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Abstract We generalize the P(N)-graded Lie superalgebras of Martinez-
Zelmanov. This generalization is not so restrictive but sufficient enough so
that we are able to have a classification for this generalized P(N)-graded
Lie superalgebras. Our result is that the generalized P(INV)-graded Lie super-
algebra L is centrally isogenous to a matrix Lie superalgebra coordinated by an
associative superalgebra with a super-involution. Moreover, L is P(N)-graded
if and only if the coordinate algebra R is commutative and the super-involution
is trivial. This recovers Martinez-Zelmanov’s theorem for type P(N). We
also obtain a generalization of Kac’s coordinatization via Tits-Kantor-Koecher
construction. Actually, the motivation of this generalization comes from the
Fermionic-Bosonic module construction.
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1 Introduction

Root graded Lie algebras initiated by Berman-Moody [6] played important roles
in classification of extended affine Lie algebras. Thereafter, Benkart-Elduque
[1-3] introduced a super-analog of the root graded Lie algebras and classified
Lie superalgebras graded by the root systems of types

A(m;n), B(m;n), C(n), D(m;n), D(2;1;a), F(4), G(3).

Martinez-Zelmanov [18] introduced and classified Lie superalgebras graded by
the root systems of types P(N) and Q (V). Then Martinez-Shestakov-Zelmanov
studied the Jordan bimodules over the superalgebras P(N) and Q(N). The
novelty of the root system of type P(N) is that there are some ‘odd’ negative
roots without matching positive roots (so P(/V) has no non-degenerate invariant
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form). Martinez-Zelmanov’s theorem shows that any P(N)-graded Lie super-
algebra is isomorphic to P(IN)®R, where R is an associative commutative super-
algebra. In this paper, we generalize the definition of Lie superalgebras graded
by P(N) by adding the ‘missing’ matching positive roots. This generalization
is not so restrictive but sufficient enough so that we are able to have a
classification for this generalized P(NN)-graded Lie superalgebras (GPLS). Our
result is that the generalized P(N)-graded Lie superalgebra is centrally
isogenous to a matrix Lie superalgebra coordinated by an associative super-
algebra with a super-involution. Moreover, the ‘missing’ matching positive
root spaces vanish if and only if the coordinate algebra R is commutative
and the super-involution is trivial. = This recovers Martinez-Zelmanov’s
theorem for type P(N). Our approach is inspired by the work of Benkart-
Elduque and Martinez-Zelmanov. Actually, the motivation of this generaliza-
tion comes from the Fermionic-Bosonic construction in which we do get a Lie
superalgebra whose root system is close to P(N) except that the ‘missing’
matching positive root spaces are not zero. This Lie superalgebra is a matrix
Lie superalgebra coordinated by a quantum torus with a super-involution.

Following [3,4,19], and using the connection between root systems graded
Lie superalgebras and their associated Jordan supersystems, we classified GPLS
up to centrally isogeny.

Theorem 1.1 (i) For any unital associative F-superalgebra A with an anti-
superinvolution ~, if N > 3, then any Lie superalgebra centrally isogenous to
PN(A,—) is generalized P(N — 1)-graded.

(ii) Conversely, let L be a generalized P(N — 1)-graded Lie superalgebra
over the characteristic zero field F. If N > 4, then there exists a unique (up
to isomorphism) unital associative F-superalgebra A which is equipped with an
anti-superinvolution ~ such that L is centrally isogenous to the matrix Lie

superalgebra PN (A, —). (See Section 2 for the definition of Zn(A,—).)

Theorem 1.2 Suppose N > 3. Then the GPLS ZnN(A,—) is a P(N — 1)-
graded Lie superalgebra if and only if the unital associative F-superalgebra A =
Ag + Ag is supercommutative and

a=(-1)l"a, Vaec AzU Az
Then as a special case, we get the classification of P(N — 1)-graded Lie
superalgebras, and it is isomorphic to P(N — 1) ®p A, which was given in [19].

Corollary Suppose N > 4, and let L be a P(N — 1)-graded Lie super-
algebra over the characteristic zero field F. Then there exists a unique (up to
isomorphism) unital associative supercommutative F-superalgebra A such that
L is centrally isogenous (for N > 4 indeed is isomorphic) to

QN(A7p)

- {<)Z( —P%/X)t) ‘X,Y,Z € My(A), tr(X)=0,Y = -Y', Z = Zt}

= P(N—l)@FA,
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where
p(a) = (-1)"1‘&, Ya € AaU AT'

In addition, using the connection between Lie super and Jordan super
structures through Tits-Kantor-Koecher (TKK) construction (see [13]) and the
Coordinatization Theorem for Jordan superalgebras (see [18]) of type JP(n),
we obtain immediately the characterization for GPLS when N is even. It is
a generalization of a result of Kac [13] about the connection between finite
dimensional simple Lie superalgebra P(2n —1) and simple Jordan superalgebra
JP(n).

The Clifford (or Weyl) algebras have natural representations on the
exterior (or symmetric) algebras of polynomials over half of generators. Those
representations are important in quantum and statistical mechanics where the
generators are interpreted as operators which create or annihilate particles and
satisfy Fermi (or Bose) statistics. Fermionic representations for the affine Kac-
Moody Lie algebras were first developed by Frenkel [10] and Kac and Peterson
[14] independently. Feingold-Frenkel [9] constructed representations for all
classical affine Lie algebras by using Clifford or Weyl algebras with infinitely
many generators. The Bosonic and Fermionic representations for the EALA

gln(Cy), where C, is the quantum torus in two variables, were constructed
in [11]. Chen-Gao [7] constructed Fermionic representations for a class of
BCy-graded Lie algebras. Cheng-Zeng [8] constructed Bosonic and Fermionic
representations for the Lie superalgebra D(2,1; «). Thereafter, Lau [15] gave a
more general Bosonic and Fermionic representations of Lie algebra with non-
trivial central extensions.

In Section 4, we give the Fermionic-Bosonic constructions to the GPLS
coordinatized by quantum tori.

Throughout this paper, the base field F is a field of characteristic zero. ‘t’
denotes the usual transpose of a matrix. And let Z be the ring of integers,
Zo = 7./27Z be the residue class ring mod 2, with the elements 0 and 1.

2 Definition and construction of GPLS

We first give some notations and definitions which will be used in the sequel.
Then we construct some GPLS.

Follows the symbol in [12], let P(N — 1), N > 3, stand for the finite
dimensional split simple Lie superalgebra which is a subalgebra of s{(N, N)(F),
consisted of the matrices of the form

(Xn X12)
Xo1 —Xi, /)’

where
tr(X11) =0, Xi2=-Xy, Xo1=X3.

Let Ay—_1 be the special linear Lie algebra sly(F).
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Let
N N
H= { > ailei —envint) |ai €F, Y a; = 0}'
i=1 i=1

Then §) is a split Cartan subalgebra of P(N — 1);.
For 1 < i < N, defining ¢; € $H* by

N
€i <Z ajejj — €N+j,N+j)> = 4.

=1

The root system of P(N — 1) with respect to the action of the Cartan
subalgebra $) is

Ap(Nfl)Z{&“i—Ej‘lgi%jgN}U{ﬂi(&-i-é'j), —2€i‘1§i7éj<N}.

Let
A= AP(Nfl) U{QEZ‘ | 1< < N},
Aﬁiz {5i_5j | 1<Z#]<N}:AAN71
Set
Lyo={x € L]|[hx] =alh)z,Vh € H}
as usual.

Definition 2.1 (see [19]) A Lie superalgebra L over F is graded by P(N —1)
(or Ap(y_1)), if up to isomorphism,

(i) L contains P(N —1);

(ii) L has a root space decomposition

L= Z Le,

a€Ap(ny_1)U{0}

relating to a split Cartan subalgebra §) of P(N — 1);
(iii)
Li= > [L-aLadl

a€Ap(N_1)
Definition 2.2 A Lie superalgebra L over F is generalized graded by P(N —1)
(GPLS), if up to isomorphism,
(i) L contains P(N — 1);
(ii) L has a root space decomposition

L:ZLa

acAU{0}

relating to a split Cartan subalgebra $) of P(N — 1);;
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(iii)
Lo=Y [L-a: La).
a€A
Definition 2.3 Two perfect Lie superalgebras are said to be centrally
isogenous if they have the same universal covering superalgebra up to
isomorphism.

Remark A Lie superalgebra graded by P(N — 1) is obvious a GPLS. Any
GPLS is perfect. Condition (iii) is equivalent to ‘L is generated by its nonzero
root spaces’. Then it is reasonable to classify GPLS up to centrally isogenous
(follows from Berman and Moody [6] classified Lie algebras graded by finite
root systems).

Definition 2.4 (see [19]) A Lie superalgebra L = L+ Ly over F is called an
Apn_1-graded Lie superalgebra, if up to isomorphism,

(i) Ly contains Ay_1;

(ii) L has a root space decomposition

L:ZLa

aEAAN_l u{0}

relating to a split Cartan subalgebra H of Ayn_1;
(iii)
Ly= Y [L-a)Lal
OLGAAN_I

Let A = Ay @ A7 be a unital associative superalgebra over F and ~: A — A
is an anti-superinvolution on A, i.e., an F-linear, homogenous of degree 0 map
(either called Zo-graded or even for short) on A, satisfies for any homogeneous
a,be A,

a=a, ab=(—1)llpg

For arbitrary homogeneous element a € A, let

p(a) = (=1)"la, (1)

where |a| € Zg denotes the parity of a, and extend p by linearity on A.
Obviously, p is a superalgebra automorphism of order 2 on A. And for any
F-linear homogenous of degree 0 map 7 on A, we have

pT = TP.

Let
M, (A) = M, (Ag) ® M, (A7)

be the associative superalgebra of n x n matrices over A. Then p induces a
superalgebra automorphism of order 2 on M, (A), also denoted by p, i.e., for
arbitrary homogeneous X € M, (A),

p(X) = (~)¥Ix.
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Let M (N, N)(A) be the associative superalgebra of (N, N)-block matrices
over A, whose algebra structure is the tensor product of associative algebras
M(N,N)(F) and A over F, i.e.,

(X®a)- (Y®b)=XY®ab, X,Y € M(N,N)F),abecA,
M(NvN)(A>C¥: @ M(N7N)(F),3®]FA77 a:/Ba'YGZ%

B+y=a
where
MN,N)E)5= (), MONE=(, 7).
The new operation
[(X,Y]:= XY — (-D)XIVyx

for homogeneous X,Y € M (N, N)(A) defines a Lie superalgebra structure on
M (N, N)(A), and we denote the resulting Lie superalgebra by M (N, N)(=)(A).
The new operation

XoY =2 (XY + (-1)¥IVyx)

1
2
for homogeneous X,Y € M (N, N)(A) defines a Jordan superalgebra structure
on M(N,N)(A), and we denote the resulting Jordan superalgebra by
M(N,N)H)(A).

The supertranspose

(Xn X12>St (X1 X5
Xor Xoa/ - —Xiy X3 )

Let
Pi= (—IN IN) € M(N,N)(A),
g(Xll X12> :: < X1 p(X12)>.
Xo1 Xoo p(X21)  Xoo
By using o, P, and 5, we get the following result.
Proposition 2.1 The map

st

x: X = P lo(X) P

is an anti-superinvolution on associative superalgebra M (N, N)(A).

Proof By a direct calculation, we have

(Xn X12)*:< X22t ) p(X12)b> 2)
Xa1 Xo —p(Xa1)  Xu
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Then * is obvious an F-linear homogenous of degree 0 map on M (N, N)(A).
For homogeneous

X192 Y12
P ) ()
Xo1 Yo1

since ~ is an anti-superinvolution on A, we get

(XY)* = diag(XQIYIQtaXIQYﬂt)
= (_1)(\XIH)(IY\H)diag(YTQtXint’Y—QltX—ut)

R G ) (U L)
- 21 —

= (- M) 0.

For homogeneous

we have
— <> <t
(XY)* = < . p(X11Y12) )
—p(X22Yo1)
——t
- (_1)(X|+|Y+1)< ) X11Yie >
—X20Y2y
—t—t
= (_1)(X|+|Y+1+|X|(Y|+1))< — Y12 X11 >
—Yo1 Xoo

= Pt (TR e

—Yy

= ()M x).

The proof of the remaining cases is similar, so we omit the detailed

calculation.
Since L
e [ X1 X12

(X*)" = ( >
Xo1 Xoo
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~ is an anti-superinvolution, and then * is an anti-superinvolution too. ]
Remark If M(N,N)(A) is considered as the graded tensor product
M(N,N)(F)®A of associative superalgebras M (N, N)(F) and A over F, i.e.,
(X®a) - (Y®b) = ()XY @ab
for homogenous X,Y € M (N, N)(F), a,b € A, then
«: X PTIXP

is an anti-superinvolution on M (N, N)(A). There is no essential difference
between these two choices of algebra structures of M (N,N)(A) in our
investigation below.

The following result is well known.

Proposition 2.2 Let L be an associative superalgebra with an anti-super-
tnvolution x. Then
L_={a€cL|x(a)=—a}

is a Lie subsuperalgebra of L whose Lie superalgebra structure induced naturally
by associativity;

Ly ={a€cL|x*(a)=a}

is a Jordan subsuperalgebra of L whose Jordan superalgebra structure induced
naturally by associativity.

Due to Propositions 2.1, 2.2, and formula (2), we have the following result.

Proposition 2.3
P :={X € M(N,N)(A) | X* = -X}

is a Lie subsuperalgebra of M(N, N)(7)(A), and

—~ X X
P = { <X; _X1121t> ‘X117X12,X21 € Mn(A),

S S
X2 = —p(X12) , Xo1 = p(X21) }
Proposition 2.4
Tw(A =) = {X € M(N, N)(4) | X* = X}

is a Jordan subsuperalgebra of M (N, N))(A), and

~ X1 X
IN(A, —) = -t ‘Xn,X127X21 € Mn(A),
Xo1 X1

——t —t
Xi12 = p(X12) , Xo1 = —p(X21) }
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As Jordan subsuperalgebra of M(N, N)Y(A), Jy(A, =) is isomorphic to

X X
JIN(A, —) ::{<X; Xllft) ’X117X127X21 € Mn(A),

S S
Xi2 = —p(X12) , Xo1 = p(X21) }

Remark Jy(F,idy) is simple Jordan superalgebra of type JP(N) (see [13])
for N > 1.

Let A= A" ® A~, where
At ={acAla=a}, A ={acA|a=—a}.
Notice that ~ is a homogeneous of degree 0 map on A. Then
A=AT® A", A=A4;o A,
are compatible gradings, and
A=At o A- 0 AT © AT,
where

AF = Agn At A =AgnAT, Af =A;nAt, AZ=AnA

Let I
0= [P_a Pal;
a€A
fij(a) = aeij — aenjN+i,
gij(a) = ae; N+j — pla)ej N+i,
hij(a) == aenyij + pla)enji
where a € A.

Proposition 2.5 For N > 3, we have
J?NN([Aa A]) co.

Proof For N > 3 and arbitrary homogeneous elements a,b € A, we have

b
— p(a)beny + (1)U bp(a)en sy vy
= ap(b)err — (—1)1Plp(b)aens1,n41

— p(a)benn + (=) Plop(@)ean an



656 Jin CHENG, Yun GAO

Replacing b and a by 1 and (—1)l4l1%lp(b)a, respectively, we have

Fi1@p(®)) — (1)1 fy n (bp(a)) € ©.

Then we get
fun(p(a)h = (=1)Plbp(a)) = fyn([p(a). b)) € ©.
By the arbitrariness of a and b, and p is an automorphism on A, we get
Inn(A, 4] Ce. 0
Proposition 2.6 For N > 3,

Py = {fiila) — fyn(a) | 1<i< N —1,ac A}
® {fvn(e) | e+ p(@) € [A, A]}
C o.

Proof Notice that for arbitrary homogeneous elements a,b € A, 1 < i # j <
N,
[fij(a), f:(0)] = abes; — (=) Plbaey; + @bensjnj — (1) Mbgen i n-i
= abe;; — abentinti — (—1)14 1 (baej; — baen +j,N+j)
= fii(ab) — (=1)/PLf5;(ba).
Then, for b=1, j = N, we get
fiila) — fun(a) €0, i=1,2,...,N—1,

[Gvv(@), ova ()] = abexy — (—1) D0+ hacy 5
— p(@)benn + (_1)(|a|+1)(1+|b|)bp(a)egN,zN
+ap(b)eny — (=1)1HVEHD pB)acoy oy
— p(@p®)enn + (~1)IFVEHD p(B) p(@)ean an
= fan(ab— p(@)b+ ap(b) — p(@)p(b)).
Let b=1and a € A%r. Then we have

fyn(a—pa) +a—pla)) = 4fnn(a) € O. (3)
By the arbitrariness of a, we get fNN (A%r ) C ©.
Let b=1and a € A;. Then we also have (3). By the arbitrariness of a, we
get, fNN(Ag) C 6.
For any c € A, let
c=cd +cy tef +ci,
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where
+ + - - + + — -
o eAa, o EAﬁ’ c EAT’ ] EAT‘
Since

5 (e p(e) € [4, 4],

from Proposition 2.5, we have fNN(c(J{ +c;) €0.
Notice that

Fun(e) = funled +ep) + fan(eg) + fan ().

Then, summarizing the above discussion, we get &y C © at once. g

Lemma 2.7 For N > 3, let

g +e =

vt = { (30 2 € Futo+pta € (. al)

Then

Proof First, we check o
(2, 2] C Pn(A,—).

Indeed, for arbitrary homogeneous elements a,b € A and 1 < 4,5, k,l < N, we
have

[9:5(a), hya (D)
= §jrabe; + (—1)PHEDUD 55 00) p(@)erynign
— diwp(@)bej — (—1) 1D 5, (b aery v s v
+ 651ap(b)eir, + (—1) VU5 bp(@) ey iy
= dap(@)p(b)ej — (=15 baey iy oy
= §jpabe; — (—1)l® la‘éjkgael—&-N,i-&-N
— Sipp(@bej + (1)1l bo(a)er v n
+ djap(d)en — (—1)1Pel6;p(b)aer s n v n
— Sap(@)p(b)esr + (—1)PH1ls, p(b)p(a)er N
= (=0 Su(p(@)b) + 6 fir(ap(b))) + (38 fu(ab) — dufir(p(@)p(D))).
Notice that

— dirdj(p(@b — ap(b) + p(p(@b — ap(b)))
= — Sadju(p(@b — ap(d) + (1)1 p(B
= - 5ik5jl(p(a)b - (—1)‘(1' |b|bﬂ( ) —ap(
= — dirdj([p(@), b] — [a, p(D)]),

Ja— (=D Plbp(a))
b) + (=D p(B)a)
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and similarly,

d;x0it(ab — p(@)p(b) + plab — p(@)p(b)) ) = djrda(la, b] — [p(@), p(b))).
Then

[Gij(a), i (b)] € Py (A, ).

The remainder of cases is similar, so we omit the detailed calculation.
On the other hand, notice that

PN(A, =) =Y Do P

a€A

Then from Proposition 2.6, we have

PN(A,-)C Y Pase.

Now, the lemma holds at once since

S Ziwec (2,7 O

aEA

Theorem 2.1  Suppose N = 3. Then, for any unital associative F-superalgebra
A with an anti-superinvolution ~, we have any Lie superalgebra centrally
isogenous to Pn(A,—) is a generalized P(N — 1)-graded Lie superalgebra.
Furthermore, Zn(A,—) is a P(N — 1)-graded Lie superalgebra if and only if A
is supercommutative, and a = p(a), Va € A.

Proof Since A is unital, we have P(N — 1) C Zn (A, —).

Noticing that o
0= [P0 Pl
acA

and from Lemma 2.7,

aEA

we get Zn(A, —) is a GPLS at once.

Following [3, Lemma 2.4], any universal covering superalgebra of Zn(A, —)
is a GPLS, so is its any central quotients.

Furthermore, & (A, —) is a Lie superalgebra graded by P(N — 1) if and
only if

Pre; ={gii(a) = (a = pla) Jeinti [a€ A} =0, 1<i<N,

< a—pla)=0, YacA,
<~ a=pla), VaeA.
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Moreover, for arbitrary homogeneous elements a,b € A, notice that ~ is an
anti-superinvolution, p is a superalgebra automorphism on A. Then we get

ab = plab) = p@)p(®) = (—1)/ 1 GE)) (@) = (— 1)/, O
Later, we say that the GPLS #y(A, —) is coordinatized by A.

Remark If M(N,N)(A) is considered as the graded tensor product of
M(N,N)(F) and A over F, then any Lie superalgebra centrally isogenous to

X1 X2
Pn(A,—) = {<X21 _Xllt) ’X11,X12,X21 € Mn(A),

X2 = —X12', Xo1 = Xo1, tr(X11 + X1 ) € [A’A]}

is a GPLS. Furthermore, & (A, —) is a P(N — 1)-graded Lie superalgebra if
and only if A is supercommutative, and @ = a, Va € A.

About the structure of Zn(A, —), from Lemma 2.7, we get the following
root space decomposition at once. And the nontrivial Lie superbrackets between
the root vectors of Zy(A, —) are as below.

Theorem 2.2
QN(Aa _) =P D Z f@afsj ® Z f@aﬂrsj S Z ‘@75175‘77

1<i#j<N 1<i<i<N 1<i<G<N
Pey e, ={fij(a) | a € A},
Peive; ={0ij(a) | a € A},
Peiee, = {hij(a) | a € A},
Py ={fila) = fun(a) [ 1 <i <N —1,a€ Ay @ {fun(c) | c+p(@) € [4, A]}.

For arbitrary homogeneous a,b € A,
Gi3(a), Fra(®)] = =(=1)Plel5;,G; (p(b)a) + (= 1)1 16;1G1i (p(b) p(@) ),
[fi(@), by (b)) = —Gichju(@b) — (=1)M1algy by (bp(a)),
[fi(@), fra (D)) = 0 fu(ab) — (=1)PMlal;, £y ;(ba),

[ij(a), ha (b)) = 8 fu(ab) — 6w Fu(p(@)D) — 5 fi1(p(@)p(B)) + 81 fir (ap(D)).
Proof
[9i5(a), fkl(b)] = [aein+j — p(@)ej Ntisbep — 5€N+1,N+k]
= p(a)bdie;ptn — abdjie; ki
— (=) D5 bae v + (1)U bp(@)er iy
— (=1)"9l5; 55 (p(b)a) + (= 1) 115,50 (o(b) p(@)).

The proofs of others are similar. O
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3 Classification of GPLS

In this section, we follow the symbols given in Section 2, and all the root spaces
decompositions were with respect to the action of the Cartan subalgebra $)
which was given in Section 2.

In this section, we assume N > 4 unless otherwise stated.

Let

fij == €ij — EN4j,N+ir  Gij = €iN+j — €j,N+i, Dij = eNtij + ENtjis

for short.

Following [3,4,19], and using the connection between root systems graded
Lie superalgebras and their associated Jordan supersystems, next, we classify
GPLS up to centrally isogenous.

Due to Benkart et al. [3, Sect. 3], we have the following result.

Lemma 3.1 Let
=Y e Y
~eAU{0} ~eAU{0}

be two GPLS. If there exists a family of homogenous of degree 0, F-linear
1somorphisms

77:(77777€A)7 U73L7—>L/7,
such that
Na+8([Ta, 28]) = [Ma(za) ng(@s)], Vo,B,a+ B €A, zq € La, xg € Lg,
and for any o € A,
Ly = > (L5, L],
4, YEA 0, v#ta,0+y=«
then L and L' are centrally isogenous.
Due to Martinez and Zelmanov [19, Sect. 3], we have the following result.

Proposition 3.2 Let L = L+ Ly be an Ax_1-graded Lie superalgebra over
F, N = 4. Then there exists a unital associative superalgebra A = A+ A1 such
that L is centrally isogenous with sl (A); and furthermore, there exists a family
of homogenous of degree 0, F-linear isomorphisms

7] = (T,&‘i—&‘ja 1 g Z 7&‘7 < N)7 Uai—aj : Lé‘i—é‘j — SZN(A)ai—Sjv
such that
776¢—Ej+€k—€z([$€i—€jvxEk—Ez]) = [7761'—63' (xai—€j)7n€k_5l (xf':k_sl)]’

n(eij) = ei(1),



Generalized P(N)-graded Lie superalgebras 661

for arbitrary i,5,k,l = 1,2,... N, i # j, k # I, Te;—c; € Lej—c;, Tej—, €
L.

In addition, following the Berman-Moody proof of [6, Proposition 1.29], we
have the unital associative F-superalgebra A which satisfies the above conditions
is unique up to isomorphism.

Following [19], for a GPLS L, let

LAG = Z La@ Z [LomL—a]a

and notice that P(N — 1) = Ay—_1. Then we have the following result.

Lemma 3.3 Let L be a GPLS. Then LAH is an An_1-graded Lie superalgebra,
and there exists a unique (up to isomorphism) unital associative F-superalgebra
A, such that Lag s centrally isogenous with sin(A); and furthermore, there
exists a family of homogenous of degree 0, F-linear isomorphisms

0= (057;75]‘7 1<i#j<N), 057:75‘7‘: LE»L'*E]' - SlN(A)E»L*EJW

such that

952‘*€j+5k*5l ([msrsj s Tep—e]) = [esﬁsj (%ﬁsj)a Ocp—e1 (Tep—2)],

0(fi;) = eii(1)
for arbitrary i,5,k,l = 1,2,... N, i # j, k # I, Te;—c; € Lej—c;, Tep—¢, €
L.

Next, we call A the superalgebra associated with GPLS L, and we denote

0 (eij(a)) =: fij(a), <i#j< N,VaeA.
The structures of the even-root spaces of L are clear, and about the odd-root

spaces of L, we have the following result.

Lemma 3.4 Let L be a GPLS. Then

L5k+sl = [gkta lefst] = [glt7 Lskfst],
Lfskfsl - [hktvLEtfsl] — [h’ltvLEtfsk]v
for arbitrary k,1,t =1,2,... N, t #k,I.
Proof For arbitrary k,[,t =1,2,...,N,t# k,l, we have
[ 9kt [htk‘a 6k+€lH
[[gkt7 htk] 5k+5l]
= [fxrx — fit» Leyrey)

= (e +e1)(fur — fit) Leyte,
— L5k+51’

[gk‘t7 g1— €t]
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Obviously, [grt, Le,—e,] € Le, +¢,, and then

L€k+£l - [gk)tv LEZ—Et] .

Similarly, we have
Lak-l—al = [gltaLé‘k—az]a

L—t’:‘k—e’;‘l = [hktaLe’;‘t—El] = [hltvLSt—Ek]' O]

Proposition 3.5 Let L be a GPLS. Then for any fixed distinct i,7j,k, 1 <
i,J,k < N, respectively, there exists a unique pair of maps G and G' on the
superalgebra A associated with L such that

(hiks frj(@)] = [hjk, fri(G(p(a)))]

" VYaceA
[9ik> fin(a)] = —[gjn, fir(G'(p(a)))],

(The definition of p for a superalgebra A, see formula (1).)
Furthermore, G(1) = 1, and G is an F-linear homogeneous of degree 0 map:

Proof For any distinct ¢, k,j =1,2,..., N, and any a € A, we have

(915 (i, Fri(@)]] = [frr = iz Frei(@)] = [k, (95, Fri(a)]] = fra(a),
and then [hjg, fri(a)] = [hjk, fri(a’)] if and only if a = d’.

From Lemma 3.4, we have
[Piks Ley—e;] = Lci—e; = [Pjrs Ley—e,],
and then, Va € A, there exists unique G(a) € A such that
[hi frj(p(@)] = [Pk, fri(G(a))].

Noticing that p is an automorphism of order 2 on A, and replacing a by p(a),
we have

[eiks fij(@)] = [hjk, fri(G(p(a)))]- (4)

Obviously, G is F-linear, G(1) = 1. For any homogenous element a € A, notice
that p is homogeneous of degree 0. Then, from formula (4), we have

L+ al =1+1G(p(a))] = 1 +[G(a)],

and then G is homogeneous of degree 0 too, so

Similarly, we can get the claim for G’. O
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Lemma 3.6 Let L be a GPLS. Then [hij,] is injective on Le, ., Le,—, and
L€i+€ka L€j+€k; [gljv] is injective on Lskft‘p Lskfsj and L*&;*EmL*Ej*Em f07” any
distinct i,k,j7 =1,2,..., N.

Proof Notice that for arbitrary distinct i,k,7 = 1,2,..., N, and arbitrary
[91]7 fk](a)] € L€¢+€k7 we have

(g, [9ig: frg(@]] = [fii = fijs frg(@)] = [9ij, [hij, frj(a)]] = fij(a).

Then
(i l9ig> frs (@] =0 <= a =0 = [gij, fr;(a)] =0,

and we get that [g;;, ] is injective on L, ¢, [hij,] is injective on L, 4, .
The proof of others is similar. ]

Furthermore, about G and G’, we have the following result.

Proposition 3.7 G? =ids, G = G'. The definition of G does not depend on
the choice of i, 7, k, in particular,

(hiks frj(a)] = [ha, fi(@)],  [giks fix(a)] = (g, Fiu(a)],
for any distinct 1,5, k,1=1,2,...,N, and a € A.

Proof For any fixed distinct 4, j,k,1 =1,2,...,N,and a € A, from Proposition
3.5, there exists a unique map G on the superalgebra A such that

[hik frj(@)] = [hji, fri(G(p(a)))]-
Notice that for distinct 4, j, k, [, we have
[hiks frj(@)] = [Pir, [frts fij(@)]) = [[Piw, fra, frj(@)] = [hat, fij(a)],

and then G does not depend on the choice of k.
Next, we check that G does not depend on the choice of j:

[Rik, fra(a)] = [h zka[fkj(a) fyl]]
= [[hik: fij (@), F] + (D)1 fr5(a), [hir, £31]]
= [[hik, frj(@)], fi
= [[hjks fri(G(p(a)))]; fil
= [hji: [fei(G(p(a))), fiul] + [k fiuls fri(G(p(a)))]
= [

ik, fri(G(p(a)))].

Notice that the map G defined in Proposition 3.5 for arbitrary fixed distinct
i, k,l is unique. Then we get the definition of G does not depend on the choice
of j.

Similarly, we have

[Pk, frj(a)] = [hjr, fr(G(p(a)))],
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and G does not depend on the choice of 7 too.
In particular, we have

[hiks frj(@)] = [hjk, fri(G(p(a)))] = [hik, frj(G(p(G(p(a)))))]-
From Lemma 3.6, hy is injective on L., .., and then we get
G(p(G(p(a)))) =a, Vae A
From Proposition 3.5, Gp = pG, and noticing that p? = id, we get
G(p(G(p(a)))) = G(G(a)) =a, Vae A
Next, we check G = G'. We have
(hits [giks fir(a)l] = [[hat, ginl, fin(@)] = [gin- [havs fir(a)]] = [=fur, fin(a)] = fula),

[hit, = [gjks Fir (G (p())]] = — [[Pir, gjk]s fie(G(p(a)))] + [gjk, [hii, fir(G(p(a)))]]
= [k, [P, Fu(G(p(G(p(a)))))]]
= [[9jk> hwils fu(a)
= fji(a).

From Lemma 3.6, h; is injective on Le, +¢,. Then have

[k fin(a)] = —[gjk, fir.(G(p(a)))]-

By the uniqueness of G’, we get G = G. O

About G, summarizing the above discussion in Propositions 3.5 and 3.7, we
have the following result.

Lemma 3.8 Let L be a GPLS. Then there exists a unique map G on the
superalgebra A associated with L such that

[hit, frj(a)] = [hje, fu(G(p(a)))], [9it, fit(a)] = —=g;¢, fir(G(p(a)))],
for any distinct i,t,j =1,2,...,N,Va € A.
Furthermore, G is an F-linear homogeneous of degree 0 map on A, and

G1)=1, G*=id, l|a|=|G(a)l, p(G(a))=G(p(a)).

Proposition 3.9 Let L be a GPLS, and let G be the map associated with L
defined as above. Then

[[hits fri(@)], fir(®)] = [haa, fi( G(plab)) + (=1)" MG (p())a)],
[lgie: fie(@)]s fra(®)] = [gras fa(=1)“1IG(p(ba)) — aG(p(b)))],

for distinct i,t,k,l = 1,2,..., N, and any homogeneous a,b € A, which is the
superalgebra associated with L.
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Proof Noticing that i,t, k,[ are distinct, and using Lemma 3.8, we have

[[hie, fri(@)], fin(0)] = [hie, [fri(a), fiu(®)]] + (D)1 [[hyi, £ (B)], fri(a)]
= [hat, fue(ab)] + (1) ¥l[[hy, fir (D)), fui(a)]
= [k, f1(G(p(ab)] + (=1 (B, fir(G(p(0)))], fri(a)]
= [hits Fui(Gp(ab)))] + (=) Pk, [£1 (G (p(5))), fri(a)]
= [hwt, fi(G(p(ab)))] + (=) ¥lhyy, £1:(G (p(b))a)]
= [hwt, f1i(G(p(ab)) + (1) NPIG(p(b))a)).

The proof of [[git, fit(a)], fri(b)] is similar. O

Lemma 3.10 Let L be a GPLS, let A be the superalgebra associated with L,
and let G be the map associated with L defined as above. Then we have

(it fri(@)] = [hie, fu(G(p(@))]; [9it: = fir(G(a))] = [git, fie(p(a))],

and

Y [hit7 ftz(a)] € L_25i7 [hit7 ft,(a)] =0 if and only if a+ G(p(a)) =0,

V(git, — fi(G(a))] € Lae,, [gir, —fi(G(a))] = 0 if and only if a—G(p(a)) =0,
where 1 <i#t< N, a€ A.

Proof Assume that 4,j,k,t = 1,2,...,N are distinct, and a € A is
homogeneous.
Using Proposition 3.9, letting b = 1, and then using Lemma 3.8, we have

[[hit, fri(a)], fir] = [Pt, f1i(G(p(a)) + a)],
lgit, — fir(G(a))]; fril = lgr1, fu(G(a) — p(a))].

From Lemma 3.6, hy; is injective on L¢, ¢, and gy, is injective on L., _,. Then we

get [his, fii(a)] # 0if G(p(a))+a # 0, and [gr, — fu(G(a))] # 0if Gla)—p(a) £ 0.
Notice that G? = id. Then we get [gi, — fir(G(a))] # 0 if a — G(p(a)) # 0.
Again using Lemma 3.8, and noticing that 4, j, k, t are distinct, we have

[[gjk, [Pit, fix(@)]], his] = — [[Pat, [95m, fer(a)]],
= [[Rit, [9ik, fik(G(p(a)))]]; hij]
= H[hzt;gtk] fik(G(p(a)))], hij]

= [[fwi, [i£(G(p(a)))], hij]
[fyz( (p(a))), hij]

= — (=1)"Ihiz, f5:(G(p()))].

hij]
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On the other hand, noticing that —e; — e, — &; — €5 is not a root, we have

[Lgjies (it Fir ()], i) = (g, [Pt Fur (@), Pgl) 4+ (=11 g, Ruig), [P, fure(a)]
= (=)l fi, [hat, fir(@)]]
= (=) fui, hia], fir(@)] + (=) hag, [ fri, Fir(@)]]
= — (=) [hir, fui(a)].
Then
(it fi(G(p(a))] = [hij, £i(G(p(a)))] = [hit, fri(a)],

SO

[hit7 ftl(a)] =0 < a+ G(p(a)) =0.
The proof of [git, —fit(G(a))] is similar. O

Lemma 3.11 Let L be a GPLS, and let G be the map associated with L defined
as above. Then G is an anti-superinvolution on the superalgebra A associated
with L.

Proof Assume that a,b € A are arbitrary homogeneous elements, 1 < 4,t, k,[ <
N, and 1,t, k,[ are distinct.

From Lemma 3.8, we have pG = Gp, G? = id, and G is homogeneous of
degree 0. Notice that p? = id and p is a superalgebra automorphism on A.
Then, from Proposition 3.9, we have

[[hit, fri@)), fx(0)] = [, f1i(G(p(ab)) + (1) NI G(p(b))a)],
[[hit, £ii(G(p(@)], Fir(B)] = [hua, fus(G(G(a)p(b)) + (=D)IIG (p(6)) G (p(a)))],
([9it, — fit(G(@))], fus(D)] = [g1a, fua(—(=1) " PIG(p(bG(a))) + G(a)G(p(D)))],
(lgie: fit(p(a))], fui(0)] = [gia, fa (=1 PG (p(b)a) — p(a)G(p(D)))]-

From Lemma 3.10,

(it fri(a)] = [hit, f(G(p(a))],  [git, = fir(G(a))] = [git fir(p(a))],

and from Lemma 3.6, hy; is injective on Le,_.,;, gi is injective on L., _,. Then
we get

G(p(ab)) + (1) G(p(b))a = G(G(a)p(b)) + (1) G (p(8)G(p(a)), (5)

—(=1)"G(p(bG () + G(a)G(p(b)) = (~1)IG(p(b)a) = p(a)G(p(D)). (6)

Acting (5) by p, acting (6) by poG, and keeping in mind pG = Gp, G? = p? = id,
and p being a superalgebra automorphism on A, we have

(
)]
)] =
(

G(ab) + (1) PG (b)p(a) = G(G(p(a))b) + (1) IG(b)G(a),  (7)
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—(=1)l"*bG(a) + G(G(p(a)G (1) = (=1) Pbp(a) — G(aG(D)).  (8)

For (8), by using the arbitrariness of b, we replace b by G(b), and notice that
G is homogeneous of degree 0, G? = id. Then

—(=)FMG()G(a) + GG (p(a)b) = (=1)I"IG(b)p(a) — G(ab).
Exchanging of left- and right-hand sides, we get
G(ab) — (=1)PlG(b)p(a) = —G(G(p(a))b) + (=) PIG(b)G(a).  (9)
Adding (7) and (9), we get
G(ab) = (1) PG (b)G(a),

i.e., G is a superalgebra anti-endomorphism on the superalgebra A associated
with L.
Furthermore, G is an anti-superinvolution from Lemma 3.8. ([l

Theorem 3.1 Let L be a generalized P(N — 1)-graded Lie superalgebra over
the characteristic zero field F. If N > 4, then there exists a unique (up to
isomorphism) unital associative F-superalgebra A; furthermore, it exists an anti-
superinvolution G on A such that L is centrally isogenous with the matriz Lie
superalgebra Py (A, G).

Proof From Lemma 3.3, there exists a unique (up to isomorphism) unital
associative F-superalgebra A associated with GPLS L such that La; is centrally
isogenous with siy(A).

From Lemma 3.11, we get an anti-superinvolution G on the unital

associative superalgebra A. Through the given construction in Section 2, we
obtain a GPLS Zx(A4,G).
The root vectors of 2y (A, G) denote by

fii(a) = aeij — G(a)en+jn+i,
gij(a) = ae; n1j — G(p(a))ej Ny, (10)
ﬁij(a) = aen+i; + G(p(a))entji

Notice that #n(A,G)a; is centrally isogenous with siy(A) too. Then,
by Lemma 3.3, there exists a family of homogenous of degree 0, F-linear
isomorphisms

n= (nam—anv I1<m#n< N)7 Nem—en : Lem—en, = ‘@N(A7G)€m_8n7
such that
T’Em—€n+€p—€q ([xfm_en ) J"Ep—iq]) = [T’E'm—€n (:UEm—En)7 Usp—sq (pr—Eq)L

N(fmn) = fmn(l)a
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for arbitrary m,n,p,q =1,2,.... N, m #n, p # q, Tc,,—¢, € Le,, s Tep,—c, €
Lsp €q*

For any a € A, we denote 7] (f i(a)) by

Next, we assume that 1 < 4,5, k,[,t < N
homogeneous elements.

From Lemma 3.4, we have

fz (a).
,t #1i,5,k, and a,b € A are any

LE»L'“FE]' = [git»sz—st]y L—si—sj = [hitaLst—Ej]v

Define an extension of 7 as follows, which is denoted by 7:
(fii(@) = fisa),  ([ha, fiy(@)]) = hij(a),  [gie, — £5:(G(a)]) = G a).
From Lemma 3.6, for any odd root £(¢; +€;), ¢ # j, we have
[9it, = [j1(G(a))] =0 <= a=0 < [hi, fi;(a)] =0
From Lemma 3.10, for any odd root 4+2¢;, 1 < i < NN, we have
[hit; fii(a)] =0 <= a+ G(pea)) =0,

[9it, = fit(G(a))] = 0 <= a —G(p(a)) =0,

Comparing these with the root vectors of Zy(A,G) which are given in
formula (10), we get that 7 is a collection of well-defined bijective mappings.

Observing the definition of 7, we get that 7 is a collection of homogenous
of degree 0, F-linear mappings.

For arbitrary homogeneous a,b € A, from Theorem 2.2, we have

(Gi5(@), Ju(0)] = =(=1) 16,3515 (p(b)a) + (—=1)"16;,5: (p() G (p(a))), (1)
[fi3(@), fa(®)] = djxfulab) — (=1)"11%l5; fi; (ba),
[Gij (@), hua (b)) = — 0k Fu(G(p(a))b) + 5 fa (ab)
—8ufjr(G(p(@))G(p(b) + 6 fur(aGlp(D)),  (12)
[fii(a), hia (b)) = =Sixhju(G(a)b) — (—1) "1l 6; k5 (bp(a)). (13)
Obviously, for any a € A, PN (A, G) satisfies

Pn(A, Gy = > [PNn(A,G)s, Pn(A,G)y).
6, YEA, Sy +a, §+y=a

Now, we only remain to check that for arbitrary
a,Ba+ BN, x4 €Ly, g€ Lg,

7 satisfies
Na+8([Ta, 25]) = [Ta(za), 7s(25)].
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By using Lemma 3.8, GG is an anti-superinvolution and keep in mind ¢ #
i, 4, k. We have

[[git, — f5¢(G ()], fri(b)]
= [git, [~ £51(G(a)), fii ®)]] + (=) Pl[[giy, fr: (b)), = £;4(G (a))]
= [git (=1)M1655 £ (G ()] + (= 1) [[grs, £ra(Gp(0))], = F54(G ()]
= (=1)1Pls;[gir, fre(0G(a))] — (=) Pl gy, [£1:(G(p(D))), £14(G(a))]]
= (1) l§3[gre, — fir(G(p(bG(a))))]
— (=) ¥l gy, 6,5 £11(G(p(6)G(a))] — [gki — f:(G(a) G (p(b)))]

= (=115 [grs, — fir(G(p(0G (a))))] = (1) Pl[gpi, — £;i (G (p(b)a))].

Notice that pG = Gp and p is a superalgebra automorphism. Then we get

1([lgit, = F5+(G ()] fri(b)])
= — (=1)Plg; (p(b)a) + (=1)11185,5 (p(0) G (p(a)))-

Comparing it with (11), they are consistent.

Similarly, we can get that it holds when [ = j.

Again using Lemma 3.8, p(a) = (—1)%a, and noticing that ¢ # i, j, k, we
have

a

[fij(a@), [hkt, fri(D)]]
= [[fi(a), bl £ (D)) + (= 1) e, [ £i5(a), Fui(D)]]

(=Dl 65k [hat, fij(@)], fr(b)] — (D) [y £y (ba)]
Sikl[hgir fit(G(a))], fu ()] — (1)1 By £ (ba)]

= Siklhji, [£ir(G(a)), fu(®)]] = (1) Pl [y, f15(bp(a))]
— Siklhji, £ii(G(a)b)] = (=) Plhgy, f1;(bp(a))]
= — Sirlhji, i (G(a)b)] = (=)' Plhy, f1(bp(a))).

Then we get

A([fi3 (@), (e, F(D)]]) = —=0ihji(G(a)b) — (1)1 IRy (bp(a)).

Comparing it with (13), they are consistent.

Similarly, we can get that it holds when k = 1.

When i, j, k are distinct, let 1 < ¢/ < N, t' # k,i. Using Lemma 3.8 and
p(a) = (—1)/%la, we have

(lgit, = f51(G(@))]; [, fri (b))
= [git, [~ 1i¢(G(@)), [, fui (0]
+ (=)D [giy, (e, Fri(O)]], ~F50(G(a))]

b
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= [git, [~ fit(G(a)), [hiy, fri(D)]]]

= (=)D [gie, gy £55(B)]], — Fi¢(Gla))]

= (=)D [, g1, £1: ()], — £54(G ()]

= (=)l [y, gi, (G (p(B)]), f6(Gla))]
— (=1)lel(el+) +|b\[[[hk gjil, fu(G(D))], f(G(a))]
= (=)l DRI £ i (G0))), £i4(Gla))]
(— 1)|a|+\b\+1f (G(a)G (D))

— [ik(G(p(a))G(p(b)))-
Then we get
([[git: = 15¢(G(@))], [Brer, fri(D)]]) = = Fir(G(p(a)) G (p(D))).

Comparing it with (12), they are consistent.
When i =k # j, let 1 <t/ < N,t' # 4. Then we have

[lgit, = f5t(G(a))], [hier, fri(D)]
= [git, [=F+(G(@)), [harr, Fura )] + (= 1) D [[gie, [harr, fua(B)]], = 154(G(a))]
1)lal(bF) [git, [hij, f3i(D)]], = f5¢(G(a)

|
(=1) [ )
= (=)D ([([gin, g, £:(0)]s = f5e(G@)] = [[higs [gias Fi D)), = fe(G (@)
= (=D)L, f:0)) £ (G@)] = [Ty, (951, Ju (GO, = i (G(@))])
= — Ji(G(p(a)b) — (=)D [[hij, gjal, £ (G(p(B)))], —f6(G(a))]
= — f5(G(p(a))b) — (=) f5; = fii, fu(Gp(®))], —f(Glp(a)))]
= — [5i(G(p(a)b) — f5i(G(p(a))G(p(b)))-

Thus,

(([gis = Fie(G(@)]; [, fra®)]]) = = F5i(Gp(a))b) = Fii(G(p(a)) G (p(b))-

Comparing it with (12), they are consistent.

The proofs of other cases are similar.

Now, summarizing the above discussion, from Lemma 3.1, we get the
theorem holds at once. ]

Then, by using Theorems 2.1 and 3.1, we get the classification of P(N —1)-
graded Lie superalgebras at once, which is isomorphic to P(N — 1) @ A given
in [19].

Corollary Let L be a P(N —1)-graded Lie superalgebra over the characteristic
zero field F with N > 4. Then there exists a unique (up to isomorphism)
unital associative supercommutative F-superalgebra A such that L is centrally
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isogenous (for N > 4 indeed is isomorphic) to
Zn(A,p)
. X Y B - L
- {(Z —p(X)t) | X,Y,Z e My(A), tr(X)=0,Y =YY", Z=Z }
~ P(N — 1) ®f A.

Proof Assume that a,b € A are arbitrary homogeneous elements.

Notice that A is supercommutative. From Theorem 2.2, we get the non-
trivial Lie superbrackets between the root vectors of Zn (A, p) as follows:

[G53(a), Fra(b)] = —0udin; (ap(b)) + SjuGki(ap(b)),
(G55 (a), Tt (b)) = =6 fj1(ab) + Oy fu(ab) — S fix(ab) + 651 fir (ab),
[Fij(@), haa ()] = —Bixhj(p(a)b) — duij (p(a)D),
[fi(@), Fra(®)] = 8ju fir(ab) — Gifij(ab).
We denote the root vectors of P(N — 1) ®r A by
Fij(a) :=afij, Gij(a) :=agij, H;j(a) := ah;.
The Lie superbracket of P(N — 1) ® A is defined by
X ®aY @b =(-D)V[X Yo, X YePN-1),abecA,

Then

[Gij(p(a)), Fra(b)] = [gij, fra] © p(a)b = —=0uGrj(p(ap(b))) + 65uGri(p(ap(b))),

[Gij(p(a)), Hu(b)] = (—1)" [gij, hua] @ pla)b
= — i Fji(ab) + 6jx Fy(ab) — 6 Fjx(ab) + 85 Fix(ab),

[Fij(a), Hy ()] = (=)' fij, hia] @ ab — S Hji(p(a)b) — 63 Hyj(p(a)b),
[Fij(a), Fia(b)] = 0, Fu(ab) — 6y F;j(ab).
Now, we get a isomorphism
fij(@) = Fj(a), Gi(a) = Giy(pla)), hi(a) = Hy(a),

between &y (A, p) and P(N — 1) ®p A.
Further, A is an F-superextension (see [20, Sect. 1.1]) and P(N —1), N > 4,
is centrally closed. Then applying [20, Lemma 1.12], we have

uce(A®p P(N — 1)) 2 A @p uce(P(N — 1)) = A @y P(N — 1).



672 Jin CHENG, Yun GAO

On the other hand, P(N — 1) ®r A is centerless. Then, for any P(N — 1)-
graded Lie superalgebra L over F, there exists a unique unital associative
supercommutative F-superalgebra A such that L = P(N — 1) ®p A if N > 4.
(Or see [19, Sect. 6].) O

Remark In addition, by using the connection between Lie super and Jordan
super structures through Tits-Kantor-Koecher TKK construction (see [13])
and the Coordinatization Theorem for Jordan superalgebras (see [18]) of type
JP(n), we can obtain the characterization for GPLS when N is even as follows
immediately. It is a generalization of Kac’s result [13] about the connection
between the finite dimensional simple Lie superalgebra P(2n — 1) and simple
Jordan superalgebra J, (I, idp).

Proposition 3.12 Suppose n > 4.

(i) Any Lie superalgebra centrally isogenous with a TKK Lie superalgebras
H(J) of a Jordan superalgebra J which contains Jp(F,idr) as a unital sub-
superalgebra is generalized P(2n — 1)-graded.

(ii) Let L be a generalized P(2n — 1)-graded Lie superalgebra over F. Then
there exists a unital associative F-superalgebra A with an anti-superinvolution ~,
such that L is centrally isogenous to & (J, (A, —)), which is centrally isogenous
with the matriz Lie superalgebra Po,(A,—) (furthermore, if A is super-
commutative, then they are isomorphic indeed).

Proof For a Lie superalgebra L, it is well known that (see [17]) if L contains
an sla-triple
sly = Fe + Fh + F,

with

[h,e]:Qe, [h7f]:_2f> [evf]:ha
such that ad h: L — L is diagonalizable which only having eigenvalues —2,0, 2,
then Ly becomes a Jordan superalgebra with the product z oy := % [z, f], y].

Let L be a generalized P(2n — 1)-graded Lie superalgebra over the
characteristic zero field F. Then

n 2n n n
h:§fii_ Z fjj’ e:;fi,n—&-i, fzzfn-‘ri,iv

j=n+1

form an slo-triple in L, the operator adh acts on L which only having
eigenvalues —2,0, 2, and

Ly = Z Lei—sj -+ Z L€i+€j + Z L—Ei—E]'

1<i<n,n+1<j<2n 1<,5<n n+1<4,5<2n

with product X oY = 3 [[X, f],Y] is a Jordan superalgebra.
From [13], we know that P(2n — 1) is isomorphic to the Jordan super-
algebra J,(F,idr). Then up to isomorphism, Ly contains J,(F,idr) as a
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unital subsuperalgebra. Using the Coordinatization Theorem for Jordan super-
algebras of type JP(n), n > 4, which was given in [18], we have Ly is isomorphic
to some Jordan matrix superalgebra J, (A, G), where A is a unital associative
F-superalgebra with an anti-superinvolution G.

For the generalized P(2n — 1)-graded Lie superalgebra &5, (A, G), we claim
that P2, (A, G)2 is isomorphic to J,(A, G) as Jordan superalgebras.

We denote the root vectors of P,,(A, G) by

fii(a) = aeij — G(a)eansjantis
gij(a) = a€;ionyj — G(p(a))ejontis

hij(a) = aeanyij + G(p(a))eanti,

where 1 < 4,5 < 2n, a € A.
Let
Fiy(a) = aey + G(a)entintks
Gri(a) = aegpni — G(p(a))erniks
Hy(a) :== aepyrg + G(p(a))ensti i,

where a € A, 1 < k,l < n. Then
fij(a) = Fijn(a), 1<i<
Gij(a) = =Gij(a), 1<i,j<n,
Eij(a) = Hi—n,j—n, 14+n<1,7 < 2n,

give an isomorphism between 5, (A, G)2 and J, (A4, G).
Indeed, for 1 < i,k < n < j,1 < 2n,

[1fi3(a), 11, Fra(®)]

[fi,jfn(a) - ]?nJri,j(a)? ]?;cl(b)]

- 1 -
=3 8;—np fu(ab) + (—1)lal P 5 Ontit frj(ba).

fii(a) o fu(b) =

RN~

1 1
Fz',j—n(a> © Fk,l—n(b) = 5 5j—n,kFi,l—n(ab) + (_1)|a\ 1o 5 5l—n,iFk,j—n(ba)'

For 1 <4,k 1l <n<j<2n,

Fij(a) o Ga(b) = % [fijen(@) = fatij(a), gra(b)]
= 5 05 ndia(ab) — 5 65 GiklaGlo(0),
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Fij—n(a)o (=Gpy(b))

1 1
= — 5 0j—nkabe;inyi — (—1)|a‘(|b|+1)§ bG(a)5n+l,j€k,i+n

2
43 GG, GG @etnsi + 5 61-niaG(oD)einen
= 2 5ionk(=Giaab) — 5 61t~ Gi(aG (o).
For1<i,j<n<kl<2n,
5:1(0) © na(6) = 5 [ (@), 1) v 0
3 (G 0(0))) — G (@), a8
= — 3 S ul@h) + 5 B s T Clpa)h)

— 5 0inaFublaGlp(8)) + 3 disna i Gola) Glo(0),

— Gi;(a) 0 Hy—pi—n(b)
= - é 4,k @b | —n — (—1)““'“)('("“)% O1—n,iback,jn

+ 5 BenaGlpla)besion + (~DIFIDZ 5 b6 p(a)enirn

— 5 810G p0)ein — ()P 5 Glp(b))aerin

+ 3 i Glp(@) o)) e n

1
+ (—1)(|a|+1)(‘b‘+1) 3 Sk—n,iG(p(b))G(p(a))eivn

1 1
=-3 Ojn b Fi1—n(ab) + 3 Sitn kFj1—n(G(p(a))b)

1 1
BB (@G (p(D) + 3 Bt Fyimn (Glp(a) Glo(0))

Similarly, we can check that the remaining products are consistent too.

Thus, we get
Pon(A,G)2 = Ju(A,G).

We denote the TKK construction for a Jordan superalgebra J by 2 (J),
and [4, 1.11-1.14] obviously can be extended to the super case. Then s, (A4, Q)
is centrally isogenous with the centerless TKK Lie superalgebra ¢ (J, (4, G)).
Since Ly = J,(A,G), L is centrally isogenous with ¢ (J, (A4, G)) too.

(i) follows from the above discussion and Theorem 2.1 immediately. O
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4 GPLS coordinatized by quantum tori

4.1 Structure of GPLS coordinatized by quantum tori

We denote the field of complex numbers by C. We first recall some basic facts
on quantum tori.

Let 0 # g € C. A quantum torus associated to ¢ (see [16]) is a unital
associative C-algebra C,[z*!,y*!] (or simply, C,) with generators z*!, y*!
and relations

z l=atle=yy =y ly=1 yz=quy.
Then
xmynxpys — qn]ox’rn—&-pyn-i-s7
Cy= Y aCa™y"

m,neL

Set A(q) ={u € Z|q"* =1}. q is said to be generic if A(q) = {0}.
From [5], we see that [C,, C,] has a basis consisting of monomials 2" y" for

m ¢ A(q) or n ¢ A(q).
Let = be the anti-involution on C, given by

-1

T=x, Y=Y
Then
C,=CJ o Cy,
where
C;t:{se(cq | 5 = +£s},
and

C) = span{z™y" + 2™y" | m € Z, n > 0},
C, = span{z™y" — 2™y" | m € Z, n > 0}.

We get a GPLS #n(C,, —) through C, with the anti-involution ~
Let 0 < M,N € Z. As done in [11], we get a central extension of the Lie
superalgebra gl(M, N)(C,):

gl(M,N)(C,) = UM N)(C) @ (Y @Celu)) & Ce,
u€A(q)

with Lie superbracket

[A(z™y"), B(z"y")]
= A(z™y")B(aPy’) — (=1)%BA9E B B(aPy®) A(z™y")
+mq"Pstr(AB)bm+p,005 561 + 8) + ng"Pstr(AB)dm4p,00n+s0cy  (14)

for m,p,n,s € Z, A,B € gl(M,N),, and o € Zg, where str is the supertrace

o —

of gl(M,N), c¢(u) with u € A(q), ¢, are central elements of gl(M, N)(C,), and
t means ¢t € Z/A(q) for t € Z.
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Then we get a nontrivial central extension of Zn(Cy, —):

9@—) =PN(Cy,—)® < Z @Cc(u)) & Cey
u€A(q)

with Lie superbracket as in (14).
Let

r3 . om.n —

fij(m,n) == 2™y e;; — Y entj N4,
-~ .—— m., n A
gij(m,n) == a"y"e; N+j — Y™ €5 Nyis
7 o .m.n —m
hij(m,n) = ™y " entij + "Y" eN4ji-

According to Theorem 2.2 and the properties of C, discussed above, we get the
following root space decomposition of Zn(Cy, —).

Proposition 4.1

'@N(Cq’ _) =P & Z ‘@61'—63' D Z '@81'4-6]' @ Z f@—ei—ejy

1<iAj<N 1<i<j<N 1<i<j<N
where _
P, = spanc{ Fy(m,n) | m,n € 2},
Pryaey = spanc{Gig(m,n) | m,n € Z},
Poeie; = spanc{ﬁij(m,n) | m,n € Z},
and

Py = span(c{ﬁ-i(m,n) — fNN(m, n)|1<i<N—-1,mneZ}
@ spanc{ fyn (m,n) | m,n € (Z x Z)\(A(q) x A(q))}-

About the root vectors of @@ —), we have the following result.

Proposition 4.2

[9i5(m, 1), Gri (P, 1)]

(i (m, ), hia(p, t)] =

0,
0,

[Gij(m.n), b (p, 1))
= — Sig ") f(m+ pot—n) 4 6ikg"™ fu(m + pyn 4 t)
— 6g™ ") fiy (m 4 p, —(n + 1)) + 50 Fir(m + p,m — 1)
+ mq"péjkéiléerp,gén—H’ﬁ(c(n +1t)—c(—n—1t))
+2nG"P610:10m1p,00n+1,0Cy
+mGikdj10m+p,005=5(c(n — 1) — c(t — n)) + 216316 10m+p,00n—t,0¢y,

[Gi3(m, ), fra(ps )] = —0uq™ Gr; (m + pyn 4 t) + 554 ™Gpi(m + p, t —n),
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[fij(m,n), fra(p, )] = 864" fu(m + p,n +t) — 8ug"™ fij(m +p,n +t)
— mq"" 81 0i10m+p,00577,5(c(—n — t) — c(n + 1))
+21nq"P 61010 m+p,00n+1,0Cy>
[fij(m,n), ha(p, )] = —0ixq "™ P) 'l<m +p,t —n) = 6ag™ hii(m + p,n + 1),
for all m,p,n,t € Z and 1 < 1,5, k,l <
Proof Since
Orgpq™ " =0

—mn—np _ 5 _,~th—np _ q
)

m+p,04 n+t,04

we have

[Gi(m.m), hya(p, )]

= [2™y"ei nyj, 2Py enrd) + (27 Y e Ny, 2Py en 1)
— [z™y"ej N+i $pyt€N+k,z] - Wej,N—i-thyteN—H,k]

= (§;px™y" 2Py ey + Sy x" Y en 1k N1
+ mq"péjk6115m+p705n—ﬂ,6c(n +t) +1nq""0;16:10m4p,00n4,0Cy)
+ (6™ y" wPy e + OkiaPy e ™y eN 1IN+
+ 851080t 0051 061 = 1) + 1811634800100y
— amynaPyte; + 0aPy Ty eN 1k N i
+ méjléik5m+p705m7ﬁc(t — 1) — 16103k Om+p,00n—1,0Cy)
— (BuaPyta™yr ey + Opja™y aPyten 1 N vi
+ mq”péiléjkéerp,oén—Hﬁc(—n —t) — nq"P8i10jk0m+p,00n+t,0Cy)

= — 8eq ") Fy(m 4 pt —n) + Sjuq™ fa(m + p,n + t)
= Sug” M) Fy(m 4 p, — (4 1) + 050" fi(m 4 pom — 1)
+ mq”p5jk6il5m+p7o5m75(c(n +1t)—c(—n—1t))
+ 2nq"P 81,0510 m+p,00n+t,0Cy
+ MOk 010m+p,007—¢5(c(n —t) — c(t = n)) + 2n6ik0j10m+p,00n—t,0¢y-

The proof of others is similar. O

Remark The subsuperalgebra

Pn(Cy,—) = PN(C < Y Cle u)))@cy (15)

ueA(q)t

of 9@ —) is perfect, which is generalized P(N — 1)-graded.
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4.2 Representation of GPLS coordinatized by quantum tori

In this subsection, we use the Fermionic-Bosonic operators to obtain a class of
generalized P(N — 1)-graded Lie superalgebras coordinatized by quantum tori.
Let Z be an arbitrary associative algebra, 7 = +1, and define a 7-bracket
on Z as follow:
{a,b}; = ab+ Tba, a,beZA.

Let a be a unital associative algebra with generators a;,a’, 1 < i < N,
subject to relations
{ai,ajtr ={aj,a;}r =0, {ai,a;}r = dij.
Let the associative algebra «(N,7) be generated by
N
{u(m) ‘ u € @(Cai ® Caj), me Z}
i=1
subject to relations
{u(m),v(n)}r = {u, v}+6msn,0-
Then we define the normal ordering as in [9]:
(m)v( )s n>m,
cu(m)v(n) = 3 (u(m v(n) —rv(n)u(m)), m=n,
—1v(n)u(m), m>n,
= —7:v(nju(m):
for n,m € Z, u,v € a. Set
1, n>0,
o) ={ L 0
- 2a n=yu,
0, n<0
Then 1 — §(n) = 6(—n). Thus, we have
sai(m)aj(n) : = ai(m)aj(n) = —7aj(n)ai(m),
saj(m)aj(n) : = af(m)aj(n) = — Taj(n)aj(m), (16)
ai(m)aj(n) =: ai(m)aj(n) : + 8;j6m+n,00(m — n),
a;‘ (n)a;i(m) =: az(m)a; (n): — 0i0m-+n, 00(n —m).

For the Fermionic and Bosonic quadratic operators, by a direct computation,
we have the following result.
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Proposition 4.3 The subspace of Clifford algebra a(N,+1) consisted of
quadratic operators are closed under the Lie bracket [-,-]—. Furthermore,
the Lie-commutators of Fermionic quadratic basis operators a;(m)a;(n),
ai(m)a;(n), aj *(n) are as follows:

i(m)aj
[ai(m)a;(n), ax(p)ai(t)]- =0,
lai(m)aj(n), ax(p)aj (t)]— = 8j10n,—tar(p)ai(m) — 640m,—ar(p)aj(n),
[ai(m)af(n), ax(p)ai ()] - = d;k0n,—pai(m)a (t) — 0adm,—tar(p)aj(n),  (17)
!

lai(m)aj(n), ai(p)aj (t)]- = —06udm,—tar,(p)aj(n) — Girdm,—paj(n)a; (t),
[ai (m)a}(n), ai(p)aj (1)]- = 0,
lai(m)aj(n), aj(p)a] (t)]— = — 0i10m,—taf,(p)a;(n) + dik0m,—paj (t)a;(n)
+ 0jk0n,—pai(m)ay (t) — 0j10n,—rai(m)ag(p).

Proposition 4.4 The subspace of Weyl algebra «(N,—1) consisted of
quadratic operators are closed under the Lie bracket [-,-|—. Furthermore, the

Lie-commutators of Bosonic quadratic basis operators a;(m)aj(n), a;(m)aj(n),

a;(m)aj(n) are as follows:

[ai(m)a;(n), ar(p)ai(t)]- =0,
[ai(m)a;j(n), ar(p)aj ()] = didm,~rar(p)a;(n) + b;i0n,—rar(p)ai(m),
[ai(m)aj(n) a(p)aj ()] = 0utdm,—rar(p)aj(n) = djkdn,—pai(m)a; (t),  (18)
[ai(m)aj(n), ar(p)a; (t)]- = Gudm, tak(p)a;k(n)+5zk5 —paj(n)ai (1),
[a7 (m)aj(n), ag(p)a; ()] -

1 (
lai(m)a;(n), a(p)a; (t)]- = 6idm,—ra;(n)ay(p) +
+ 8510, —rai(m)aj(

+ dikOm,—paj (t)aj(n)
p) + 6jk0n,—pag (t)ai(m).

Proposition 4.5 The subspace of the tensor product algebra a(N,+1)®
a(N, —1) consisted of Fermionic-Bosonic quadratic operators are closed under
the Jordan bracket [-,-]+. Moreover, if we denote the generators of a(N,—1) by
ei(m),e;(n), and identify u(m)®@1 and 1@v(n) with u(m) and v(n), respectively,
in tensor algebra, then

u(m) @ v(n) = u(m)v(n) = v(n)u(m).

The Jordan-commutators of Fermionic-Bosonic quadratic basis operators

ai(m)e;(n), ai(m)e;(n), aj(m)e;j(n), aj(m)e;(n) are as follows:

[ai(m)e;(n), ak(p)ei(t)]+ = 0,
lai(m)e;(n), a(p)ei(t)]+ = dirdm,—pej(n)el(t),
[ai(m)e;(n), ar(p)e; (t)]+ = 3j10n,—rai(m)ax(p),
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€j(n) + 0j10n,—rai(m)ag(p)
= 0itOm,—pej(n)ef (t) + dj10n,—tai(m)ag(p) — zk5jl5m,—p5n,—t, (19)
(m)ej(n), ar(p)e ()] + = (20)
[ai(m)ej(n), ag(p)er(t)]+ = dikdm,—per(t)e](n) — ]l5n —ta;(m)ag(p),  (21)
[ai(m)e}(n), ai(p)ef (t)]+ = Girdm,—pej (n)er (1),
[a; (m)e;(n), ag(p)er(t)]+ = 0, (22)
i(n), ap(p)e; ()] + = 6j10n,—ta; (m)ag(p),
(n), ag(p)ef (H)]+ = 0.

[a;

ai(m)e;j(n)
t)+5ik5 —pez()eg(n)—az( Jar(p)e; (t)e;(n)

= 0ik0m,—pej(n)e; (t) + 5Jl<5n taz( )a’g(p) - 5lk5jl(5m7_p5n7_t.
Then (19) holds, and the proof of others is similar. O

Asin [9,11], let a(N, 7)™ be the subalgebra generated by a;(n), a}(m), a;(0)
for n,m > 0 and 1 < 4,5,k < N. Let a(N,7)~ be the subalgebra generated
by a;(n), a;(m), ar(0) for n,m < 0 and 1 < 4,5,k < N. Those generators in
a(N,7)T are called annihilation operators while those in a(N, 7)™ are called
creation operators.

Let V/(N, 1) be a simple a(N, 7)-module containing an element v, called a
‘vacuum vector’ which satisfies

(N, ) vl =0.
So all annihilation operators kill vj and
V(N,7) =a(N,7)" vg.

We define the normal orderings of the mixed quadratic elements as follows:

caj(m)ej(n) 1= a;(m)ej(n), ai(m)e;‘-(n) = ai(m)e;(n), (23)
sag(m)ej(n) : = aj(m)ej(n), :af(m)ej(m):= aj(m)ej(m).

Obviously, the a(N,+1) ® a(N, —1)-module

V(N) == V(N,+1) @ V(N, -1) = a(N, +1) ® a(N, —1)og* @ vy!
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is simple.
By comparing Proposition 4.2 with Proposition 4.3-4.5, let

giglm.n) = =3 g7 cai(m — s)ei(s) : + a7 ag(s)ef(m—5) 1, (24)

SEL SEZ
n):E g " ra;i(m —s)ej(s —f—g qg " aj(s)ei(m —s):.
sEZ sEZ

Then we have the following result.

Lemma 4.6

[9i(m,n), hia(p, t)]
= —0ipg "N g ai(mt p — s)af(s) 4 e(s)ef(m+p—s) 1}

SEZ
+0d™ Y ¢ " ai(m+p— s)af(s) : 4 els)ef (m+p—s) i}
SEL
— g PPN " gt OIS g i(m o+ p - 8)ai(s)
SEL
+ ten(s)ej(m +p = 5) } + 0g "
.Zq L ai(m 4 p — s)al(s) 1 + : ep(s)el(m+p—s) :}. (27)
SEZ
Set

fij(m,n) Zq_ns tai(m — s)aj(s) : —|—Zq_”s cej(s)ej(m—s):.

SEZL SEZ
Then

[9ij (M, ), ha (p 1))
= — Sirg ") fu(m 4 p it —n) + 6jkqnpfz‘l(m +p,n+t)
— Suq” PP £y (m 4 p, —(n+ 1) + 50" fir(m 4 p,n — 1),
Proof Notice that (25) and (26) come from (20) and (22) in Proposition 4.5

immediately. We need to check (27).
By using the definition of the normal ordering (23), we have

[gij(m,m), hi(ps Z q " T2 [—ai(m — s1)€f(s1) + aj(s1)ef (m — s1),
51,52€7Z

ay,(p — s2)ei(s2) + af (s2)er(p — s2)]+-
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Then by using (21) in Proposition 4.5, we get

Z ] ) (- s1)ej(s1), ap(p — s2)ei(s2)]+
S1,82€7Z

= ) T (<0l spei(s2)€] (51)

51,52€7Z

+ 0j10s1, s> ai(m — s1)ag(p — s2)).

Similarly, we have

ST g ag(s1)ef(m — s1), af (s2)ex(p — s2))+
81,82€7Z

= Z qinslfts2 (_5ik5m—81782—paj (s1)a; (s2)

S1,82€7Z

+ 01051 sy k(P — s2)ej (m — s51)).
From (16), we have
aj(s1)aj(s2) =: aj(s1)aj(s2) : +6;u6s;,—s,0(s1 — 52),

ei(s2)ej(s1) =: e(s2)ej(s1) : +051ds, —s,0(52 — 51),

%

ai(m — s1)ay(p — s2)

= :a;(m—s1)ag(p — s2) 1 + 0ikOm—s;,s0—pf (M — D+ 52 — 51),
ex(p — 52)el(m — 51)

= tep(p — s2)e;(m — 1)+ + 6ikOm—s;,5,—pf(p — M — 52 + 1),

and then, when we turn to normal ordering series, the additional scalar terms
are cancelled out in the sum. We have

D a T {[—ai(m = s1)€j(s1), aj(p — s2)er(s2)]+
S$1,52€7Z

+ [aj(s1)ej (m — s1), a7 (s2)er(p — s2)]+ }

= Y a T Gbmes s p( aj(s1)af (s2) - :er(s2)e;(s1) o)
51,52€7Z
+ 05105, -5, (: @i(m — s1)ap(p — s2) : + : ex(p — s2)e; (m —s1) 1)}

= — §ypg D) Z g sy aj(m+p—s)a;(s): +:es)ej(m+p—s):}

SEZ

+ 5jlq(”_t)p Z q_(”_t)s{: ai(m+p—s)ap(s) : + :ex(s)e;(m+p—s) :}.

SEZL

Similarly, for the remainder terms, we have
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Y a T [mai(m — s1)ef(s1), af (s2)en(p — s2)]+

S1,82€7Z
+ [aj(s1)e; (m — s1), a(p — s2)ei(s2)]+}
= D T b s s ( aj(s1)a(p — s2) 1 + < exlp — s2)€f(s1) 3)

8178262
+ 0jk0sy 55 —p(: @i(m — s1)aj (s2) : + : er(s2)ej (m — s1) 1)}

= +a™ Y q T ai(m 4 p—s)af(s) 1+ erls)ef (m+p —s) }
SEZ

_ 5ilq7(mn+np+Pt) Z qf[f(nth)]s{: aj(m +p— S)(J,Z(S) :
SEL
+ rer(s)ej(m+p—s) :}.
Adding these terms, the (27) follows. O

About the remainder of Lie superbrackets, we have the following result.

Lemma 4.7 For allm,p,n,t € Z and 1 < i,5,k, 1 <
[gi;(m,n), fra(p,1)] = 8,g ™™ gri(m +p,t —n) — 8uq™ grj(m+p,n+1), (28)
[fij(m,n), fru(p,t)] = 06" fu(m + p,n +t) — 6uq"™ frj(m + p,n + 1),

[fij(m,n), hi(p,t)] = — dikg™ n(m+p)h ((m+p,t—n)
—8uq™ hyj(m + p,m + 1) (29)

Proof Notice that the influence of removing normal ordering is at most a scalar
element which has no effect in Lie bracket. Then we have

[gij(mon), fu(p, )] = Y g ™2 [—ai(m — s1)ef(s1) + a;(s1)ef (m — s1),
81,82€7Z

ar(p — s2)aj (s2) + er(s2)eg(p — s2)]-

Since

—aj (s2)ai(m — s1) = ai(m — s1)a; (s2) = 6itm—s,,—ss>

we get

ST g ai(m — s1)€)(s1), an(p — s2)af (s2)]

51,52€7Z

= Z q_Nﬂ_t”&ilémf&,*szak’(p_52)€§(31)

51,52€7Z

= Gug™ S g~ a4 p — 5)el(s).
SEZL
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Similarly, we have

ST g —ay(m - s1)el(s1), enls2)ef(p — s2)] -

S1,82€7Z
= Z q—nsl—t825jl5517752ai(m - 51)62(10 - 52)
$1,82€7
= 5™ S g Mgy (s)eq (m 4+ p — s),
SEZ

Z g mte2 [aj(s1)e; (m — s1),ax(p — s2)a; (s2)]—
S1,82€7Z

Z q_n81_t826jl581,—32ak(p - 82)6? (m o 81)

S1,82€7Z
=~ §gmtm Z g T ag(m+ p — s)ef(s),
SEL

Z g " 2 (a(s1)ef (m — s1), er(s2)ef (p — s2)]—

81,82€7Z

Z q—nsl—t825i15m_51’_52aj(81)6;‘;(17_32)

S1,82€7Z

— = 0aq™ S % (s)e(m + p - ).
SEZ
Adding the four terms and noticing that (23) and (24), we get (28) at once.
Notice again that the influence of removing normal ordering is at most a
scalar element which has no effect in Lie bracket. Then we have

[fij(mon), fu(p, )] = Y g™ 2 ai(m — s1)aj(s1) + e;(s1)ef (m — s1),

51,52€7Z
ag(p — s2)a (s2) + ei(s2)ep(p — s2)]-
By using (17) in Proposition 4.3, we get

Z ¢ "2 g (m — s1)a;(s1), ax(p — s2)a; (s2)]-

51,52€7

Z q*"317t52(—5il(5m—51,—szak(p - 82)(1;(81)

S1,82€7Z
+ 5jk581 82—Pai(m - Sl)a?(SQ))'
Then, by using (18) in Proposition 4.4, we get

Z —nsy— t82 ej(sl)efk(m — 31)7 6[(82)6;;(]) - 32)]—

81,82

Z q_nsl tsz 5115m_81’_52€j(81)€]t(p_ 82)

51,52€7Z
+ 5jk551,52*p6l(52)6;‘(m - 81)),
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Z qfns17t82 [ej(81)€f(m —s1),ax(p — 82)(12‘(82)]_

S1,82€7Z

= Y " ai(m = s1)aj(s1), en(s2)el (p — s2)]-

51,52€7Z

= 0.

About the normal ordering, from (16), we have

ar(p — s2)a;(s1) =: ar(p — 82)a;(s1) 1 + Okj0p—sy,—s,0(p — 52 — 51),
a;j(m — s1)a;(s2) =: a;j(m — s1)a; (s2) : + 0i10m—s,,—s,0(m — 51 — S2),
ej(s1)ex(p — s2) =: ej(s1)ep(p — s2) © + 0jk0s;,5,—p0(s1 — P+ 52),
el(s2)e;(m —s1) =: e(s2)ej (m — s1) 1 +01i0sy,5,—mbB(s2 — M + s1),

and then, when we turn to normal ordering series, the additional scalar terms
are cancel out in the sum. We have

[fij(m7n)7fkl(pvt)]
Z q_nsl_ts2{_5il(5m—sl,—82(: ak(p — 82)61;(81) i ej(51)62(p - 82) 2)

Sl,SQEZ
+ 0jk0s1,50—p(: @ '(m —s1)aj(s2) : + :es2)e;(m —s1) 1)}
= = 6aq"™ Y ¢ " (ap(m+p— s)aj(s) : + : ej(s)er(m+p—s) )
SEZ
+6kq™ > ¢ " ai(m 4 p — s)af(s) 1+ :els)ef (m+p—s) 1)
SEZL

= 6;kq" fu(m +p,n+1t) — 6ug"™ frj(m + p,n + t).

The proof of (29) is similar, so we omit the detailed calculation. O

Although gi;(m,n), hij(m,n), fij(m,n) are infinite sums, they are well
defined as operators on V(N) since at most finitely Inany terms can make
a nontrivial action to Vv € V(N) = a(N,+1) ® a(N, —1)vg* @ vyt

Then, from Lemmas 4.6 and 4.7, we have the following result.

Theorem 4.1 The correspondence

gwes rise to a representation for the GPLS Zn(Cq, —). Furthermore, © is
faithful if q is generic.
Moreover, let

m(c(u) =1, ue A(g), m(cy) =0.
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—~—

Then (V(N), ) is also a representation for Pn(Cy,—) which is a nontrivial
central extension of Zn(Cq, —) given in (15).

Proof We only remain to check that = is faithful for #N(Cy, —) when ¢ is
generic.
If ¢ is generic, then

Py = spanc{ fii(m,n) | 1 <i < N, m,n € (Z x Z)\{0} x {0}}.

Due to Proposition 4.1, and noticing that V' (V) is faithful for a(NV, +1) ®
a(N,—1), it is sufficient to check for any summation

> ag(mn) fi(mon) + D (br(p, )gr(p,t) + cra(p, Dhra(p, 1)),

,J,m,n k<l,p,t

which contains at most finitely many nonzero terms vanishing implies that
aij(m,n) = br(p,t) = cr(p,t) =0

for all ¢, j,m,n, k,l,p,t.

Notice that (16), (23), and that the linearly dependent quadratic operators
only come from the same form root vectors such as f;;(m,—), gu(p, —), or
hgr(p'y —). Then, for any fixed i,j,m, k, [, p, we have

Zq Saij(m,n) =0, Zq“bkzp, Zq Beu(p,t) =0, VseZ.

In >, ¢ ™a;j(m,n), we assume that all distinct nonzero terms are
aij(m,n1),ai;(m,n2),...,a;;(m,n,). Let s = 0,1,...,r — 1. Then we get a
homogeneous linearity equations with Vandermonde type coefficient matrix for
aij(m,n1), aij(m, n2),..., a;(m,n;).

Notice that ¢=™, ¢~ "2,...,q ™ are distinct since ¢ is not a root of unity.
Then the determinant of the Vandermonde coefficient matrix is nonzero, and
we get a;;(m,n) =0 for all 7, j, m,n.

The proofs of bg;(p,t) and cg(p,t) are similar. O
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