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Abstract We consider exceptional sets in the Waring-Goldbach problem for
fifth powers. For example, we prove that all but O(N131/132) integers satisfying
the necessary local conditions can be represented as the sum of 11 fifth
powers of primes, which improves the previous results due to A. V. Kumchev
[Canad. J. Math., 2005, 57: 298–327] and Z. X. Liu [Int. J. Number Theory,
2012, 8: 1247–1256].
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1 Introduction

In 1937, Vinogradov [11] found a new method for estimating sums over primes,
thus he proved that every sufficiently large odd integer can be represented as
the sum of three prime numbers which is known as the three prime theorem.
Vinogradov’s proof provided a blueprint for the subsequent applications of the
circle method to additive prime number theory. Shortly after that, Vinogradov
[12] and Hua [2] turned to study Waring’s problem with prime variables which
is known as the Waring-Goldbach problem.

In fact, the Waring-Goldbach problem is concerned with the solvability of
the equation

n = pk1 + pk2 + · · ·+ pks , (1)

where p1, p2, . . . , ps are unknown primes. There are considerable works about
this topic, and they can be classified into two categories, broadly speaking. One
of them concerns the number of primes in (1). Here, the readers can refer to
Vinogradov [12], Hua [2,3], Kawada and Wooley [4], Zhao [13], and so on to
study the details of this direction. The other one concerns the estimates of
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exceptional sets. Let Ek,s(N) be the number of n 6 N satisfying some local
conditions, that (1) cannot be solved in primes p1, p2, . . . , ps. Readers can refer
to Liu [9] for the details. The recent results about E5,s(N) came from Kumchev
[6] and Liu [9]. Combining the methods of Zhao [13] and Kawada and Wooley
[5], we can establish the following result for E5,s(N) (11 6 s 6 20).

Theorem 1 For 11 6 s 6 20, let E5,s(N) be the number of integers n 6 N
satisfying n ≡ s (mod 2) for which (1) cannot be solved in primes p1, p2, . . . , ps.
Then for arbitrary ε > 0,

E5,11(N)� N1−θ1+ε, E5,12(N)� N1−θ2+ε, E5,13(N)� N1−5θ1+ε,

E5,s(N)� N1− s−12
40
−θ2+ε, 14 6 s 6 18,

E5,s(N)� N1− s−11
40
−θ1+ε, s = 19, 20,

where

θ1 =
73

9600
, θ2 =

153

9600
.

Our result can be compared with the previous results. For example, our
result shows that

E5,11(N)� N131/132, E5,12(N)� N62/63,

E5,17(N)� N0.8591, E5,18(N)� N0.8341.

This improves the results of Kumchev [6] and Liu [9]. Among these, Liu’s result
showed that

E5,11(N)� N213/214, E5,12(N)� N76/77,

E5,17(N)� N0.9454, E5,18(N)� N0.9370;

and Kumchev’s result showed that

E5,11(N)� N239/240, E5,12(N)� N79/80,

E5,17(N)� N0.9459, E5,18(N)� N0.9375.

As usual, we abbreviate e2πiα to e(α). The letter p, with or without indices, is
a prime number. The letter ε denotes a sufficiently small positive real number,
and the value of ε may change from statement to statement. Let N be a
sufficiently large real number in terms of ε and k. We use � and � to denote
Vinogradov’s well-known notation, while the implied constant may depend on
ε and k.

2 Proof of Theorem 1 for s = 11 and s = 12

We will give the proof of Theorem 1 for s = 11 and s = 12 by using the
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Hardy-Littlewood method in this section. Supposing that n is a sufficiently
large natural number congruent to s modulo 2. We write

P =
n1/5

2
.

Let

υj =
(33

40

)j−1
, j = 1, 2, . . . , 6,

υ7 =
(33

40

)5 136

163
, υ8 =

(33

40

)5 576

815
, υ9 =

(33

40

)5 512

815
.

We note that
8∑
i=1

υi + 2υ9 > 4.9817431213.

Also, we write

Pj = P υj , gj(α) =
∑

Pj<p62Pj

(log p)e(αp5), 1 6 j 6 9,

G (α) = g9(α)
9∏
j=1

gj(α).

Considering the Diophantine equation and applying [4, Lemma 6.2], one has
the following result.

Lemma 1 Let gj(α) be defined as above. Then∫ 1

0
|G (α)|2dα� G (0)P ε,∫ 1

0
|gj(α)G (α)|2dα� G 2(0)P 2

j P
−5+ε, 1 6 j 6 9.

For s ∈ {11, 12}, let rs(n) denote the weighted number of solutions for the
equation

n = p51 + p52 + · · ·+ p5s

with
P νi < pi 6 2P νi , 1 6 i 6 9,

P1 < pi 6 2P1, 10 6 i 6 s.

Whenever X ⊂ [0, 1) is measurable, we put

rs(n,X) =

∫
X
gs−101 (α)G (α)e(−nα)dα.

Take

P0 = P
2
5
−ε

9 , Q = NP−10 .
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Define
M =

⋃
q6P0

⋃
16a6q, (a,q)=1

M(q, a), m = [0, 1)\M,

where

M(q, a) =
{
α : |qα− a| 6 1

Q

}
.

We can get the following result by applying the standard method of
enlarging major arcs (cf. [8,9]).

Lemma 2 For all positive integers n with N < n 6 2N satisfying n ≡
s (mod 2), one has

rs(n,M)� P s−15G (0).

To estimate the integral of minor arcs, we need the following estimate proved
by Ren [10].

Lemma 3 Suppose that α is a real number, and that 1 6 a 6 q with (a, q) = 1.
Let β = α− a

q . Then one has∑
X<p62X

e(αpk)

� d(q)ck(logX)c
(
X1/2

√
q(1 + |β|Xk) +X4/5 +

X√
q(1 + |β|Xk)

)
,

where ck = 1
2 + log k

log 2 and c is a constant.

First, we estimate the contribution from the minor arcs m. Denote

R =
⋃

q6P 15/16

⋃
16a6q, (a,q)=1

R(q, a), R(q, a) = {α : |qα− a| 6 P
15
16
−5}.

Applying Lemma 3, one has

sup
α∈m∩R

|g1(α)| � P 1− 1
32

+ε.

Thus, ∫
m∩R
|g2s−201 (α)G 2(α)|dα� sup

α∈m∩R
|g1(α)|2s−20

∫ 1

0
|G (α)|2dα

� P (1− 1
32

)(2s−20)+εG (0).

For the integral on m \R, by [7, Lemma 2.2], one has

sup
α∈m\R

|gj(α)| � P
1− 1

48
+ε

j , j = 1, 2. (2)
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Let

I (h) =

∫
m\R
|gh1 (α)G 2(α)|dα, h > 2.

By the definition of g1(α), we have

I (h) =
∑

P<p1,p262P

∫
m\R

e((p51 − p52)α)|gh−21 (α)G 2(α)|dα

6
∑

P<x1,x262P

∣∣∣ ∫
m\R

e((x51 − x52)α)|gh−21 (α)G 2(α)|dα
∣∣∣

6 PΥ1/2(h),

where

Υ(h) =
∑

P<x1,x262P

∣∣∣ ∫
m\R

e((x51 − x52)α)|gh−21 (α)G 2(α)|dα
∣∣∣2

=

∫
m\R

∫
m\R
|f25 (α− β;P )gh−21 (α)gh−21 (β)G 2(α)G 2(β)|dαdβ.

Let
N =

⋃
q6P 5/16

⋃
16a6q, (a,q)=1

N(q, a), n = [0, 1)\N,

where
N(q, a) = {α : |qα− a| 6 P

5
16
−5}.

We denote by B the set of ordered pairs (α, β) ∈ (m \R)2 for which α − β ∈
N (mod 1), and put b = m2\B. Next, we define the function Ψ: [0, 1)→ [0,∞)
as

Ψ(α) = ω5(q)P
(

1 + P 5
∣∣∣α− a

q

∣∣∣)−1,
when α ∈ N(q, a) ⊆ N, otherwise by taking Ψ(α) = 0. Then

Υ(h) 6

(∫∫
b

+

∫∫
B

)
|f25 (α− β;P )gh−21 (α)gh−21 (β)G 2(α)G 2(β)|dαdβ

Applying [7, Lemma 2.1] for f5(α− β;P ), one has

Υ(h)� Υ1(h) + Υ2(h), (3)

where

Υ1(h) = P 2− 1
8
+ε

∫
m\R

∫
m\R
|gh−21 (α)gh−21 (β)G 2(α)G 2(β)|dαdβ,

Υ2(h) =

∫∫
B

Ψ2(α− β)|gh−21 (α)gh−21 (β)G 2(α)G 2(β)|dαdβ.
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Next, we first deal with Υ2(h) for h = 2 and h = 4. It is easily to see that

|g3(α)g3(β)|2 � |g3(α)|4 + |g3(β)|4. (4)

Combining (4) with trivial estimates and symmetry, we can establish

Υ2(h)�
∫
m\R

∫
m\R

Ψ2(α− β)|gh−21 (α)gh−21 (β)g23(α)G 2(α)

× g21(β)g22(β)g24(β)g25(β) · · · g28(β)g49(β)|dαdβ

� sup
β∈m\R

|g2h−21 (β)g22(β)g25(β)g26(β)g27(β)g28(β)g49(β)|

×
∫ 1

0
Ψ2(α− β)|g24(β)|dβ

∫ 1

0
|g23(α)G 2(α)|dα.

By [13, Lemma 2.2], one has∫ 1

0
Ψ2(α− β)|g24(β)|dβ � P 2

4P
−3+ε.

Thus, by Lemma 1 and (2), we have

Υ2(2)� P−8−
73
960

+εG 4(0), (5)

Υ2(4)� P−4−
51
320

+εG 4(0).

Now, we turn to apply Lemma 1 for Υ1(h) when h = 2. One has

Υ1(2)� P 2− 1
8
+ε

(∫ 1

0
G 2(α)dα

)2

� P 2− 1
8
+εG 2(0). (6)

By (3), (6), and (5), one has

I (2)� P−3−
73

1920
+εG 2(0). (7)

However, when h = 4, it follows that

Υ1(4)� P 2− 1
8
+ε (I (2))2 � P−4−

193
960

+εG 4(0),

and Υ2(4) dominates Υ1(4). Thus,

I (4)� P−1−
51
640

+εG 2(0).

Proof of Theorem 1 for s = 11 and s = 12

Case s = 11 Applying Bessel’s inequality, one has∑
N<n62N

∣∣∣ ∫
m
g1(α)G (α)e(−nα)dα

∣∣∣2 6 ∫
m
|g1(α)G (α)|2dα

� P−3−
73

1920
+εG 2(0). (8)
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By a standard argument, we have

E5,11(N)� N1−θ1+ε, θ1 =
73

9600
.

Case s = 12 Also applying Bessel’s inequality, one has∑
N<n62N

∣∣∣ ∫
m
g21(α)G (α)e(−nα)dα

∣∣∣2 6 ∫
m
|g21(α)G (α)|2dα� P−1−

51
640

+εG 2(0).

And one has

E5,12(N)� N1−θ2+ε, θ2 =
153

9600
. �

Now, we have finished the proof of Theorem 1 for s = 11 and s = 12.
Next, we will use the relations between exceptional sets to prove Theorem 1 for
13 6 s 6 20.

3 Proof of Theorem 1 for 13 6 s 6 20

Here, we introduce some notations basing on [5]. When C ⊆ N, we define C as
the complement N\C of C within N, and (C )ba is the set C ∩ (a, b] when a and
b are non-negative integers, and |C |ba denotes the cardinality of C ∩ (a, b]. For
C ,D ⊆ N, we define their sum and difference as the following form:

C ±D = {c± d : c ∈ C , d ∈ D}.

hD denotes the h-fold sum D + · · ·+ D .
If q ∈ N and a ∈ {0, 1, . . . , q − 1}, we define Pa,q by

Pa,q = {a +mq : m ∈ Z}.

Also, we describe a set L as being a union of arithmetic progressions modulo
q when

L =
⋃
l∈L

Pl,q

for some subset L of {0, 1, . . . , q − 1}. Furthermore, it is convenient to write

〈C ∧L 〉ba = min
l∈L
|C ∩Pl,q|ba,

where a and b are integers.
For k ∈ N, we describe a subset Q ⊂ N as being a high-density subset of

the kth powers relative to L when

(i) Q ⊂ {nk : n ∈ N},
(ii) for each ε > 0,

〈Q ∧L 〉N0 �q N
1
k
−ε



56 Zhenzhen FENG, Zhixin LIU

when N is a natural number sufficiently large in terms of ε.
Moreover, if there exists δ > 0 such that

|R ∩L |N0 < N θ−δ

holds for all sufficiently large natural numbers N, then we say that a set R ⊂ N
has L -complementary density growth exponent smaller than θ.

We will use the following lemma, which is [1, Lemma 4.3]. Here, we denote

σ−1k = min{2k−1, k(k − 1)}.

Lemma 4 Let L , M , and N be unions of arithmetic progressions modulo
q for some natural number q. Suppose that C is a high-density subset of k-th
powers relative to L , and that A ⊂ N has L -complementary density growth
exponent smaller than θ. Then, whenever ε > 0 and N is a natural number
sufficiently large in terms of ε, one has the following estimates.

(a) If N ⊂ L + M and k > 4, then, without any condition on θ, one has

|A + C ∩N |3N2N �q N
ε− 2σk

k |A ∩M |3NN +N ε− 2
k−2 (|A ∩M |3NN )k/(k−2).

(b) If N ⊂ 2L + M and k > 5, then, without any condition on θ, one has

|A + 2C ∩N |3N2N �q N
ε− 4σk

k |A ∩M |3NN +N ε− 4
k−4 (|A ∩M |3NN )k/(k−4).

Proof of Theorem 1 for 13 6 s 6 20 Denote

C = {p5 : p > 6 is a prime},

and
Ns = {n ∈ N : n ≡ s (mod 2)},

which is a union of arithmetic progressions modulo 240. Then one has

p5 ≡ 1 (mod 2), p ∈ C ,

and
sC ⊆ Ns, s > 11.

To use Lemma 4, we need to define another union of arithmetic progressions
L . Let

L = {l ∈ N : l ≡ 1 (mod 2)}.

One can deduce
〈C ∧L 〉N0 � N1/5(logN)−1

by applying the Prime Number Theorem in arithmetic progressions. Thus, C
is a high-density subset of the fifth powers relative to L . Also, basing on the
definition of Ns and L , it follows that

Ns+1 = L + Ns, Ns+2 = 2L + Ns, s > 9.
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It follows from part (b) of Lemma 4 that

|11C + 2C ∩N13|3N2N � N ε− 1
20 |11C ∩N11|3NN +N ε−4(|11C ∩N11|3NN )5

� N ε− 1
20E5,11(3N) +N ε−4(E5,11(3N))5

� N1−5θ1+ε,

|12C + 2C ∩N14|3N2N � N ε− 1
20 |12C ∩N12|3NN +N ε−4(|12C ∩N12|3NN )5

� N ε− 1
20E5,12(3N) +N ε−4(E5,12(3N))5

� N1− 1
20
−θ2+ε,

where θ1 and θ2 are defined in Theorem 1.
For an arbitrary natural number s, we define

Es(N) = |sC ∩Ns|N0 .

It follows that the exceptional sets in the Waring-Goldbach problem for fifth
powers, given in the preamble to Theorem 1, can be covered by Es(N).

Let dxe denote the least integer not smaller than x, and define the integers
Nj for j > 0 by means of the iterative formula

N0 =
⌈1

2
N
⌉
, Nj+1 =

⌈2

3
Nj

⌉
, j > 0.

Moreover, let J be the least positive integer j with the property that Nj = 2,
and note that J = O(logN). Hence, it follows that

E5,13(N) 6 3 +
J∑
j=1

|11C + 2C ∩N13|
3Nj
2Nj
� N1−5θ1+ε,

E5,14(N) 6 3 +
J∑
j=1

|12C + 2C ∩N14|
3Nj
2Nj
� N1− 1

20
−θ2+ε.

Likewise, for 15 6 s 6 18, from part (a) in Lemma 4, one finds that

|(s− 1)C + C ∩Ns|3N2N
� N ε− 1

40 |(s− 1)C ∩Ns−1|3NN +N ε− 2
3 (|(s− 1)C ∩Ns−1|3NN )5/3

� N ε− 1
40E5,s−1(3N) +N ε− 2

3 (E5,s−1(3N))5/3

� N1− s−14
40
−θ2+ε.

Consequently, one has

E5,s(N) 6 3 +

J∑
j=1

|(s− 1)C + C ∩Ns−1|
3Nj
2Nj
� N1− s−14

40
−θ2+ε, 15 6 s 6 18.
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For s = 19, applying results on [9, pp. 1255, 1256], one has

G (0)P 4E5,19(N)� (P 15E5,19(N) + P 11+εE2
5,19(N))1/2I 1/2(2).

Then, by (7), one can obtain

E5,19(N)� N1− 1
5
−θ1+ε.

Likewise, again from part (a) in Lemma 4, one eventually gets

E5,20(N)� N1− 9
40
−θ1+ε. �

Acknowledgements The authors express their sincere thanks to the referees for valuable

suggestions and comments. The first author was supported by the Scientific Research Project

of the Education Department of Fujian Province (Grant No. JAT190370) and the Natural

Science Foundation of Fujian Province (Grant No. 2020J05162). The second author was

supported by the National Natural Science Foundation of China (Grant No. 11871367) and

the Natural Science Foundation of Tianjin City (Grant No. 19JCQNJC14200).

References

1. Feng Z Z, Liu Z X, Ma J. On exceptional sets of biquadratic Waring-Goldbach problem.
J Number Theory, 2020, 211: 139–154

2. Hua L K. Some results in prime number theory. Quart J Math, 1938, 9: 68–80

3. Hua L K. Additive Theory of Prime Numbers. Providence: Amer Math Soc, 1965

4. Kawada K, Wooley T D. On the Waring-Goldbach problem for fourth and fifth powers.
Proc Lond Math Soc, 2001, 83: 1–50

5. Kawada K, Wooley T D. Relations between exceptional sets for additive problems.
J Lond Math Soc, 2010, 82: 437–458

6. Kumchev A V. On the Waring-Goldbach problem: exceptional sets for sums of cubes
and higher powers. Canad J Math, 2005, 57: 298–327

7. Kumchev A V, Wooley T D. On the Waring-Goldbach problem for seventh and higher
powers. Monatsh Math, 2017, 183: 303–310

8. Liu J Y. Enlarged major arcs in additive problems II. Proc Steklov Inst Math, 2012,
276: 176–192

9. Liu Z X. On Waring-Goldbach problem for fifth powers. Int J Number Theory, 2012,
8: 1247–1256

10. Ren X M. On exponential sum over primes and application in Waring-Goldbach
problem. Sci China Ser A, 2005, 48: 785–797

11. Vinogradov I M. Representation of an odd number as the sum of three primes. Dokl
Akad Nauk SSSR, 1937, 15: 291–294

12. Vinogradov I M. Some theorems concerning the theory of primes. Mat Sb N S, 1937,
2: 179–195

13. Zhao L L. On the Waring-Goldbach problem for fourth and sixth powers. Proc Lond
Math Soc, 2014, 108: 1593–1622


