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Abstract The Fourier matrix is fundamental in discrete Fourier transforms
and fast Fourier transforms. We generalize the Fourier matrix, extend the
concept of Fourier matrix to higher order Fourier tensor, present the spectrum
of the Fourier tensors, and use the Fourier tensor to simplify the high order
Fourier analysis.
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1 Introduction

Fourier analysis has been appeared in many fields such as seismology, crystal-
lography, sonar, and many other applications [1,5,6]. Fourier transformation
was first implemented on finite circles before its extension to Fourier series.
Clairaut introduced the discrete Fourier transform (DFT) in 1754 and
employed the DFT to determine the orbits of the astroids. Gauss initialized the
fast Fourier transform (FFT) in 1805 ([3,4]) while computing the eccentricity of
the orbit of the asteroid Juno [3], which was neglected and was rediscovered by
Cooley and Tukey in an important paper [4], which leads to the wide adoption
of DFT thereafter. Dirichlet showed by FFT the existence of infinite number
of primes in any arithmetic progression (see [17]). Goertzel [7] significantly
improved the efficiency of FFT by the symmetry of trigonometric functions, and
Good [8] essentially developed a prime-factor FFT. The classical FFT method
is implemented through Butterfly processing (also called the divide and conquer
technique) where the summands are equally grouped iteratively. This technique
can reduce the original complexity of the computation of DFT from O(N2) to
O(N log2N).

The DFT provides an approximation to the continuous Fourier transform
and can be used to solve many discrete problems in number theory [18], graph
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theory and group theory [19], as well as problems in physics, statistics, and
error-correcting codes, computing the eigenvalues of the adjacency matrix of
a graph. DFT can also be used to diagonalize the adjacency operators of the
Cayley graphs defined on the cyclic group Zn.

In this paper, we want to rediscover the properties of the classical Fourier
matrices and extend them to higher order tensors, i.e., the Fourier tensors. We
show that the higher order Fourier transform can be handled much more easily
by the introduction of the Fourier tensors. We also investigate the spectrum of
the Fourier tensors based on that of the Fourier matrices.

Throughout, we use lowercase and uppercase, respectively, for vectors and
matrices or groups, and slant font or the math font, e.g., Z,V,W, etc. for
tensors. For the detailed information on tensor theory, we refer the reader to
a recent book on tensors [16]. Denote by [n] the set {1, 2, . . . , n} and [n]0 the
set [n] ∪ {0} for any positive integer n. Denote by ei the (i + 1)th coordinate
vector in C n for i ∈ [n− 1]0, so

e0 = (1, 0, 0, . . . , 0)>, e1 = (0, 1, 0, 0, . . . , 0)>, . . . , en−1 = (0, 0, . . . , 0, 1)>.

For any positive integers m,n, we denote

S(m,n) = {(i1, i2, . . . , im) : ik ∈ [n]}

and

S(k;m,n) = {σ ∈ S(m,n) : s(σ) = m+ k},

where s(σ) denotes the sum of all elements of σ. Let G := {g0, g1, . . . , gn−1}
denote the additive group Zn := Z/nZ, where gi = i ∈ Zn representing the class
of integers a ≡ i (modn). Let L2(G ) be the set of complex-valued functions
defined on G and f := (f1, f2, . . . , fn)>, where fi = f(gi−1). The inner product
on L2(G ) is defined as

〈f, g〉 =
∑
x∈G

f(x)g(x). (1)

The Fourier transform (FT) of a function f(x) on R (the field of real numbers)
is defined by

F(f)(s) := f̂(s) =

∫ ∞
−∞

exp(−2πısx)f(x)dx (2)

(the symbol ı is the imaginary unit
√
−1 ), while the inverse Fourier transform

(IFT) of a function g(s) is defined as

F−1(g) := ǧ(t) =

∫ ∞
−∞

exp(2πıst)f(s)ds. (3)

An alternate for notation f̂ (resp., f̌) is (f )̂ (resp., (f )̌) or F(f) when f is an
expression. Note that all integrals appeared here are assumed to be finite.
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We note that (2) and (3) can be generalized to multivariate functions. Let
f be defined on Rn. The FT of f(x) is defined as

f̂(t) =

∫ ∞
−∞

exp(−2πıt>x)f(x)dx, (4)

where x, t ∈ Rn, dx := dx1dx2 · · · dxn, and t>x = 〈t,x〉 is the inner product
of t and x. We list some examples to illustrate the effects of the FT on some
simple functions.

Example 1 The triangle function Λ(x) is defined by

Λ(x) =

{
1− |x|, x ∈ [−1, 1],

0, otherwise.
(5)

Then

Λ̂ =
(sinπs

πs

)2
= sinc2(s).

As the second example, we take the exponential decay function which is defined
by

f(x) =

{
e−ax, x > 0,

0, otherwise.
(6)

A simple calculation tells that

f̂(s) =
1

a+ 2πıs
,

where a > 0 is a positive constant.
The third one in this example is the Gaussian function furnished by g(x) =

e−πx
2
. A quick check shows that ĝ = g since ĝ(s) = e−πs

2
. The meaning of this

fact is not clear so far to us.

The convolution of functions f(x) and g(x), denoted by h(t) = f ◦ g, is
defined as

h(t) =

∫ ∞
−∞

f(x)g(t− x)dx. (7)

Generally speaking, the convolutions are used for smoothing and averaging. For
example, the solution to the heat equation defined on a circle can be expressed
as a convolution of the initial heat distribution with Green’s function (see, e.g.,
[1,9]). For the recent work on the tensor expression of a convolution, we refer
to [21]. Now, we are ready to list some basic properties which may be useful in
the following argument.

Lemma 1 (i) (f̂ )̌ = f, (ǧ)̂ = g;

(ii) f(0) =
∫∞
−∞ f̂(s)ds, f̂(0) =

∫∞
−∞ f(s)ds;

(iii) f̂(−s) = f̌(s), f̌(−t) = f̂(t);
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(iv) (f(x+ b))̂ = e2πısb(f(x))̂, where b is any real constant;

(v) (f(at))̂ = |a|−1(f(s/a))̂, where a is a nonzero real constant;

(vi) (f ◦ g)̂ = f̂ ĝ.

By Lemma 1 (iv), (v), and the fact that (e−πx
2
)̂ = e−πs

2
in Example 1, we

can calculate the FT of the Gaussian with mean µ = 0 and standard deviation
σ, i.e.,

g(x) =
1√
2π σ

e−x
2/(2σ2),

as
ĝ(s) = exp(−2π2σ2s2).

For more information on Fourier transform, we refer the reader to [9]. In
the next section, we will turn to the DFT.

2 DFT and generalized Fourier matrices

The DFT is a discrete approximation of the Fourier transform in the continuous
case. It takes a vector as an input and returns another vector of the same
dimension as an output. The DFT converts a finite sequence of data, usually
expressed as a vector of samples of an instant function separated by sample time,
into a sequence of equally-spaced samples which are a complex-valued function
values of frequency. If the original sequence spans all the non-zero values of a
function, then its discrete time Fourier transform (DTFT) is continuous and
periodic, and the DFT provides discrete samples of one cycle. If the original
sequence is one cycle of a periodic function, then the DFT provides all the
non-zero values of one DTFT cycle.

To be specific, we denote ω := e−2ıπ/n and U := {1, ω, ω2, . . . , ωn−1} is
the set of n-unit roots. For simplicity, we sometimes denote ωk := ωk for
k ∈ [n − 1]0. Write up := (up1, u

p
2, . . . , u

p
n)> (the p-power of a vector u) for a

vector u = (u1, u2, . . . , un)> ∈ C n, where p is an integer. Thus, u0 = ` is the
vector of all-ones, u1 = u. Note that some entries of up can be the infinity if
the corresponding coordinate of u is zero and p < 0.

For our convenience, we index vectors and matrices from 0 to n− 1. Thus,
a column vector x ∈ C n is written as x = (x0, x1, . . . , xn−1)> and an n × n
matrix A = (aij) takes i, j ∈ [n− 1]0. The Fourier matrix

Fn := Fn(ω) = (Fjk)

is defined as the n× n complex matrix with

Fjk =
1√
n

exp
(
− ı2πjk

n

)
=

1√
n
ωjk.

Note that Fn is symmetric for all positive integers n. In the following, we may
use F to replace Fn for simplicity when no risk of confusion arises. Given any



Fourier matrices and Fourier tensors 1103

u ∈ U, denote
ηu = (1, u, u2, . . . , un−1)> (8)

and
F (u) = n−1/2[η0

u, η
1
u, . . . , η

n−1
u ].

Furthermore, we denote ηk := ηωk
for each k ∈ [n−1]. For any positive integers

p, q, we denote (p, q) for the greatest common divisor of p and q. Then we have
the following result.

Lemma 2 For any positive integer k ∈ [n − 1], F (ωk) is nonsingular if and
only if (k, n) = 1, i.e., k and n are coprime.

Proof By the formula of the Vandermonde determinant, we know that

det(F (u)) =
∏

06i<j6n−1

(uj − ui). (9)

We now write the set of n-unit roots as U := {u0, u1, . . . , un−1} in which up =
ωp = ωp for p ∈ [n − 1]0, and let Uk := {uk0, uk1, . . . , ukn−1} for k ∈ [n − 1]. We

note by (9) that det(F (uk)) 6= 0 if and only if all the n elements in Uk are
distinct, which is equivalent to condition (k, n) = 1 by the elementary number
theory. �

We call a matrix Fn(ωk) generalized Fourier matrix (GF-matrix) generated
by ωk when k ∈ [n − 1] is coprime with n and denote it by F [n, k]. Thus, the
Fourier matrix Fn = F [n, 1] is a GF-matrix generated by ω = ω1. Given any
integer n > 1, there are exactly φ(n) + 1 GF-matrices of size n×n, where φ(n)
is the Euler function, the number of integers coprime to n (excluding 1). For
example, there are two GF-matrices of size 4× 4:

F4 = F [4, 1], F [4, 3] = F4(ω3).

There are 4 GF-matrices of size 5 × 5 since (k, 5) = 1 for all k = 1, 2, 3, 4.
Actually, for any prime number n, we have n − 1 GF-matrices of size n × n.
More generally, we let

n = pr11 p
r2
2 · · · p

rs
s

be the prime decomposition of n, where p1, p2, . . . , ps > 1 are the prime factors
of n ordered increasingly. By the Eulerian formula, we have

φ(n) = n
(

1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

ps

)
.

Thus, we can calculate the number of GF-matrices for each n.
To investigate the properties of the Fourier matrices, we write η := ηω. Then

Fn = [η0, η1, . . . , ηn−1].

Denote by Hk = (hij) ∈ Rk×k the permutation matrix with

hij = 1⇐⇒ i+ j = k,
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and

Pn =


1
0 1

. .
.

1 0

 . (10)

Thus, Pn = diag(1, Hn−1) is an n × n permutation matrix. Pn is also a left-
transit cyclic matrix determined by e>0 (the first row of Pn). We note that
P2 = I2 is the identity matrix. Since η1 = ηω0 = n−1/2`, we have

Fn(ω0) = n−1/2Jn,

where Jn is the n× n matrix of all-ones. For k ∈ [n− 1], we have the following
result.

Lemma 3 For each k ∈ [n− 1], we have

[Fn(ωk)]
2 = Pn. (11)

Proof It is easy to see that F 2
2 = I2 = P2. For each k ∈ [n − 1], ωk = ωk

satisfies
1 + ωk + ω2

k + · · ·+ ωn−1
k = 0, ∀ k = 1, 2, . . . , n− 1, (12)

since
0 = 1− ωnk = (1− ωk)(1 + ωk + ω2

k + · · ·+ ωn−1
k ).

On the other hand,
1 + ω0 + ω2

0 + · · ·+ ωn−1
0 = n. (13)

We show that (11) is valid for k = 1. For this purpose, we write F := Fn(ω)
and denote F 2 = [f0, f1, . . . , fn−1], where fj is the (j + 1)th column vector of
F 2. Then we have

(f0)i = (Fη0)i =
1

n

n−1∑
k=0

(ηk)i =
1

n

n−1∑
k=0

ωki =
1

n

n−1∑
k=0

ωki .

Thus, f0 = e0 ∈ Rn since (f0)0 = 1 by (13) and (f0)i = 0 for each i ∈ [n − 1]
by (12). We note that this technique can be employed to confirm the equality
fj = en+1−j for all j ∈ [n− 1]. The proof is completed. �

The DFT of an input x ∈ Rn, denoted by x̂ or (x)̂, is defined by

x̂ = (y0, y1, . . . , yn−1)> = Fnx,

that is,

yi :=
∑
k∈Zn

ωikxk = 〈ηj ,x〉, j = 1, 2, . . . , n,

where n ≡ 0 (modn) and ηj = ηωj is defined as above. We define

x− = (xn, xn−1, . . . , x1)>
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as the reverse of x, i.e., x−i = xn−i for all i ∈ [n − 1]0 (n ≡ 0 (modn)). Let
A = [A0, A1, . . . , An−1] ∈ Cm×n be any matrix and denote

A− := [A−0 , A
−
1 , . . . , A

−
n−1].

It is easy to see that
e−k = e−k, ω−k = ωn−k.

Here, we use the subscript −k instead of n − k to indicate the symmetry.
Furthermore, we have

(ηj)
− = η−j , (η−j)

− = ηj , ∀ j = 0, 1, 2, . . . , n− 1.

We can now rewrite (11) as
F 2
n = I−n (14)

since by definition,

I−n = [e−0 , e
−
1 , . . . , e

−
n−1] = [en, en−1, . . . , en−(n−1)] = [e0, en−1, . . . , en−(n−1)],

which is exactly Pn. By Lemma 3, we get (14). Note that en ≡ e0 whose unique
nonzero coordinate is the first one, which is 1.

From Lemma 3, we get the following result.

Corollary 1 For each j ∈ [n], define ηj = ηωj as

ηj :=
1√
n

(1, ωj , ω
2
j , . . . , ω

n−1
j )> ∈ Cn (15)

and denote ωj = ωj . Then we have

(i) Fn(ωk)
4 = In for k ∈ [n− 1];

(ii) Fn(ω−k)
−1 = Fn(ωk)

− = Fn(ωk)Pn;

(iii) (ηk )̂ = e−k for all k ∈ [n− 1]0;

(iv) (x−)̂ = (x̂)− for all x ∈ Rn.

From Corollary 1 (ii), we have

F−n = F−1
n = [η0, ηn−1, ηn−2, . . . , η1].

Furthermore, we have η̂k = en−k for all k ∈ [n− 1]0.
Given a vector x ∈ C n, a Vandermonde matrix (V-matrix) associated with

x is defined as an n×nmatrix V (x) := (Vij), where Vij = xji for all i, j ∈ [n−1]0.
The GF-matrix Fn(ωk) is exactly the Vandermonde matrix V (ηk). An m-order
Vandermonde tensor or V-tensor of type I generated by x is defined as a tensor
V = (Vi1i2···im), where

Vi1i2···im = x
(i2−1)(i3−1)···(im−1)
i1

. (16)
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W is called a V-tensor of type II, if there exists an (m− 1)-order n-dimensional
tensor B = (Bi1i2···im−1) such that

Wi1i2···im = Bim−1
i1i2···im−1

.

Recall that an mth order n-dimensional symmetric tensor A = (Aτ ) is called a
Hankel tensor (associated with v), if there exists v = (v0, v1, . . . , vN )> such that
∀ k ∈ [N ]0, Aτ = vk for all τ ∈ S(k;m,n). A Hankel tensor A is an elementary
Hankel tensor, if it is associated with a coordinate vector er ∈ RN+1. Denote Hr

for the elementary Hankel tensor associated with er ([20,21]). The elementary
Hankel tensor Hr is closely related to the convolution operators [21].

The Fourier matrix is a kind of V-matrix. To see this, we denote

ωk := ωk = exp
{
− 2πık

n

}
,

where

ω := exp
{
− 2πı

n

}
, W := {ωk : k ∈ [n]},

noting that ωn = 1. Then W is a cyclic group generated by ω1 and each ωk
has a unique inverse ωn−k for k ∈ [n]. Recall ηj in (15) and note that ηn =
(1, 1, . . . , 1)> is the vector of all-ones. The following lemma will be used later.

Lemma 4
〈ηi, ηj〉 = δij , ∀ i, j ∈ [n], (17)

where the Kronecker delta δij takes value in {0, 1} and is equal to 1 if and only
if i = j. Here, the inner product is defined as

〈x,y〉 = y∗x =

n∑
k=1

xkyk,

where x = (x1, x2, . . . , xn)>, y = (y1, y2, . . . , yn)> ∈ Cn.

Proof We note that ωi = ωn−i. By (15), we have

〈ηi, ηj〉 =
1

n

n∑
k=1

(ωiωj)
k−1 =

n∑
k=1

(ωi−j)
k−1 (18)

with j − i (modn) ∈ [n]. If i 6= j, then i − j (modn) ∈ [n − 1], thus, ωi−j ∈
{ω1, ω2, . . . , ωn−1}, and so

n∑
k=1

(ωi−j)
k−1 = 0.

For i = j, we have 〈ηi, ηi〉 = 1. Thus, (17) is proved. �
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The Fourier matrix is useful in the DFT of one-dimensional signals. For the
multi-order DFT (or the multi-dimensional DFT), say, an m-order DFT, with
length n along each mode, we need to calculate mn numbers of one-dimensional
(1-D) DFT if the DFT is based upon the 1-D formula.

In the following, we extend Fourier matrices to Fourier tensors in order to
define a higher order DFT. The DFT on a square image comprising of n × n
pixels requires a 4-order Fourier tensor to implement the calculation, which can
be done compactly in one formula.

In the next section, we introduce the high order Fourier tensor and its
spectrum, and then use the high order Fourier tensors to implement the DFT.

3 Fourier tensors

In signal processing, we sometimes encounter the case when the input signal
is multi-dimensional. A multi-dimensional signal is a function of more than
two variables. For example, a video signal is a function of three independent
variables which are time and two spatial coordinates (X,Y ). The high order
(not higher dimensional) Fourier analysis arises when we consider the Fourier
transform of a multi-dimensional input signal. In 2012, Tao used the high order
FT to deal with the higher order linear patterns. As put in [18], he thought
that ‘The full theory of the high order patterns is still rather complicated · · · .’
Tao mainly investigated the behavior of polynomial patterns on arithmetic
progressions as f(n), f(n + r), f(n + 2r), . . . through the high order Fourier
analysis. The reader is referred to [18,19] for more detail.

For our purpose, we introduce some fundamental knowledge and the
multiplications defined on the tensors. Let αj := (a1j , a2j , . . . , anj)

> ∈ Cn
for j ∈ [m]. The tensor product

X := α1 × α2 × · · · × αm

is defined as an m-order n-dimensional tensor

X := (Xi1i2···im),

where
Xi1i2···im = ai11ai22 · · · aimm.

X is a rank-1 tensor when all αk’s are nonzero. Similarly, the tensor product

A := A1 ×A2 × · · · ×Am

of a sequence of matrices Ak = (a
(k)
ij ) is defined as a 2m-order tensor

A := (Ai1i2···im,j1j2···jm),

where
Ai1i2···im,j1j2···jm = a

(1)
i1j1

a
(2)
i2j2
· · · a(m)

imjm
, (19)
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where Ak’s are not required to be the same size. A 2m-order n-dimensional
Fourier tensor, denoted by Wm,n ∈ T2m;n, is defined by

Wi1i2···im,j1j2···jm := n−m/2ω
∑m

k=1(ik−1)(jk−1), (20)

where ik, jk ∈ [n], ω = exp(2πı/n). It is easy to see that (20) is equivalent to

Wm,n = F [m]
n :=

m︷ ︸︸ ︷
Fn × Fn × · · · × Fn, (21)

which is also called the mth tensor power of Fourier matrix Fn.
Recall that a 2-dimensional discretized signal can be expressed as a matrix,

say,
f = f(x, y) = (fij), i ∈ [m], j ∈ [n].

Similarly, an m-dimensional discretized signal can be expressed as an m-order
tensor

f = (fj1j2···jm) ∈ Tm;n,

which may be generated by the gridding of an m-variate function f = f(x1, x2,
. . . , xm).Here, we only concern with the hyper-cubic case though the dimensions
of each mode (direction) of f can be different. We call f an m-order signal, or
briefly, an m-signal. The Fourier transform on an m-signal f can be described
as the tensor multiplication

F = f̂ = Wm,n × f

with
f̂i1i2···im =

∑
j1,j2,...,jm

Wi1i2...im,j1j2...jmfj1j2...jm . (22)

This is called the Fourier tensor transform of f, where the output f̂ is also an
m-order n-dimensional tensor.

Example 2 Let f = δ = (δi1i2···im) be an m-order n-dimensional Kronecker
(δ-) tensor defined by

δi1i2···im = 1⇐⇒ i1 = i2 = · · · = im (modn).

Then δ̂σ = n if s(σ) ≡ m (modn) and δ̂σ = 0 otherwise. In fact, for any
σ := (i1, i2, . . . , im) ∈ S(k,m, n), we have

δ̂σ =
∑

j1,j2,...,jm

Wi1i2···im,j1j2···jmδj1j2···jm

=
∑

j1,j2,...,jm

ω−
∑m

s=1(is−1)(js−1)δj1j2···jm

=
n∑
j=1

ω−k(j−1)

=

n∑
j=1

ω(k)(j−1),
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where ω(k) := ω−k = exp(−2kıπ/n). It follows that

δ̂σ 6= 0⇐⇒ ω(k) = 1⇐⇒ k = nq ⇐⇒ i1 + i2 + · · ·+ im −m ≡ 0 (modn).

Example 2 shows that the Fourier transformation on a δ-tensor produces
an elementary Hankel tensor (see [21]). Conversely, an even-order elementary
Hankel tensor can be transformed into the δ-tensor by a Fourier transform.

We now study the spectrum of a Fourier tensor Wm,n. By Lemma 4, Fn is a
unitary matrix, so each eigenvalue of Fn lies in the set S := {1,−1, ı,−ı}. This
conclusion also applies to the higher order case.

For convenience, we denote µk := ık. Then S = {µ1, µ2, µ3, µ4} can be
regarded as a cyclic group of order 4 generated by µ1. Furthermore, if we denote
S(m) = {µm1 , µm2 , µm3 , µm4 } and let rem(m,n) denote the remainder of m divided
by an integer n, then we have

(i) S(m) = S(0) := {µ1} for all m with rem(m, 4) = 0;

(ii) S(m) = S(1) := S for all m = 4k with rem(m, 4) = ±1;

(iii) S(m) = S(2) := {µ1, µ2} = {1,−1} for m with rem(m, 4) = 2.

Given a tensor A = (Ai1i2···im) ∈ Tm;n and a vector x = (x1, x2, . . . , xn)> ∈ C n,
we define y = A xm−1 as a vector y = (y1, y2, . . . , yn)> with

yi =
∑

i2,i3,...,im

Aii2i3···imxi2xi3 · · ·xim

for each i ∈ [n]. A scalar λ ∈ C is called an eigenvalue of A , if there exists a
nonzero vector x ∈ Cn, which is called an eigenvector of A corresponding to
λ, such that

A xm−1 = λxm−1, (23)

where xk is defined as a vector (xk1, x
k
2, . . . , x

k
n)>. The pair (λ,x) is called an

eigenpair of A . The pair (λ,x) is called an E-eigenpair (λ is called an E-
eigenvalue) of A , if A xm−1 = λx, where x ∈ Cn is a unit vector. λ is called a
Z-eigenvalue, if there is a real vector x satisfying A xm−1 = λx.

Denote the spectrum of a tensor (matrix) A by π(A ). It is easy to see that

π(F1) = S(0), π(F2) = S(2), π(F4) = S(1).

We use πz(A ) to denote the Z-spectrum of a tensor. In the following, we only
consider the case when m > 1.

Theorem 1 Let m,n > 1 be two positive integers. Then

(i) π(Wm,n) = S(0) if m = 4k for any positive integer k;

(ii) π(Wm,n) = S(2) if m = 4k + 2 for any nonnegative integer k;

(iii) S(m) = S(1) if m > 1 is an odd number.

Proof Let 0 6= x ∈ Cn be a unit eigenvector of Fn corresponding to an eigen-
value λ ∈ S, i.e., Fnx = λx. Then

Wm,nx
2m−1 = F [m]

n x2m−1 = (x∗Fnx)m−1Fnx = λmx. (24)
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The second equality is due to the fact that

F [m]
n x2m−1 =

m︷ ︸︸ ︷
Fn × Fn × · · · × Fn×x2m−1

= (Fn ×1 x×2 x)m−1Fn × x

= (x∗Fnx)m−1Fnx.

Thus, for any given k ∈ [4], λk ∈ π(Fn) implies λmk ∈ π(Wm,n). The result
follows by observing the set consisting of λmk . �

Now, we let

A(k) = (a
(k)
ij ) ∈ C n×n, k ∈ [m],

and define the tensor product A(1)×A(2)×· · ·×A(m) of A(k)’s as the 2m-order
n-dimensional tensor

G = (Gi1i2···im;j1j2···jm)

such that
Gi1i2···im;j1j2···jm = a

(1)
i1j1

a
(2)
i2j2
· · · a(m)

imjm
.

When
A := A(1) = · · · = A(m) ∈ Rm×n,

we call G the m-tensor power of A and denote it by G = A[m].
A paired symmetric tensor was defined by Huang and Qi [11] as an even-

order tensor A whose entries, indexed as Ai1j1i2j2···imjm , are invariant under the
swapping of indices in any block(s) (ikjk). A is called strong paired symmetric,
if, additionally, it also satisfies

Ai1j1i2j2···imjm = Ai2j2i3j3···imjmi1j1

for all possible indices. Denote Wm,n for the 2m-order n-dimensional Fourier

tensor, i.e., Wm,n = F
[m]
n . By [11], Wm,n is a strong paired symmetric tensor.

For any 2m-order n-dimensional complex tensor A = (Ai1j1i2j2···imjm), we define
the 2m-degree homogeneous polynomial associated with A by

fA (x,y) :=
∑
j=1

[
Ai1j1i2j2···imjm

m∏
k=1

{xikyjk}
]
, (25)

where x,y ∈ C n and x is the conjugate of x. A is called positive (semi-)
definite or a pd (psd) tensor if fA (x,x) > 0 (> 0) for all nonzero complex
vectors x ∈ C n. This is in fact the extension of positive semidefinite tensor,
a symmetric tensor whose corresponding polynomial is nonnegative (see, e.g.,
[11,15]) from the real field to the complex case. For the properties of the
symmetric tensors, we refer to [14,15].

Let α1, α2, . . . , αm ∈ C n. The tensor product of αj ’s, denoted by A :=
α1 × α2 × · · · × αm, is an mth order n-dimensional tensor, and it is a rank-1
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tensor if αi 6= 0 for all i. A is written as αm if α := α1 = α2 = · · · = αm. Note
that a tensor A ∈ Tm;n is a symmetric rank-1 tensor if and only if A = λxm

for some 0 6= x ∈ Rn and scaler λ 6= 0. In this case, Aσ = xi1xi2 · · ·xim
for any σ = (i1, i2, . . . , im) ∈ S(m,n). It is shown that [10,13] an mth order
n-dimensional real tensor can always be decomposed into a rank-1 tensor as
stated in the following lemma (see, e.g., [2]).

Lemma 5 Let A = (ai1i2···im) ∈ Tm;n be an mth order n-dimensional real
tensor. Then A can be decomposed as

A =

r∑
j=1

α
(1)
j × α

(2)
j × · · · × α

(m)
j , (26)

where α
(i)
j ∈ Rn for i ∈ [m], j ∈ [r]. The smallest positive integer r is called the

rank of A . If A is symmetric, then (26) can be reduced to

A =
r∑
j=1

(αj)
m, (27)

where αj ∈ Rn is a nonzero vector, see, e.g., [2,12].

Now, we assume that A = (Ai1i2···im) ∈ Tm;n is an input signal. By Lemma

5, A can be written as (26), where α
(i)
j ∈ Rn are all nonzero input vectors.

Theorem 2 Let the input signal A = (ai1···im) ∈ Tm;n be an mth order
n-dimensional real tensor with decomposition (26). Then

Â =

r∑
j=1

α̂
(1)
j × α̂

(2)
j × · · · × α̂

(m)
j . (28)

If A is a symmetric tensor with decomposition (27), then

Â =
r∑
j=1

(α̂j)
m , (29)

where α̂j ∈ Rn is a Fourier transform.

Proof By (21) and Lemma 5, we have

Â = Wm,n ×A

= F [m]
n ×A

= F [m]
n ×

( r∑
j=1

α
(1)
j × α

(2)
j × · · · × α

(m)
j

)
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=

r∑
j=1

[F [m]
n × (α

(1)
j × α

(2)
j × · · · × α

(m)
j )]

=
r∑
j=1

[(Fnα
(1)
j )× (Fnα

(2)
j )× · · · × (Fnα

(m)
j )]

=
r∑
j=1

[(α̂
(1)
j )× (α̂

(2)
j )× · · · × (α̂

(m)
j )].

For the special case when the input signal A is a symmetric tensor, we can
show expression (29) by employing the same technique. �

Theorem 2 allows us to transfer the implementation of a complex high order
Fourier transform into a one-dimensional Fourier transform. We shall mention
that the introduction of a Fourier tensor can make easy even the 2-order Fourier
transforms. We now consider the second order Fourier transform on matrices,
i.e., the 2-order tensor input signal. Note that a 2-order Fourier transform

corresponds to a 4-order Fourier tensor W4,n which is defined by F
[2]
n = Fn×Fn.

Theorem 3 Let A ∈ Rn×n be any n× n real matrix. Then Â = F>AF.

Proof Since Â = W4,n ×A, we have Â ∈ C n×n. By the definition,

Âij = (W4,n ×A)ij

=
∑
i′,j′

(Wii′,jj′ai′j′)

=
∑
i′,j′

(Fii′Fjj′ai′j′)

=
∑
i′,j′

ai′j′ω
i′
i ω

j′

j

= η>i Aηj .

Consequently, we get
Â = F>AF = FAF

due to the symmetry of F. The proof is completed. �

From Theorem 3, we can deduce the Fourier transforms of some special
input signals. For example, an identity input is exactly Pn defined by (10), as
stated in the following corollary. Here, we supply an alternative proof to it.

Corollary 2 În = Pn.

Proof Let A = In, the n× n identity matrix. Then A can be written as

A =
n−1∑
k=0

ek × ek,
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where ek is the kth coordinate vector in C n for i ∈ [n−1]0 as defined in Section
1. By Theorem 2, we have

Â =
n−1∑
k=0

êk × êk. (30)

By the definition of Fn and (15), for each k ∈ [n− 1]0, we have

êk = Fnek = ηk.

Therefore,

Â =

n−1∑
k=0

ηk × ηk = FnF
>
n .

Since Fn is symmetric, by Lemma 3, we get Â = Pn. �

Given an mth order n-dimensional tensor A = (Ai1i2···im) ∈ Tm;n and a
matrix B = (Bij) ∈ C n×n, for any index k ∈ [n − 1]0, the product A ×k B,
called A multiplied by matrix B on the right side along mode-k (or direction
k), is also an mth order n-dimensional tensor defined by

(A ×k B)i1i2···im =
n−1∑
i′k=0

(Ai1···i′k···imBi
′
kik

).

This can be naturally extended to the product A ×k B for the tensors A and
B, where the dimensionalities of the k-mode of A ’s and B’s are consistent.
Similarly, we define B×kA for any k ∈ [n−1]0. We have the following properties
(see, e.g., [13]).

Lemma 6 Let A ∈ Tm;n, B1, B2 ∈ C n×n, and let p, q ∈ [n − 1]0 be any two
distinct positive integers. Then we have

(A ×p B1)×q B2 = (A ×q B2)×p B1 (31)

and
A ×p B1 ×p B2 = A ×p (B2B1). (32)

Here, we focus on the situation A ∈ Tm;n and B ∈ C n×n. Denote by A [B]
for the product

A [B] = A ×0 B ×1 B ×2 · · · ×n−1 B.

By (31), we assert that A [B] ∈ Tm;n is well defined. Analogously, we can define
[B]A , i.e., A multiplied by B from the left side along all directions. When B
is a symmetric matrix, we have

A ×k B = B ×k A , ∀ k,
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and thus,
A [B] = [B]A .

Now, we are ready to state the following theorem, which is the generalization
of Theorem 3 for the general m-order Fourier transform.

Theorem 4 Let X ∈ Tm;n be any m-order input signal tensor. Then the
Fourier transform of X is

X̂ = [Fn]X = X [Fn].

Proof By the definition, we have

X̂ = Wm,n ×X ∈ Tm;n.

Denote X̂ = (X̂i1i2···im). For any σ := (i1, i2, . . . , im) ∈ S(m,n), by the
definition, we have

X̂i1i2···im =
∑

j1,j2,...,jm

(Wi1i2···im;j1j2···jmXj1j2···jm)

=
∑

j1,j2,...,jm

(Fi1j1Fi2j2 · · ·FimjmXj1j2···jm)

=
∑

j1,j2,...,jm

[Fn]X

= X [Fn].

The proof is completed. �

We end the paper by remarking that since the vector space Rn×n is isometric
to vector space Rn2

under the vectorization (Vec), the 4-order Fourier tensor
as a Fourier transform defined on the vector space Rn×n is actually equivalent
to a 2-order Fourier tensor. This can be shown as follows:

Vec(Â) = Vec(W4,n ×A) = Vec(FAF ) = (F> ⊗ F )Vec(A) = (F ⊗ F )Vec(A),

where X ⊗Y denotes the Kronecker product of two matrices and Vec(A) is the
vectorization of a matrix A. Note that the last equality is due to the symmetry
of F.
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