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Abstract We establish a class of stochastic partial differential equations
(SPDEs) driven by space-time fractional noises, where we suppose that the
drfit term contains a gradient and satisfies certain non-Lipschitz condition. We
prove the strong existence and uniqueness and joint Hölder continuity of the
solution to the SPDEs.
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1 Introduction and main results

A class of special Gaussian processes called fractional Brownian motion (fBm)
has been established by many authors as random fields, due to their useful
feature of preserving long term memory and a large number of interesting
results from scaling invariance to the description of their laws. The study of
these Gaussian processes has its historical motivation from their applications in
hydrology and telecommunication, and has been applied to the mathematical
finance, biotechnology, and biophysics, see, for example, [3,10,18] and references
therein.

Mandelbrot and Van Ness [12] proposed a theory of stochastic calculus
for the fBms as archetypal examples. Especially, Mémin et al. [13] gave an
embedding theorem to estimate the moments of Wiener integrals with respect
to an fBm. Then many authors were interested in the research on fractional
noise instead of space time white noise. Hu [6] proposed the multiple stochastic
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integral with respect to multi-parameter fractional noise, then showed via chaos
expansion the existence and uniqueness of the solutions for a class of second-
order stochastic heat equations, and further estimated the Lyapunov exponents
of the solutions. Nualart and Ouknine [17] discussed the existence and
uniqueness of the solution to stochastic partial differential equation (SPDE)
with additive fractional noise (fractional in time and white in space). Hu et al.
[8] studied the central limit theorem for an additive functional of the fBm. In
fact, we deal with a class of SPDEs driven by fractional noises, including the
Cahn-Hillard equations and Burgers equation among others (see [1,7,9] for more
details).

When the drift term in SPDE depends on the gradient, our idea originates
from the Burgers equation

∂u

∂t
=
κ

2
∆u+ uk

∂u

∂x
, (1.1)

which describes the interaction between the diffusion part and the non-linear
inertial part in fluid flow for integer κ > 1. It then comes natural to study
the stochastic counterparts for such equations. Gyöngy [4] proved existence,
uniqueness, and comparison theorems for a class of semilinear stochastic
partial differential equations, containing special cases like the stochastic Burgers
equation and the reaction-diffusion equations, driven by space-time white noise.
Wang et al. [21] proposed an L2-gradient estimate for the corresponding
Galerkin approximations, and the log-Harnack inequality was established for
the semigroup associated to a class of stochastic Burgers equations. Hairer and
Voss [5] discussed the numerical methods of various finite-difference approxima-
tions to the stochastic Burgers equation. Mohammed and Zhang [15] proved
an existence theorem for solutions of the stochastic Burgers equation on the
unit interval subject to the Dirichlet boundary condition and the anticipating
initial velocities. Jiang et al. [9] considered the stochastic generalized Burgers
equations driven by fractional noises. Dong et al. [2] gave the irreducibility and
asymptotics of stochastic Burgers equation driven by α-stable processes.

Moreover, Hu et al. [7] studied a class of SPDEs driven by space-time
fractional noises, where they supposed that the drift term is Lipschitz with the
gradient. Now, we extend the drift term to be satisfying a certain non-Lipschitz
condition. In this paper, we consider the following SPDE:

ut(x) = u0(x) +

∫ t

0

[1

2
∆us(x) + g(us(x),∇us(x))

]
ds+

∫ t

0
WH(ds, dx), (1.2)

where WH is the fractional white noise with Hurst parameter H = (h1, h2) for
h1, h2 ∈ (0, 1). We study the strong existence and uniqueness and joint Hölder
continuity of the solution.

To continue with the introduction, we state some notation. Let C∞(R) be
the space of functions which has derivatives of all orders and C∞c (R) be the
subset of C∞(R) of functions with compact supports. Let L2(R) be the space
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of quadratic integration functions and

〈f, g〉 =

∫
R
f(x)g(x)dx

whenever the integral is well defined. For h > 1, define

‖f‖Lh(R) :=

(∫
R
|f(x)|hdx

)1/h

if it exists. For h > 1 and T1 > T2 > 0, define Lh([T1, T2]), L
h([T1, T2] × R),

‖f‖Lh([T1,T2]), and ‖f‖Lh([T1,T2]×R) similarly. Define

J(x) =

∫
R

e−|y|ρ0(x− y)dy

with ρ0 given by

ρ0(x) = c0 exp
(
− 1

1− x2
)

1{|x|<1},

where c0 > 0 is a constant so that∫
R
ρ0(x)dx = 1.

Moreover, due to [14, (2.1)], for each n > 0 there exist constants Cn, C̃n > 0 so
that

Cne−|x| 6 |J (n)(x)| 6 C̃ne−|x|, x ∈ R. (1.3)

Let X0 be the collection of functions f such that

‖f‖20 :=

∫
R
f(x)2J(x)dx <∞.

Let X1 be the space consisting of all functions f such that

‖f‖21 := ‖f‖20 + ‖f ′‖20 <∞.

Then, for each i = 0, 1, Xi is a Hilbert space under the norm ‖ · ‖i. We use
〈·, ·〉i to denote the corresponding inner product.

In this paper, we assume that all random elements are defined on a filtered
complete probability space (Ω,F ,Ft,P) satisfying the usual hypotheses. We
use E to denote the corresponding expectation.

Definition 1.1 Let u0 ∈ X1. SPDE (1.2) has a strong X1-valued solution if
for any fractional white noise WH , there exists a continuous X1-valued process
(ut)t>0 so that for all f ∈ C∞c (R),

〈ut, f〉 = 〈u0, f〉+

∫ t

0

[1

2
〈us, f ′′〉+ 〈g(us,∇us), f〉

]
ds

+

∫ t

0

∫
R
f(x)WH(ds, dx), t > 0,
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almost surely.

In this paper, we always assume that 1/2 < h1, h2 < 1 and 2h1 + h2 > 2,
and that the continuous function g can be written into the following form:

g(x, y) = g(x, y) + g̃(x)y.

Recently, Xiong and Yang [23] established the strong existence and uniqueness
to a class of SPDEs with this form of diffusion coefficient and Gaussian colored
noises. Before state the main results, we formulate the following condition on
g and g̃.

Condition 1.2 There exists a constant C > 0 so that

|g(x1, y1)− g(x2, y2)| 6 C(|x1 − x2|+ |y1 − y2|), |g̃(x)| 6 C,

for all x, x1, x2, y1, y2 ∈ R.

Theorem 1.3 Suppose that Condition 1.2 holds and u0 ∈ X1. Then SPDE
(1.2) has a unique strong X1-valued solution (ut)t>0.

Theorem 1.4 (Joint Hölder continuity) Suppose that Condition 1.2 holds. Let
(ut)t>0 be an X1-valued solution to (1.2). Then, for any T > T1 > 0, a > 0, and
θ ∈ (0, 1), there exists a random variable KT,T1,a,θ > 0 with E[KT,T1,a,θ] < ∞
so that almost surely for all t1, t2 ∈ [T1, T ] and |x1|, |x2| 6 a,

|ut1(x1)− ut2(x2)| 6 KT,T1,a,θ(|t1 − t2|1/2 + |x1 − x2|)θ.

Furthermore, if u0 is also Hölder continuous with exponent γ > 1/2, i.e.,

sup
x1,x2∈R

|u0(x1)− u0(x2)|
|x1 − x2|γ

<∞,

then, for some random variable KT,a,θ > 0 with E[KT,a,θ] <∞, we have, almost
surely, for all t1, t2 ∈ [T1, T ] and |x1|, |x2| 6 a,

|ut1(x1)− ut2(x2)| 6 KT,a,θ(|t1 − t2|1/2 + |x1 − x2|)θ.

Remark 1.5 If g(x, y) = y(xα ∧ 1) for some α ∈ (0, 1), then Condition 1.2 is
satisfied.

The rest of this paper is organized as follows. In Section 2, we introduce
fractional noise and state some assertions on fractional noise and heat kernel.
Theorem 1.3 is proved in Section 3. In Section 4, we establish the proof of
Theorem 1.4.

Notation Let ∇ and ∆ be the first and the second order spatial differential
operators, respectively. Let C denote a positive constant whose value might
change from line to line.
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2 Preliminaries

2.1 Fractional noise

A one-dimensional fBm W h = (W h
t )06t6T with Hurst parameter h ∈ (0, 1) on

[0, T ] is a centered Gaussian process with its covariance function given by

E[W h
t W

h
s ] =

1

2
(t2h + s2h − |t− s|2h).

The existence of such a Gaussian process and the regularity of its sample paths
are well documented. We may generalize the definition to fractional noises with
two parameters.

Definition 2.1 A one-dimensional double-parameter fractional Brownian
sheet

WH = {WH(t, x), (t, x) ∈ [0, T ]× R},
with Hurst parameter H = (h1, h2) for hi ∈ (0, 1) and i = 1, 2, is a centered
Gaussian field defined on some probability space (Ω,F ,P) with covariance

R(t, s;x, y) := E[WH(t, x)WH(s, y)]

=
1

4
(t2h1 + s2h1 − |t− s|2h1)(|x|2h2 + |y|2h2 − |x− y|2h2), (2.1)

for all t, s ∈ [0, T ] and x, y ∈ R.
Let E denote the collection of all step functions defined on [0, T ] × R and

L2
H denote the Hilbert space of the closure of E under scalar product

R(t, s;x, y) := 〈1[0,t]×[0,x], 1[0,s]×[0,y]〉H .

In the above formula, if x < 0, then we assume, by convention, that

1[0,x] = −1[−x,0].

Then the mapping 1[0,t]×[0,x] → WH(t, x) can be extended to an isometry

between L2
H and the Gaussian space H associated with WH .

Introduce the square integrable kernel

KH(t, s;x, y) = cHs
1
2
−h1y

1
2
−h2

∫ t

s
dz

∫ x

y
(u− s)h1−

3
2uh1−

1
2 (z − y)h2−

3
2 zh2−

1
2 du

and its derivative

∂2

∂t∂x
KH(t, s;x, y) = cH(t− s)h1−

3
2

( t
s

)h1− 1
2
(x− y)h2−

3
2

(x
y

)h2− 1
2
,

where cH > 0 is a constant depending only on H. Define the operator K∗H from
E to L2([0, T ]× R) by

(K∗Hφ)(s, y) =

∫ T

s
dt

∫ ∞
y

φ(t, x)
∂2

∂t∂x
KH(t, s;x, y)dx.
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It is easy to check that

(K∗H1[0,t]×[0,x])(s, y) = KH(t, s;x, y)1[0,t]×[0,x](s, y)

and

〈K∗H1[0,t]×[0,x],K
∗
H1[0,s]×[0,y]〉 = RH(t, s;x, y) = 〈1[0,t]×[0,x], 1[0,s]×[0,y]〉H .

Hence, the operator K∗H is an isometry between E and L2([0, T ]×R) which can

be extended to L2
H . Let K∗H

−1 denote the inverse mapping of K∗H . By definition,

B(t, x) = WH(K∗H
−1(1[0,t]×[0,x])), (t, x) ∈ [0, T ]× R,

is a Brownian sheet, and in turn the fractional noise has a representation

WH(t, x) =

∫ t

0

∫ x

0
KH(t, s;x, y)B(ds, dy).

Then the integral
∫ t
0

∫ x
0 φ(s, y)WH(ds, dy) is defined by∫ t

0

∫ x

0
φ(s, y)WH(ds, dy) =

∫ t

0

∫ x

0
(K∗Hφ)(s, y)B(ds, dy). (2.2)

For 0 6 s < t 6 T and x, y ∈ R, define

Ψh(t, s, x, y) := 4h1h2(2h1 − 1)(2h2 − 1)|t− s|2h1−2 |x− y|2h2−2.

A routine calculation shows the equivalence of the stochastic integrals defined
in [7] and those in this section for functions in L2

H .

Proposition 2.2 For f, g ∈ L2
H , we have

E

[ ∫ t

0

∫
R
f(s, x)WH(dx,ds)

]
= 0

and

E

[ ∫ t

0

∫
R
f(s, x)WH(dx, ds)

∫ t

0

∫
R
g(s, x)WH(dx,ds)

]
=

∫
[0,t]2

∫
R2

Ψh(u, v, x, y)f(u, x)g(v, y)dydxdvdu.

Note that we have the following inequality (see [13] for more details).

Lemma 2.3 If h ∈ (1/2, 1) and f, g ∈ L1/h([a, b]), then∫ b

a

∫ b

a
f(u)g(v)|u− v|2h−2dudv 6 C‖f‖L1/h([a,b]) ‖g‖L1/h([a,b]),

where C = C(h) > 0 is a constant depending only on h.
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Next, we will obtain the embedding property which enables us to define the
integral for f ∈ L2

H with respect to WH .

Proposition 2.4 We have L1/H ([0, T ]× R) ⊂ L2
H .

Proof In fact,

‖f‖2H =

∫
[0,t]2

∫
R2

Ψh(s1, s2, y1, y2)f(s1, y1)f(s2, y2)dy1dy2ds1ds2

= C

∫
[0,t]2

∫
R2

|s1 − s2|2h1−2 |y1 − y2|2h2−2f(s1, y1)f(s2, y2)dy1dy2ds1ds2

6 C

∫
[0,t]2
|s1 − s2|2h1−2 ‖f(s1, ·)‖L1/h2 (R) ‖f(s2, ·)‖L1/h2 (R)ds1ds2

6 C

(∫ t

0
(‖f(s, ·)‖L1/h2 (R))

1/h1ds

)2h1

= C‖f‖2
L1/H([0,t]×R),

which ends the proof. �

Moreover, we end this subsection with the following estimation, which will
be used in our later derivation.

Lemma 2.5 Suppose that f(t, x) ∈ L2
H and p > 1. Then

E

[∣∣∣ ∫ t

0

∫
R
f(s, x)WH(dx, ds)

∣∣∣2p] 6 C(∫ t

0
(‖f(s, ·)‖L1/h2 (R))

1/h1ds

)2ph1

.

Proof By Proposition 2.4, we have

E

[∣∣∣ ∫ t

0

∫
R
f(s, x)WH(dx,ds)

∣∣∣2p] = E

[∣∣∣ ∫ t

0

∫
R

[K∗Hf(·, ·)](x, s)W (dx, ds)
∣∣∣2p]

6 C
∣∣∣ ∫ t

0

∫
R

[K∗Hf(·, ·)]2(x, s)dxds
∣∣∣p

= C‖f‖2p
L2
H

6 C‖f‖2p
L1/H([0,t]×R).

Then the proof of this lemma is complete. �

2.2 Estimation of heat kernel

Lemma 2.6 Let α ∈ [0, 1] be fixed. Then

pt(x1) 6
C

t1/2
, |pt(x1)− pt(x2)| 6 C

|x1 − x2|α

tα/2

[
pt

(x1
2

)
+ pt

(x2
2

)]
,

t > 0, x1, x2 ∈ R. (2.3)
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Moreover,

|∇pt(x)| 6 C

t1/2
pt

(x
2

)
6
C

t
, t > 0, x ∈ R, (2.4)

and for θ ∈ [0, 1],

|∇pt(x)−∇pt(y)| 6 C |x− y|
θ

t(1+θ)/2

[
pt

(x
2

)
+ pt

(y
2

)]
, t > 0, x, y ∈ R. (2.5)

Proof The estimation (2.3) is given by [19, (2.4e)] and the rests follow from
[16, Lemma 2.2]. �

Lemma 2.7 Let T > 0 and p > 1 be fixed. Then

sup
0<t6T, x∈R

E

[∣∣∣ ∫ t

0

∫
R
pt−s(x, y)WH(ds, dy)

∣∣∣2p
+
∣∣∣ ∫ t

0

∫
R
∇pt−s(x, y)WH(ds, dy)

∣∣∣2p] <∞.
Proof In view of (2.3), we have

‖ps(x, ·)‖L1/h2 (R) =

(∫
R
|ps(x, y)|1/h2dy

)h2
=

(∫
R
|ps(x, y)|

1
h2
−1 · ps(x, y)dy

)h2
6 Cs(h2−1)/2 (2.6)

and

‖∇ps(x, ·)‖L1/h2 (R) =

(∫
R
|∇ps(x, y)|1/h2dy

)h2
6 Cs−(2−h2)/2.

It then follows from (2.5) that

E

[∣∣∣ ∫ t

0

∫
R
pt−s(x, y)WH(ds, dy)

∣∣∣2p] 6 C

(∫ t

0
(‖pt−s(x, ·)‖L1/h2 (R))

1/h1ds

)2ph1

6 C

(∫ t

0
(t− s)(h2−1)/(2h1)ds

)2ph1

6 Ctp(2h1+h2−1)

and

E

[∣∣∣ ∫ t

0

∫
R
∇pt−s(x, y)WH(ds, dy)

∣∣∣2p] 6 Ctp(2h1+h2−2).
This completes the proof. �
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Lemma 2.8 Let T > 0 and p > 1 be fixed. Then

E

[∣∣∣ ∫ t1

0

∫
R
pt1−s(x1, y)WH(ds, dy)−

∫ t2

0

∫
R
pt2−s(x2, y)WH(ds, dy)

∣∣∣2p]
6 C(|t1 − t2|µ + |x1 − x2|ν)2p

for x1, x2 ∈ R, 0 < t2 < t1 < T, where µ ∈ [0, 1/2) and ν ∈ [0, 1).

Proof By virtue of (2.3) and (2.6), we obtain

‖ps(x1, ·)− ps(x2, ·)‖L1/h2 (R)

6 Cs−ν/2|x1 − x2|ν
(∫

R

∣∣∣ps(x1 − y
2

)
+ ps

(x2 − y
2

)∣∣∣1/h2dy

)h2
6 Cs(h2−1−ν)/2|x1 − x2|ν .

Then, applying Lemma 2.5, we get

E

[∣∣∣ ∫ t

0

∫
R

(pt−s(x1, y)− pt−s(x2, y))WH(ds, dy)
∣∣∣2p]

6 C

(∫ t

0
‖pt−s(x1, ·)− pt−s(x2, ·)‖1/h1L1/h2 (R)ds

)2ph1

6 C|x1 − x2|2pν
(∫ t

0
(t− s)−(1+ν−h2)/(2h1)ds

)2ph1

6 C|x1 − x2|2pν , t ∈ (0, T ], x1, x2 ∈ R.

By a similar argument, one can deduce that

E

[∣∣∣ ∫ t2

0

∫
R

(pt1−s(x, y)− pt2−s(x, y))WH(ds, dy)
∣∣∣2p] 6 C|t1 − t2|2pµ

and

E

[∣∣∣ ∫ t1

t2

∫
R
pt1−s(x, y)WH(ds, dy)

∣∣∣2p] 6 C|t1 − t2|2pµ, (2.7)

which ends the proof. �

3 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We first establish the
following assertion.

Lemma 3.1 The definition of solution to (1.2) is equivalent to the following
mild formulation:

〈ut, f〉 = 〈u0, Ptf〉+

∫ t

0
〈g(us,∇us), Pt−sf〉ds+

∫ t

0

∫
R
Pt−sf(x)WH(ds, dx),

t > 0, (3.1)
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where f is bounded function on R. Moreover, for all t > 0 and x ∈ R,

ut(x) = 〈u0, pt(x− ·)〉+

∫ t

0
〈g(us,∇us), pt−s(x− ·)〉ds

+

∫ t

0

∫
R
pt−s(x− y)WH(ds, dy) (3.2)

almost surely.

Proof Suppose that (ut)t>0 is a solution to (1.2). We first assume that f ∈
C∞c (R). Let ti = i/n for 0 6 i 6 n and n > 1. By (1.2), we have

〈uti , Pt−ti−1f〉 − 〈uti−1 , Pt−ti−1f〉

=
1

2

∫ ti

ti−1

〈us(x), Pt−ti−1f
′′〉ds+

∫ ti

ti−1

〈g(us,∇us), Pt−ti−1f〉ds

+

∫ ti

ti−1

∫
R
Pt−ti−1f(x)WH(ds, dx)

and

Pt−tif(x)− Pt−ti−1f(x) =

∫ t−ti

t−ti−1

∂sPsf(x)ds

=
1

2

∫ t−ti

t−ti−1

Psf
′′(x)ds

= − 1

2

∫ ti

ti−1

Pt−sf
′′(x)ds.

Then

〈ut, f〉 − 〈u0, Ptf〉

=
n∑
i=1

〈uti , Pt−tif − Pt−ti−1f〉+
n∑
i=1

[〈uti , Pt−ti−1f〉 − 〈uti−1 , Pt−ti−1f〉]

= − 1

2

∫ t

0

n∑
i=1

1(ti−1,ti]〈uti , Pt−sf
′′〉ds+

1

2

∫ t

0

n∑
i=1

1(ti−1,ti]〈us, Pt−ti−1f
′′〉ds

+

∫ t

0

n∑
i=1

1(ti−1,ti]〈g(us,∇us), Pt−ti−1f〉ds

+

∫ t

0

∫
R

n∑
i=1

1(ti−1,ti]Pt−ti−1f(x)WH(ds, dx).

Letting n → ∞, we get (3.1) for f ∈ C∞c (R). By the dominated convergence,
one can get (3.1) for bounded function f. Conversely, if (ut)t>0 satisfies (3.1),
then similar to the argument in the proof of [20, Theorem 2.1], we can show
that (ut)t>0 is the solution to (1.2). Let Mt(x) denote the right-hand side of
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(3.2). Then by (3.1) and the Fubini theorem, 〈ut, f〉 = 〈Ht, f〉 for all bounded
function f, which ends the proof. �

Proof of Theorem 1.3 (Uniqueness) Let (u
(1)
t )t>0 and (u

(2)
t )t>0 be two strong

X1-valued solutions to (1.2) with u
(1)
0 = u

(2)
0 . For s, δ > 0 and x ∈ R, define

us(x) := u(1)s (x)−u(2)s (x), gs(x) := g(u(1)s (x),∇u(1)s (x))−g(u(2)s (x),∇u(2)s (x)),

uδs(x) :=

∫
R
us(y)pδ(x− y)dy, gδs(x) :=

∫
R
gs(y)pδ(x− y)dy.

Then uδs ∈X0 ∩ C∞(R) for each s, δ > 0. It follows from (1.2) that

uδt (x) =
1

2

∫ t

0
∆uδs(x)ds+

∫ t

0
gδs(x)ds, x ∈ R, (3.3)

which deduces that for all f ∈ C∞c (R),

〈uδt , f〉0 =
1

2

∫ t

0
ds

∫
R

(∆uδs(x))f(x)J(x)dx+

∫ t

0
〈gδs, f〉0ds.

Using Itô’s formula, we obtain

〈uδt , f〉20 =

∫ t

0
〈uδt , f〉0 〈∆uδs, f〉0ds+ 2

∫ t

0
〈uδt , f〉0 〈gδs, f〉0ds.

Summing on f over a complete orthonormal system of X0, we get

‖uδt‖20 =

∫ t

0
〈uδs,∆uδs〉0ds+ 2

∫ t

0
〈uδs, gδs〉0ds. (3.4)

By integration by parts, for each u, ũ ∈X1, we have∫
R
u(x)ũ′(x)J(x)dx = −

∫
R
u′(x)ũ(x)J(x)dx−

∫
R
u(x)ũ(x)J ′(x)dx, (3.5)

which implies that

〈uδs,∆uδs〉0 =− ‖∇uδs‖2 −
∫
R
uδs(x)∇uδs(x)J ′(x)dx

=− ‖∇uδs‖2 −
1

2

∫
R
∇((uδs(x))2)J ′(x)dx

=− ‖∇uδs‖2 −
1

2

∫
R

(uδs(x))2J ′′(x)dx

6− ‖∇uδs‖2 + C‖uδs‖2,

where we used (1.3) in the last inequality. Combining this with (3.4), we obtain

‖uδt‖20 6 −
∫ t

0
‖∇uδs‖2ds+ C

∫ t

0
‖uδs‖2ds+ 2

∫ t

0
〈uδs, gδs〉0ds.
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Now, letting δ → 0 and using [22, Lemma 2.1], we get

‖ut‖20 6 −
∫ t

0
‖∇us‖20ds+ C

∫ t

0
‖us‖2ds+ 2

∫ t

0
〈us, gs〉0ds. (3.6)

Observe that

g̃(u(1)s (x))∇u(1)s (x)− g̃(u(2)s (x))∇u(2)s (x) = ∇
∫ u

(1)
s (x)

u
(2)
s (x)

g̃(v)dv.

It then follows from (3.5) that

H1(s) :=

∫
R
us(x)[g̃(u(1)s (x))∇u(1)s (x)− g̃(u(2)s (x))∇u(2)s (x)]J(x)dx

= −
∫
R

(∇us(x))

[ ∫ u
(1)
s (x)

u
(2)
s (x)

g̃(v)dv

]
J(x)dx

−
∫
R
us(x)

[ ∫ u
(1)
s (x)

u
(2)
s (x)

g̃(v)dv

]
J ′(x)dx.

Using (1.3), we get

H1(s) 6 C
∫
R
|∇us(x)| |us(x)|J(x)dx+ C‖us‖20 6

1

8
‖∇us‖20 + C‖us‖20. (3.7)

Observe that under Condition 1.2,

|x1 − x2| |g(x1, y1)− g(x2, y2)| 6 C|x1 − x2|2 +
1

8
|y1 − y2|2.

Then, together this with (3.7), we get

2〈us, gs〉0 6
1

2
‖∇us‖20 + C‖us‖20.

Combining the above inequality with (3.6), we obtain

‖ut‖20 +
1

2

∫ t

0
‖∇us‖20ds 6 C

∫ t

0
‖us‖20ds.

Now, by Gronwall’s lemma, we have ‖ut‖1 = 0 for all t > 0, which ends the
proof. �

Proof of Theorem 1.3 (Existence) Recall that

pt(x) =
1√
2πt

e−x
2/(2t), Ptf(x) =

∫
R
pt(x− y)f(y)dy.

We consider the mild form (3.2) for (1.2).
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For t, δ > 0 and x ∈ R, define unt (x) as

u1t (x) = Ptu0(x),

and for n > 1,

un+1
t (x) = Ptu0(x) +

∫ t

0
Pt−sg(uns ,∇uns )(x)ds+

∫ t

0

∫
R
pt−s(x− y)WH(ds, dy).

(3.8)
By Lemma 2.7, one can see that unt ∈X1. Let

un,δt (x) = Pδu
n
t (x).

Then un,δt ∈ C∞(R). It follows from (3.8) that

un+1,δ
t (x) = Pt+δu0(x) +

∫ t

0
Pt−s+δg(uns ,∇uns )(x)ds

+

∫ t

0

∫
R
pt−s+δ(x− y)WH(ds, dy), (3.9)

which can be written into the form

〈un+1,δ
t , f〉0 = 〈u0, Pδf〉0 +

1

2

∫ t

0
〈∆un+1,δ

s , f〉0ds+

∫ t

0
〈Pδg(uns ,∇uns ), f〉0ds

+

∫ t

0

∫
R
Pδ(fJ)(y)WH(ds, dy), f ∈ C∞c (R). (3.10)

By [22, Lemma 2.1], unt ∈X1. For x ∈ R, s, δ > 0, and n > 1 let

un+1,δ
s := un+1,δ

s − un,δs ,

gn+1
s (x) := g(un+1

s (x),∇un+1
s (x))− g(uns (x),∇uns (x)).

It then follows from (3.10) that

〈un+1,δ
t , f〉0 =

1

2

∫ t

0
〈∆un+1,δ

s , f〉0ds+

∫ t

0
〈Pδgns , f〉0ds.

By Itô’s formula, we have

〈un+1,δ
t , f〉20 =

∫ t

0
〈un+1,δ
t , f〉0 〈∆un+1,δ

s , f〉0ds+ 2

∫ t

0
〈un+1,δ
t , f〉0 〈Pδgns , f〉0ds.

Summing on f over a complete orthonormal system of X0, we get

‖un+1,δ
t ‖20 =

∫ t

0
〈∆un+1,δ

s , un+1,δ
s 〉20ds+ 2

∫ t

0
〈Pδgns , un+1,δ

s 〉0ds.
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Then, by integration by parts again and (3.5), we get

‖un+1,δ
t ‖20e−λt =

∫ t

0
〈∆un+1,δ

s , un+1,δ
s 〉20 e−λsds− λ

∫ t

0
‖un+1,δ

s ‖20 e−λsds

+ 2

∫ t

0
〈Pδgns , un+1,δ

s 〉0 e−λsds

6 −
∫ t

0
‖∇un+1,δ

s ‖20 e−λsds+ (C − λ)

∫ t

0
‖un+1,δ

s ‖20 e−λsds

+ 2

∫ t

0
〈gns , un+1,δ

s 〉0 e−λsds.

As the same argument in the proof of Theorem 1.3 (uniqueness), we have

2〈gn,δs , un+1,δ
s 〉0 6 C[‖un+1,δ

s ‖20 + ‖uns ‖20] +
1

4
[‖∇un+1,δ

s ‖20 + ‖∇uns ‖20].

Then, for λ > 0 large enough, we can see that

‖un+1,δ
t ‖20 e−λt + λ

∫ t

0
‖un+1,δ

s ‖20 e−λsds+
3

4

∫ t

0
‖∇un+1,δ

s ‖20 e−λsds

6
1

2

[
λ

∫ t

0
‖uns ‖20 e−λsds+

3

4

∫ t

0
‖∇uns ‖20 e−λsds

]
. (3.11)

It then follows from Fatou’s lemma that∫ t

0

[
λ‖un+1

s ‖2 +
3

4
‖∇un+1

s ‖2
]
e−λsds

=

∫ t

0

[
‖ lim
δ→0

un+1,δ
s ‖2 +

3

4
‖ lim
δ→0
∇un+1,δ

s ‖2
]
e−λsds

6 lim inf
δ→0

∫ t

0

[
λ‖un+1,δ

s ‖2 +
3

4
‖∇un+1,δ

s ‖2
]
e−λsds

6
1

2n

∫ t

0

[
λ‖u1s‖2 +

3

4
‖∇u1s‖2

]
e−λsds,

which means that for each T > 0,∫ T

0
[‖un+1

s ‖2 + ‖∇un+1
s ‖2]ds 6 C

2n
.

Thus, (unt )06t6T is a Cauchy sequence in X1 × [0, T ] and X1-valued process
(ut)t>0 denotes the limit. Letting n → ∞ in (3.8), we obtain that (ut)t>0
satisfies (3.2), which ends the proof. �
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4 Proof of Theorem 1.4

To establish the proof of Theorem 1.4, we first state two lemmas.

Lemma 4.1 For each T > 0 and p > 1,

sup
0<t6T

E

[
‖ut‖2p0 +

∣∣∣ ∫ t

0
[‖us‖20 + ‖∇us‖20]ds

∣∣∣p] <∞.
Proof Let

vt(x) =

∫ t

0

∫
R
pt−s(x− y)WH(ds, dy), ut = ut − vt.

Then, by Lemma 2.7, we have vt, ut ∈X1 and

ut(x) = 〈u0, pt(x− ·)〉+

∫ t

0
〈g(us,∇us), pt−s(x− ·)〉ds,

which can be written into the form

〈ut, f〉 = 〈u0, f〉+
1

2

∫ t

0
〈us, f ′′〉ds+

∫ t

0
〈g(us,∇us), f〉ds.

As the same argument in (3.11), for λ > 0 large enough, we have

‖ut‖20 e−λt +

∫ t

0

(
λ‖us‖20 +

3

4
‖∇us‖20

)
e−λsds

6 ‖u0‖20 +
1

2

∫ t

0

(
λ‖us‖20 +

3

4
‖∇us‖20

)
e−λsds,

which deduces that

‖ut‖20 e−λt +

∫ t

0
(‖us‖20 + ‖∇us‖20)e−λsds

6 C(‖u0‖20 + ‖vt‖20) + C

∫ t

0
(‖vs‖20 + ‖∇vs‖20)e−λsds.

Now, by Lemma 2.7, one can conclude the assertion. �

Lemma 4.2 Let 0 < θ < 1 < p and T, a > 0 be fixed. Then there is a constant
C > 0 so that

E[|ut(x1)− ut(x2)|2p] 6 C
|x1 − x2|pθ

tp(1+θ)/2
, 0 < t 6 T, |x1|, |x2| 6 a, (4.1)

and

E[|ut1(x)− ut2(x)|2p] 6 C |t1 − t2|
pθ/2

t
p(1+θ)/2
2

, 0 < t1 6 t2 6 T, |x| 6 a.
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Moreover, if u0 is also Hölder continuous with exponent γ > 1/2, then

E[|ut(x1)− ut(x2)|2p] 6 C|x1 − x2|pθ, 0 < t 6 T, |x1|, |x2| 6 a, (4.2)

and

E[|ut1(x)− ut2(x)|2p] 6 C|t1 − t2|pθ/2, 0 < t1, t2 6 T, |x| 6 a.

Proof Since the proofs are similar, we only state those of (4.1) and (4.2). By
(3.2), we have

ut(x1)− ut(x2) = 〈u0,Mx1,x2
t 〉+

∫ t

0
〈g(us,∇us),Mx1,x2

t−s 〉ds

+

∫ t

0
〈g̃(us)∇us,Mx1,x2

t−s 〉ds+

∫ t

0

∫
R
Mx1,x2
t−s (y)WH(ds, dy)

=: I1t (x1, x2) + I2t (x1, x2) + I3t (x1, x2) + I4t (x1, x2), (4.3)

where
Mx1,x2
t (y) := pt(x1 − y)− pt(x2 − y).

Observe that∫
R

pt((x− y)/2)

J(y)
dy 6 Ce|x|

∫
R
pt

(x− y
2

)
e|x−y|dy 6 Cea

∫
R
p1

(z
2

)
e
√
T |z|dz.

(4.4)
Then, by (2.3) and Condition 1.2, for 0 < t 6 T and |x1|, |x2| 6 a, we have∫

R

|Mx1,x2
t (y)|2

J(y)
dy

6 Ct−(1+θ)/2|x1 − x2|θ
∫
R

pt((x1 − y)/2) + pt((x2 − y)/2)

J(y)
dy

6 4Ct−(1+θ)/2|x1 − x2|θ

and
|g(x, y)| 6 C(|x|+ |y|+ 1).

It follows from Hölder’s inequality that

|I1t (x1, x2)|2p 6
∣∣∣‖u0‖20 ∫

R

|Mx1,x2
t (y)|2

J(y)
dy
∣∣∣p 6 C ‖u0‖2p0 |x1 − x2|pθ

tp(1+θ)/2
(4.5)

and

|I2t (x1, x2)|2 6
∫ t

0
‖g(us,∇us)‖20ds

∫ t

0
ds

∫
R

|Mx1,x2
t−s (y)|2

J(y)
dy

6 C|x1 − x2|θ
∫ t

0
(‖us‖20 + ‖∇us‖20 + 1)ds
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for all t ∈ (0, T ] and |x1|, |x2| 6 a. Using Lemma 4.1, we obtain

E[|I2t (x1, x2)|2p] 6 C|x1 − x2|pθ, 0 < t 6 T, |x1|, |x2| 6 a. (4.6)

If
|u0(x1)− u0(x2)| 6 C|x1 − x2|γ , x1, x2 ∈ R,

then, by a change of variable, we have

|I1t (x1, x2)| =
∣∣∣ ∫

R
[u0(x1 − y)− u0(x2 − y)]pt(y)dy

∣∣∣
6 C|x1 − x2|γ

∫
R
pt(y)dy

= C|x1 − x2|γ

for all t ∈ (0, T ] and |x1|, |x2| 6 a, which implies

|I1t (x1, x2)|2p 6 C|x1 − x2|2pγ , 0 < t1, t2 6 T, |x| 6 a. (4.7)

By (2.4), (2.5), and (4.4), for all t ∈ (0, T ] and |x1|, |x2| 6 a, we have∫
R

|∇Mx1,x2
t (y)|2

J(y)
dy 6

C

t

∫
R

|∇Mx1,x2
t (y)|
J(y)

dy

6 C
|x1 − x2|θ

t(3+θ)/2

∫
R

pt((x1 + y)/2) + pt((x2 + y)/2)

J(y)
dy

6 C
|x1 − x2|θ

t(3+θ)/2
.

It then follows from Condition 1.2, Hölder’s inequality, and (4.4) that

|I3t (x1, x2)| 6 C

∫ t

0
〈|us|, |∇Mx1,x2

t−s |〉ds

6 C

∫ t

0
‖us‖0

[ ∫
R

|∇Mx1,x2
t−s (y)|2

J(y)
dy

]1/2
ds

6 C

∫ t

0
‖us‖0

[ ∫
R
|∇Mx1,x2

t−s (y)|2e|y|dy
]1/2

ds

6 C|x1 − x2|θ/2
∫ t

0

‖us‖0
(t− s)(3+θ)/4

ds.

Combining the above inequality with Lemma 4.1, we obtain

E[|I3t (x1, x2)|2p] 6 C|x1 − x2|pθ
∫ t

0

E[‖us‖2p0 ]

(t− s)(3+θ)/4
ds 6 C|x1 − x2|pθ (4.8)

for all t ∈ (0, T ] and |x1|, |x2| 6 a. By Lemma 2.8, we have

E[|I4t (x1, x2)|2p] 6 C|x1 − x2|2pθ, 0 < t 6 T, x1, x2 ∈ R.
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Together this with (4.3) and (4.5)–(4.8), one ends the proof. �

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4 By Kolmogorov’s continuity criteria (see, e.g., [11, p. 31])
and Lemma 4.2, the assertion follows immediately. �
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