X is a stem denominator of (2.12) such that f(X) = 0. By the
maximality of (2.13), f is an isomorphism of extensions. By Proposition 1 (2),
M ∼= R ∩ [F, F ]/[F,R] is independent of the choice of X. Hence, every stem
deformation of (2.12) is a maximal stem extension of L. �

3 Multipliers and covers

Analogous to the Lie algebra case, for a finite-dimensional Lie superalgebra L,
if

0→M → C → L→ 0

is a maximal stem extension of Lie superalgebra L, then M is called a multiplier
and C a cover of L.

By Theorem 3, for a finite-dimensional Lie superalgebra, multipliers and
covers always exist. We shall prove that both multipliers and covers are unique
up to superalgebra isomorphisms. We need a technical lemma, which is a
super-version of a result in [3]. Recall that a superalgebra is a superspace with
a bilinear multiplication which is compatible with the Z2-grading structure.

Lemma 2 Let A1, A2, B1, and B2 be superalgebras and

A1 ⊕B1
∼= A2 ⊕B2 (3.1)

as superalgebras. Suppose that A1 and A2 are finite-dimensional and A1
∼= A2

as superalgebras. Then B1
∼= B2 as superalgebras.

Proof By (3.1), one can view A2 andB2 as Z2-graded ideals of the superalgebra
A1 ⊕B1 and then we have

A1 ⊕B1 = A2 ⊕B2. (3.2)
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If A1∩B2 = 0 or A2∩B1 = 0, one may easily see that B1
∼= B2 as superalgebras,

since A1 and A2 are finite-dimensional.
Suppose

A1 ∩B2 6= 0, A2 ∩B1 6= 0.

Note that both A1 ∩ B2 and A2 ∩ B1 are Z2-graded ideals. By (3.2), we have
the following superalgebra isomorphism:

A1

A1 ∩B2
⊕ B1

A2 ∩B1

∼=
A2

A2 ∩B1
⊕ B2

A1 ∩B2
. (3.3)

Then we have the following superalgebra isomorphisms:

A1

A1 ∩B2
⊕ A2

A2 ∩B1
⊕B1

∼=
A2

A2 ∩B1
⊕ A1 ⊕B1

A1 ∩B2

∼=
A2

A2 ∩B1
⊕ A2 ⊕B2

A1 ∩B2

∼=
A2

A2 ∩B1
⊕ B2

A1 ∩B2
⊕A2.

By the symmetry, since A1
∼= A2 as superalgebras, it follows from (3.3) that

the following superalgebra isomorphism holds:

A1

A1 ∩B2
⊕ A2

A2 ∩B1
⊕B1

∼=
A1

A1 ∩B2
⊕ A2

A2 ∩B1
⊕B2.

By induction on dimensions, we have B1
∼= B2 as superalgebras. �

Theorem 4 Let L be a finite-dimensional Lie superalgebra. Up to Lie
superalgebra isomorphisms, there are a unique multiplier and a unique cover
of L, denoted by M (L) and C (L), respectively. Moreover, for any free
presentation of L,

0→ R→ F → L→ 0, (3.4)

(1) M (L) ∼= R ∩ [F, F ]/[F,R],

(2) C (L) ∼= Y/[R,F ], where Y is any subsuperspace of F containing [F, F ]
such that

F/[R,F ] = X/[R,F ]⊕ Y/[R,F ] (3.5)

as superspaces, where X is a stem denominator of (3.4).

Proof By Theorem 3, it suffices to show that both R/X and F/X are
independent of the choice of stem denominator X. Moreover, by Theorem 3
again, one may assume that F is a free Lie superalgebra generated by a finite
homogeneous set, since L is finite-dimensional. Since X is a stem denominator,
we have [F, F ] ∩ X = [R,F ] and then [F, F ]/[R,F ] ∩ X/[R,F ] = 0. Hence,
there is a subsuperspace Y of F containing [F, F ] such that we have a direct
sum decomposition of superspaces (3.5). Since Y ⊃ [F, F ], we have Y C F.
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Hence, (3.5) is also a direct sum decomposition of ideals. Since X is a stem
denominator, we also have a direct sum decomposition of ideals:

R/[R,F ] = R ∩ [F, F ]/[R,F ]⊕X/[R,F ].

Then, up to superalgebra isomorphisms, X/[R,F ] is independent of the choice
of X. Moreover,

X/[R,F ] ∼= R/R ∩ [F, F ] ∼= (R+ [F, F ])/[F, F ] ⊂ F/[F, F ]

is finite-dimensional. Then by Lemma 2, it follows from (3.5) that, up to
superalgebra isomorphisms, F/X ∼= Y/[R,F ] is independent of the choice of X.

�

4 Heisenberg superalgebras

In this section, we compute multipliers, covers, and maximal stem extensions
for Heisenberg superalgebras of odd centers. Recall that a finite-dimensional Lie
superalgebra g is called a Heisenberg (Lie) superalgebra provided that g2 = Z(g)
and dim Z(g) = 1. Heisenberg superalgebras consist of two types (see [15]).

(1) A Heisenberg superalgebra of even center, denoted by H(p, q) with
p+ q > 1, has a homogeneous basis (called standard)

{u1, . . . , up, v1, . . . , vp, z | w1, . . . , wq},

where

|ui| = |vj | = |z| = 0, |wk| = 1, 1 6 i, j 6 p, 1 6 k 6 q,

and the multiplication is given by

[ui, vi] = −[vi, ui] = z, [wk, wk] = z,

and the other brackets of basis elements vanishing.

(2) A Heisenberg superalgebra of odd center, denoted by H(n) with n > 1,
has a homogeneous basis (called standard)

{u1, . . . , un | z, w1, . . . , wn},

where

|ui| = 0, |wj | = |z| = 1, 1 6 i 6 m, 1 6 j 6 n,

and the multiplication is given by

[ui, wi] = −[wi, ui] = z

and the other brackets of basis elements vanishing.
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In [10, Proposition 4.4] (see also [12, Theorem 4.3]), the authors characterize
the multipliers of Heisenberg superalgebras of even centers:

sdimM (H(p, q)) =


(

2p2 − p+
1

2
q2 +

1

2
q − 1, 2pq

)
, p+ q > 2,

(0, 0), p = 0, q = 1,

(2, 0), p = 1, q = 0.

Let us give a maximal stem extension of Heisenberg superalgebra H(n).
Suppose that

0→W → K → H(n)→ 0

is a stem extension. Then

W ⊂ K2 ∩ Z(K), K/W ∼= H(n).

Thus, K/W has a standard basis

{a1 +W, . . . , an +W | c+W, b1 +W, . . . , bn +W},

where ai, bi, c ∈ K with

|ai| = 0, |bi| = |c| = 1.

So one may assume that

[ai, aj ] = yi,j , 1 6 i < j 6 n,

[ai, bj ] =

{
c+ yi, 1 6 i = j 6 n,
zi,j , 1 6 i 6= j 6 n,

[ai, c] = mi, [bi, c] = ni, 1 6 i 6 n,

[bi, bj ] = wi,j , 1 6 i 6 j 6 n,

[c, c] = t,

where yi,j , yi, zi,j , mi, wi,j , ni, t ∈W and

|yi,j | = |ni| = |wi,j | = |t| = 0, |yi| = |zi,j | = |mi| = 1.

Furthermore, without loss of generality, one may assume y1 = 0. Note that

ni = [bi, [ai, bi]] =
1

2
[ai, [bi, bi]] = 0, t = [c, [a1, b1]] = 0.

Then we rewrite
[ai, aj ] = yi,j , 1 6 i < j 6 n,

[a1, b1] = c, [c, c] = 0,

[ai, bi] = c+ yi, 2 6 i 6 n,
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[ai, bj ] = zi,j , 1 6 i 6= j 6 n,

[ai, c] = mi, [bi, c] = 0, 1 6 i 6 n,

[bi, bj ] = wi,j , 1 6 i 6 j 6 n.

Now, it is obvious that W is spanned by the following elements:

yi,j , 1 6 i < j 6 n,

yi, 2 6 i 6 n,

zi,j , 1 6 i 6= j 6 n,

mi, 1 6 i 6 n,

wi,j , 1 6 i 6 j 6 n.

Then K is spanned by a1, . . . , an, b1, . . . , bn, c, and the elements displayed
above.

Case 1 n = 1.
Suppressing all the subscripts, we have

[a, b] = c, [a, c] = m, [b, b] = w, [b, c] = [c, c] = 0.

Then W is generated by w and m. Hence, sdimW 6 (1 | 1).

Now, let Ĥ(1) be a superspace with a basis (â, ŵ | b̂, ĉ, m̂). Then Ĥ(1)
becomes a Lie superalgebra by letting

[â, b̂] = −[̂b, â] = ĉ, [â, ĉ] = −[ĉ, â] = m̂, [̂b, b̂] = ŵ,

and the other brackets of basis elements vanish. Let M̂H(1) be the subsuper-
space spanned by ŵ and m̂. Then

M̂H(1) ⊂ Ĥ(1)2 ∩ Z(Ĥ(1)), Ĥ(1)/M̂H(1) ∼= H(1).

Since sdimM̂H(1) = (1 | 1), one sees that

0→ M̂H(1)→ Ĥ(1)→ H(1)→ 0

is a maximal stem extension of H(1). In particular, M̂H(1) is a multiplier and

Ĥ(1) a cover of H(1).

Case 2 n > 2.
Fix any i and take j 6= i. One may check that

mi = [ai, [aj , bj ]] = 0.

Then W is spanned by the following elements:

yi,j , 1 6 i < j 6 n,
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yi, 2 6 i 6 n,

zi,j , 1 6 i 6= j 6 n,

wi,j , 1 6 i 6 j 6 n.

Hence, sdimW 6 (n2 | n2 − 1).

Now, let Ĥ(n) with n > 2 be a superspace with a basis consisting of even
elements

âi, 1 6 i 6 n,

ŷi,j , 1 6 i < j 6 n,

ŵi,j , 1 6 i 6 j 6 n,

and odd elements ĉ as well as

b̂i, 1 6 i 6 n,

ŷi, 2 6 i 6 n,

ẑi,j , 1 6 i 6= j 6 n.

Then one may check that Ĥ(n) becomes a Lie superalgebra by letting

[âi, âj ] = −[âj , âi] = ŷi,j , [̂bi, b̂j ] = −[̂bj , b̂i] = ŵi,j , 1 6 i < j 6 n,

[â1, b̂1] = −[̂b1, â1] = ĉ,

[âi, b̂i] = −[̂bi, âi] = ĉ+ ŷi, 2 6 i 6 n,

[âi, b̂j ] = −[̂bj , âi] = ẑi,j , 1 6 i 6= j 6 n,

and the other brackets of basis elements vanish. Let M̂H(n) be the subsuper-
space spanned by ŷi,j , ŵi,j , ŷi, ẑi,j . Then

M̂H(n) ⊂ Ĥ(n)2 ∩ Z(Ĥ(n)), Ĥ(n)/M̂H(n) ∼= H(n).

Since sdimM̂H(n) = (n2 | n2 − 1), one sees that

0→ M̂H(n)→ Ĥ(n)→ H(n)→ 0 (4.1)

is a maximal stem extension and then M̂H(n) is a multiplier and Ĥ(n) a cover
of H(n). Summarizing, we have the following result.

Theorem 5 Let n be a positive integer. Then (4.1) is a maximal stem

extension of H(n). In particular, Ĥ(n) is the cover of H(n) and

sdim M (H(n)) =

{
(n2 | n2 − 1), n > 2,

(1 | 1), n = 1.
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5 Model filiform Lie superalgebras

Suppose that n is a positive integer and m a nonnegative integer. Let F (n,m)
be a Lie superalgebra with basis

{x0, . . . , xn | y1, . . . , ym},

where
|xi| = 0, |yj | = 1, 0 6 i 6 n, 1 6 j 6 m,

and multiplication given by

[x0, xi] = xi+1, [x0, yj ] = yj+1,

and the other brackets of basis elements vanishing. It is easy to see that F (n,m)
is a nilpotent Lie superalgebra of super-nilindex (n,m) (see [9], for example).
Note that F (1, 0) is an abelian Lie algebra and F (1, 1) is an abelian Lie super-
algebra. Note that F (n, 0) with n > 1 is just the model filiform Lie algebra of
nilindex n (see [5], for example). We call F (n,m) with (n,m) 6= (1, 0), (1, 1) the
model filiform Lie superalgebra of super-nilindex (n,m) (see [5,6], for example).

Let us give a maximal stem extension of F (n,m). Suppose that

0→W → K → F (n,m)→ 0

is a stem extension. Then

W ⊂ K2 ∩ Z(K), K/W ∼= F (n,m).

Thus, K/W has a standard basis

{a0 +W, . . . , an +W | b1 +W, . . . , bm +W},

where ai, bj ∈ K with |ai| = 0, |bj | = 1. Then we have

[a0, ai] = ai+1 + xi, 1 6 i 6 n− 1,

[ai, aj ] = yi,j , 1 6 i < j 6 n,

[a0, bj ] = bj+1 + yj , 1 6 j 6 m− 1,

[bi, bj ] = zi,j , 1 6 i 6 j 6 m,

[ai, bj ] = ti,j , 1 6 i 6 n, 1 6 j 6 m,

where xi, yi,j , yj , zi,j , ti,j ∈W and

|xi| = |yi,j | = |zi,j | = 0, |yj | = |ti,j | = 1.

Since W ⊂ Z(K), without loss of generality, one may assume that xi = yj =
0. Moreover, using the super Jacobi identity, one may check the following
identities:
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(1) yi,j+1 = −yi+1,j for 1 6 i, j 6 n− 1;

(2) ti,j+1 = −ti+1,j for 1 6 i 6 n− 1, 1 6 j 6 m− 1;

(3) t1,j+1 = 0 for 1 6 j 6 m− 1;

(4) ti+1,1 = 0 for 1 6 i 6 n− 1;

(5) zi,j+1 = −zi+1,j for 1 6 i 6= j 6 m− 1;

(6) 2zj,j+1 = 0 for 1 6 j 6 m− 1.

Case 1 n > 2, m = 0.
In this case, F (n, 0) is a model filiform Lie algebra. By (1), we rewrite

[a0, ai] = ai+1, 1 6 i 6 n− 1,

[a1, a2] = y1,2, [an−1, an] = yn−1,n,

[ai, aj ] = yi,j = −yi+1,j−1 = −[ai+1, aj−1], 2 < j − i being odd.

Now, it is obvious that W is spanned by the elements yi,i+1, 1 6 i 6 n − 1.
Hence, sdimW 6 (n−1 | 0). Then K is spanned by a0, . . . , an and the elements
displayed above.

Now, let F̂ (n, 0) with n > 2 be a superspace with a basis consisting of

even elements âi, 0 6 i 6 n; ŷj , 2 6 j 6 n. Then one may check that F̂ (n, 0)
becomes a Lie superalgebra by letting

[â0, âi] = −[âi, â0] = âi+1, 1 6 i 6 n− 1,

[â1, â2] = −[â2, â1] = ŷ2, [ân−1, ân] = −[ân, ân−1] = ŷn,

[âi, âj ] = −[âj , âi] = −[âi+1, âj−1] = [âj−1, âi+1] = ŷj−1, 2 < j − i being odd,

and the other brackets of basis elements vanish. Let M̂F (n, 0) be the
subsuperspace spanned by all ŷj . Then

M̂F (n, 0) ⊂ F̂ (n, 0)2 ∩ Z(F̂ (n, 0)), F̂ (n, 0)/M̂F (n, 0) ∼= F (n, 0).

Since sdimM̂F (n, 0) = (n− 1 | 0), one sees that

0→ M̂F (n, 0)→ F̂ (n, 0)→ F (n, 0)→ 0

is a maximal stem extension of F (n, 0). In particular, M̂F (n, 0) is a multiplier

and F̂ (n, 0) a cover of F (n, 0).

Case 2 n > 2, m = 1.
By (1) and (4), we rewrite

[a0, ai] = ai+1, 1 6 i 6 n− 1,

[a1, a2] = y1,2, [an−1, an] = yn−1,n,

[ai, aj ] = yi,j = −yi+1,j−1 = −[ai+1, aj−1], 2 < j − i being odd,

[a1, b1] = t1,1, [b1, b1] = z1,1.
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Now, it is obvious that W is spanned by the elements t1,1, z1,1, yi,i+1, 1 6
i 6 n − 1. Hence, sdimW 6 (n | 1). Then K is spanned by a0, . . . , an and the
elements displayed above.

Now, let F̂ (n, 1) with n > 2 be a superspace with a basis consisting of even
elements ẑ,

âi, 0 6 i 6 n; ŷj , 2 6 j 6 n,

and odd element t̂. Then one may check that F̂ (n, 1) becomes a Lie superalgebra
by letting

[â0, âi] = −[âi, â0] = âi+1, 1 6 i 6 n− 1,

[â1, â2] = −[â2, â1] = ŷ2, [ân−1, ân] = −[ân, ân−1] = ŷn,

[âi, âj ] = −[âj , âi] = −[âi+1, âj−1] = [âj−1, âi+1] = ŷj−1, 2 < j − i being odd,

[â1, b̂1] = −[b̂1, â1] = t̂, [̂b1, b̂1] = −[b̂1, b̂1] = ẑ,

and the other brackets of basis elements vanish. Let M̂F (n, 1) be the
subsuperspace spanned by t̂, ẑ, and all ŷj . Then

M̂F (n, 1) ⊂ F̂ (n, 1)2 ∩ Z(F̂ (n, 1)), F̂ (n, 1)/M̂F (n, 1) ∼= F (n, 1).

Since sdimM̂F (n, 1) = (n | 1), one sees that

0→ M̂F (n, 1)→ F̂ (n, 1)→ F (n, 1)→ 0

is a maximal stem extension of F (n, 1). Then M̂F (n, 1) is a multiplier and

F̂ (n, 1) a cover of F (n, 1).

Case 3 n,m > 2.
By (1), (2), (5), and (6), we rewrite

[a0, ai] = ai+1, 1 6 i 6 n− 1,

[a1, a2] = y1,2, [an−1, an] = yn−1,n,

[ai, aj ] = yi,j = −yi+1,j−1 = −[ai+1, aj−1], 2 < j − i being odd,

[a0, bj ] = bj+1, 1 6 j 6 m− 1,

[a1, b1] = t1,1, [an, bm] = tn,m,

[ai, bj ] = ti,j = −ti+1,j−1 = −[ai+1, bj−1], 1 6 i 6 n− 1, 2 6 j 6 m.

Now, it is obvious that W is spanned by the following elements:

yi,i+1, 1 6 i 6 n− 1,

ti,1, 1 6 i 6 n,

tn,j , 2 6 j 6 m.
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Hence, sdimW 6 (n−1 | n+m−1). ThenK is spanned by a0, . . . , an, b1, . . . , bm,
and the elements displayed above.

Now, let F̂ (n,m) with n,m > 2 be a superspace with a basis consisting of
even elements

âi, 0 6 i 6 n; ŷj , 2 6 j 6 n,

and odd elements

b̂p, 1 6 p 6 m; t̂q, 2 6 q 6 m+ n.

Then one may check that F̂ (n,m) becomes a Lie superalgebra by letting

[â0, âi] = −[âi, â0] = âi+1, 1 6 i 6 n− 1,

[â1, â2] = −[â2, â1] = ŷ2, [ân−1, ân] = −[ân, ân−1] = ŷn,

[âi, âj ] = −[âj , âi] = −[âi+1, âj−1] = [âj−1, âi+1] = ŷj−1, 2 < j − i being odd,

[â0, b̂p] = −[̂bp, â0] = b̂p+1, 1 6 p 6 m− 1,

[â1, b̂1] = −[̂b1, â1] = t̂2, [ân, b̂m] = −[̂bm, ân] = t̂m+n,

[âi, b̂p] = −[̂bp, âi] = −[âi+1, b̂p−1] = [̂bp−1, âi+1] = t̂i+p,

1 6 i 6 n− 1, 2 6 p 6 m.

and the other brackets of basis elements vanish. Let M̂F (n,m) be the
subsuperspace spanned by all ŷj and t̂q. Then

M̂F (n,m) ⊂ F̂ (n,m)2 ∩ Z(F̂ (n,m)), F̂ (n,m)/M̂F (n,m) ∼= F (n,m).

Since sdimM̂F (n,m) = (n− 1 | m+ n− 1), one sees that

0→ M̂F (n,m)→ F̂ (n,m)→ F (n,m)→ 0

is a maximal stem extension of F (n,m). In particular, M̂F (n,m) is a multiplier

and F̂ (n,m) a cover of F (n,m).

Case 4 n = 1, m > 2.
By (3), (5), and (6), we rewrite

[a0, bj ] = bj+1, 1 6 j 6 m− 1,

[a1, b1] = t1,1.

Now, it is obvious that W is spanned by the element t1,1. Hence, sdimW 6
(0 | 1). Then K is spanned by a0, a1, b1, . . . , bm and the elements displayed
above.

Now, let F̂ (1,m) with m > 2 be a superspace with a basis consisting of even

elements â0, â1 and odd elements t̂, b̂p, 1 6 p 6 m.
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Then one may check that F̂ (1,m) becomes a Lie superalgebra by letting

[â0, b̂p] = −[̂bp, â0] = b̂p+1, 1 6 p 6 m− 1,

[â1, b̂1] = −[b̂1, â1] = t̂,

and the other brackets of basis elements vanish. Let M̂F (1,m) be the sub-
superspace spanned by t̂. Then

M̂F (1,m) ⊂ F̂ (1,m)2 ∩ Z(F̂ (1,m)), F̂ (1,m)/M̂F (1,m) ∼= F (1,m).

Since sdimM̂F (1,m) = (0 | 1), one sees that

0→ M̂F (1,m)→ F̂ (1,m)→ F (1,m)→ 0

is a maximal stem extension of F (1,m). In particular, M̂F (1,m) is a multiplier

and F̂ (1,m) a cover of F (1,m).
Summarizing, we have the following result.

Theorem 6 Let n and m be positive integers. Then

0→ M̂F (n,m)→ F̂ (n,m)→ F (n,m)→ 0

is a maximal stem extension of the model filiform Lie superalgebra F (n,m). In

particular, F̂ (n,m) is the cover of F (n,m) and

sdim M (F (n,m)) =


(n− 1 | 0), n > 2, m = 0,

(n | 1), n > 2, m = 1,

(n− 1 | n+m− 1), n > 2, m > 2,

(0 | 1), n = 1, m > 2.
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