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Abstract We study the existence of ground state solutions for a class of dis-
crete nonlinear Schrödinger equation with a sign-changing potential which is
periodic or asymptotically periodic. The resulting problem engages two ma-
jor difficulties: one is that the associated functional is strongly indefinite, the
second is that, due to the asymptotically periodic assumption, the associated
functional loses the Z-translation invariance, and many effective methods for
periodic problems cannot be applied to asymptotically periodic ones. These
enables us to develop a direct approach to find ground state solutions with
asymptotically periodic potential. Two types of ground state solutions are ob-
tained with some new super-quadratic conditions on nonlinearity which are
weaker that some well-known ones. Moreover, our conditions can also be used
to significantly improve the well-known results of the corresponding continuous
nonlinear Schrödinger equation.
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1 Introduction

In this paper, we study standing waves of the following system of discrete
nonlinear Schrödinger (DNLS) equation:

iψ̇m = −∆ψm + (Vm + ω)ψm − fm(ψm), m ∈ Z, (1.1)

where ω ∈ R, ∆ψm := ψm+1 − 2ψm + ψm−1 is the discrete Laplacian in one
spatial dimension. The discrete potential Vm is a sequence of real numbers, fm
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is a function sequence. Equation (1.1) may be viewed as a discrete form of the
nonlinear Schrödinger equation:

iψ̇t = −∆ψ + (V (x) + ω)ψ − f(x, ψ), x ∈ RN . (1.2)

The nonlinear Schrödinger equation (1.2) has been extensively investigated
analytically by many mathematicians and physicists, from the fundamental well
posedness of Cauchy problem to the existence and stability of standing waves.

Assume that the nonlinearity f(u) is gauge invariant, that is f(eiωu) =
eiωf(u) for any ω ∈ R. Thus, we consider the special solutions of (1.1) of the
form ψm = e−iωtqm, these solutions are called breather solutions or standing
waves due to their periodic time behavior. Inserting the ansatz of a breather
solution into (1.1), we see that any breather solution satisfies the infinite non-
linear system of algebraic equations

−∆qm + Vmqm = fm(qm), m ∈ Z, (1.3)

where qm is a real-valued sequence.
The DNLS equation has been proven useful in describing a variety of phe-

nomena in nonlinear physics, such as propagation of excitations in a deformable
medium [7,9], dynamics of Bose–Einstein condensates inside coupled magneto-
optical traps [1, 18], transversal propagation of light in waveguide arrays, self-
focusing and collapse of Langmuir waves in plasma physics and description of
rogue waves in the ocean [8]. Its main features include the existence of localized
nonlinear solutions with families of stable and unstable modes, the existence
of a selftrapping transition of an initially localized excitation, and a degree of
excitation mobility in 1D. All these characteristics have made the DNLS in-
to a paradigmatic equation that describes the propagation of excitations in a
nonlinear medium under a variety of different physical scenarios, see [11,13].

Discrete Schrödinger operators of the form −∆ + V appear in a wide range
of fields, such as the description of random walks, the propagation of waves
in crystals [12], and the theory of nonlinear integrable lattices (see [1, 8, 10, 16]
and references therein). It is worth pointing out that the existence of nontrivial
solutions of (1.3) has been studied under different assumptions on the potential
and the nonlinearity by using the variational method [3–6, 15, 17, 19, 24, 25,
32–34]. For instance, Pankov [19, 20, 22] studied the existence of a nontrivial
solution problem (1.3) in the case of 0 belonging to a spectral gap of −∆+V . By
using the Nehari manifold approach and the mountain pass argument, Pankov
and Rothos [21] considered the existence of a nontrivial solution of (1.3) with a
constant potential V and an asymptotically linear term f . Zhou and Yu [37,38]
improved the classical AR superlinear condition to a general superlinear one.
Later, they [39] studied the existence of nontrivial solutions of (1.3) under the
strictly increasing conditions on f which is very crucial. G. Chen et al. [3, 4, 6]
considered the nonautonomous problem of (1.3) with the potential V being
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periodic and f being asymptotically linear at infinity by using weak linking
theorems; when either 0 is a spectral endpoint of −∆ + V , or it is in a finite
spectral gap of −∆+V , the authors obtained the existence of nontrivial solitons
by using a generalized weak linking theorem introduced by Schechter and Zou
[23]. Recently, Lin, Zhou and Yu [15] studied the existence of ground state
solutions for (1.3) with a sign-changing potential V that converges at infinity
and a nonlinear term being asymptotically linear at infinity.

Motivated by the interest shared by the mathematical community in this
topic and the papers [3–6,15,17,19,24,25,32–34], the main goal of this paper is
to investigate the question of existence of ground state solutions for (1.3). Based
on the recent work [15, 24–30, 32, 37–39] and the non-Nehari manifold method
[27,30,31] which are different from the previous work and generalize the results,
this method has been proven successful, for instance, in solving Schrödinger
equation and Dirac equation [2, 35, 36]. In this work, one difficulty in problem
(1.3) is that the associated functional J (defined in Sect. 2) is strongly indefinite,
that is, its quadratic part is respectively coercive and anti-coercive in infinitely
dimensional subspaces of the energy space. To tackle this difficulty, we adapt
non-Nehari method introduced by Tang [31]. It is convenient to decompose the
functional space l2 into a direct sum of two subspaces H+ and H− (H is defined
in Sect. 2), one of which being infinite dimensional.

Another difficulty is the lack of periodic assumption. As a result, neither
the periodic translation technique nor the compact inclusion method can be
adapted. In this case, the functional J loses the Z-translation invariance. For
the above reasons, many effective methods for periodic problems cannot be
applied to asymptotically periodic ones. To the best of our knowledge, there
are no results on the existence of ground state solutions to (1.3) when Vm is
asymptotically periodic. In this paper, we find new tricks to overcome the
difficulties caused by the dropping of periodicity of Vm.

Now, we are ready to state the main results of the present paper as follows.

1.1 Periodic Potential

We assume that Vm and fm(t) are N -periodic sequences on m and 0 lies in a
finite spectral gap of σ(−∆ + Vm), i.e.,

(V1) Vm+N = Vm and

sup[σ(−∆ + Vm) ∩ (−∞, 0)] < 0 < inf[σ(−∆ + Vm) ∩ (0,∞)];

(f0) fm+N (t) = fm(t), fm(t) is continuous in t ∈ R for every m ∈ Z;
(f1) for every m ∈ Z, t ∈ R, tfm(t) ≥ 0;
(f2) fm(t) = o(|t|) as |t| → 0;

(f3) lim|t|→∞
Fm(t)
|t|2 =∞ for all m ∈ Z, where Fm(t) =

∫ t
0 fm(s)ds;
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(f4) there exists a constant η0 ∈ (0, 1) such that

1− η2

2
tfm(t) ≥

∫ t

ηt
fm(s)ds, ∀η ∈ [0, η0].

Theorem 1.1. Assume that (V1), (f0)–(f4) hold. Then problem (1.3) has a
ground state, i.e., a nontrivial solution q ∈ H such that J(q) = infM J ≥(

1
8

)1/p−2
Θ

2/p−2
0 > 0, where

M = {q ∈ H \ {0} : 〈J ′(q), q〉 = 0}, (1.4)

and

Θ0 =

(
1

ηp−1
0

+
1

p

)
Cε0γ

p
p , γp = sup

q∈H, ‖q‖=1
‖q‖p, p ≥ 2, (1.5)

Cε0 is defined by (3.11) (see Sect. 3 in details) with ε0 = η0
2(2+η0)γ22

.

1.2 Asymptotically Periodic Potential

In this part, we assume that Vm and fm(t) are asymptotically periodic on m.
(V1′) For all m ∈ Z, Vm = Wm +Rm, Wm+N = Wm and

sup[σ(−∆ +Wm) ∩ (−∞, 0)] < 0 < inf[σ(−∆ +Wm) ∩ (0,∞)].

Furthermore,

0 ≤ −Rm ≤ sup
Z

(−Rm) < Π0 := inf[σ(−∆ +Wm) ∩ (0,∞)],

and limm→∞Rm = 0;
(f4′) t 7→ fm(t)

|t| is non-decreasing on (−∞, 0) ∪ (0,∞);

(f4′′) fm(t) = gm(t) + hm(t), gm(t) is continuous in t ∈ R for every m ∈ Z,
gm+N (t) = gm(t), gm(t) = o(|t|), as |t| → 0, uniformly in m ∈ Z, t 7→ gm(t)/|t|
is non-decreasing on (−∞, 0) ∪ (0,∞); hm(t) is continuous in t ∈ R for every
m ∈ Z and satisfies that

0 ≤ thm(t) ≤ am(|t|2 + |t|p), ∀(m, t) ∈ Z× R, p > 2

with limm→∞ am = 0. Moreover,

Hm(t)− 1

2
Vmt

2 > 0, for (m, t) ∈ Z× R.

Let

N − := {q ∈ H \H− : 〈J ′(q), q〉 = 〈J ′(q), h〉 = 0, ∀h ∈ H−}. (1.6)

The set N − was first introduced by Pankov [20], which is a subset of the
Nehari manifold (1.4). Since q0 is a solution to the equation J(q) = 0 at which
J has minimal energy in set N −, we shall call it a ground state solution of
Nehari–Pankov type.
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Theorem 1.2. Assume that (V1), (f0), (f2)–(f3), (f4′) hold. Then problem
(1.3) has a ground state, i.e., a nontrivial solution q ∈ H such that J(q) =
infN − J > 0.

Theorem 1.3. Assume that (V1′), (f0), (f2)–(f3), (f4′′) hold. Then problem
(1.3) has a ground state, i.e., a nontrivial solution q ∈ H such that J(q) =
infN − J > 0.

The present paper is built up as follows. The variational structure and some
properties of the associated functional are established in Section 2. We establish
some instrumental lemmas involving our main theorem in Sections 3–5, finally
the proofs of Theorems 1.1–1.3 are presented by non-Nehari method.

2 Variational Structure and Preliminaries

In order to apply variational method, we firstly state the corresponding work
space, then we reduce the problem of finding solutions of (1.3) to the one of
seeking the critical points of a corresponding variational functional.

Let H = l2(Z,R). H is a Hilbert space with the usual inner product and
norm:

(x, y)l2 =
∑
m∈Z

xmym, |x|l2 =
∑
m∈Z
|xm|2, ∀x, y ∈ H.

Let A = −∆ + Vm, {E (λ) : −λ1 < λ < λ2} and |A | be the spectral family
and the absolute value of A , respectively, and |A |1/2 be the square root of |A |.
There hold

E (−λ1) = 0, E (λ2) = id =

∫ λ2

−λ1
d[E (λ)]

and for any q ∈ l2,

A q =

∫ λ2

−λ1
λd[E (λ)q], |A |q =

∫ λ2

−λ1
|λ|d[E (λ)q],

|A |1/2q =

∫ λ2

−λ1
|λ|1/2d[E (λ)q].

Set U = id − E (0) − E (0−), then U commutes with A , |A | and |A |1/2, and
A = U |A | is the polar decomposition of A . Let

H− = E (0−)H, H+ = [id− E (0)]H.

For any q ∈ H, it is easy to see that q = q− + q+, and

A q− = −|A |q−, A q+ = |A |q+, ∀q ∈ H, (2.1)

where
q− = E (0−)q ∈ H−, q+ = [id− E (0)]q ∈ H+.
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We can define an inner product

(q, p) = (|A |1/2q, |A |1/2p), q, p ∈ H

and the corresponding norm

‖q‖ = ‖|A |1/2q‖2, q ∈ H, (2.2)

where (·, ·)l2 denotes the inner product of l2, ‖ · ‖s denotes the norm of ls.
By a standard argument, one can show that the norms ‖ · ‖ and ‖ · ‖2 are
equivalent. Obviously, one has the orthogonal decomposition H = H− ⊕H+,
where orthogonality is with respect to both (·, ·)l2 and (·, ·). If σ(A ) ⊂ (0,∞),
then H− = {0}, otherwise H− is infinite-dimensional.

For any q ∈ H, we define the following functional

J(q) =
1

2
(A q, q)l2 −

∑
m∈Z

Fm(q), (2.3)

where Fm(t) =
∫ t

0 fm(s)ds. Standard arguments show that under the assump-
tions of Theorems 1.1–1.3, J is well-defined and is of C1(E,R), and solutions
of (1.3) are critical points of the functional J , and

〈J ′(q), p〉 = (A q, p)l2 −
∑
m∈Z

fm(q)p. (2.4)

Let B : H → R,

B(q) =
∑
m∈Z

Fm(q). (2.5)

Combining (2.4) with (2.5), we see that

J(q) =
1

2
(A q, q)−B(q) (2.6)

and

〈J ′(q), p〉 = (A q, p)−
∑
m∈Z

fm(q)p. (2.7)

In view of (2.1) and (2.2), we have

J(q) =
1

2
(‖q+‖2−‖q−‖2)−

∑
m∈Z

Fm(q), ∀q = q−+ q+ ∈ H−⊕H+ = H (2.8)

and

〈J ′(q), q〉 = ‖q+‖2−‖q−‖2−
∑
m∈Z

fm(q)p, ∀q = q−+q+ ∈ H−⊕H+ = H. (2.9)
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Let W be a real Hilbert space with W = W− ⊕W+ and W− ⊥ W+. For
a functional ψ ∈ C1(W,R), ψ is said to be weakly sequentially lower semi-
continuous if for any un ⇀ u in W one has ψ(u) ≤ lim infn→∞ ψ(un), and ψ′

is said to be weakly sequentially continuous if limn→∞〈ψ′(un), v〉 = 〈ψ′(un), v〉
for each v ∈W .

Lemma 2.1 [14]. Let W be a real Hilbert space, W = W− ⊕W+ and W− ⊥
W+, and ψ ∈ C1(X,R) of the form

ψ(u) =
1

2
(‖u+‖2 − ‖u−‖2)− ψ(u), u = u− + u+ ∈W− ⊕W+.

Suppose that the following assumptions hold:
(A1) ψ ∈ C1(W,R) is bounded from below and weakly sequentially lower

semi-continuous;
(A2) ψ′ is weakly sequentially continuous;
(A3) there exist r > ρ > 0, e ∈W+ with ‖e‖ = 1 such that

κ := inf ψ(S+
ρ ) > supϕ(∂Q),

where

S+
ρ = {u ∈ X+ : ‖u‖ = ρ}, Q = {v + se : v ∈ X−, s ≥ 0, ‖v + se‖ ≤ r}.

Then for some c ∈ [κ, supϕ(Q)], there exists a sequence {un} ⊂W satisfying

ψ(un)→ c, ‖ψ′(un)‖(1 + ‖un‖)→ 0.

3 Proof of Theorem 1.1

Lemma 3.1. Suppose that (f0)–(f3) are satisfied. Then B(q) is nonnegative,
weakly sequentially lower semi-continuous, and B′(q) is weakly sequentially con-
tinuous.

It is not difficult to verify the above lemma by means of Sobolev’s imbedding
theorem. The proof will be omitted.

Lemma 3.2. Assume that (f1), (f2) and (f4) are satisfied, then for any q ∈ H,
there holds

J(q) ≥ J(µq+) +
µ2‖q−‖2

2
+

1− µ2

2
〈J ′(q), q〉+ µ2〈J ′(q), q−〉

− µ2
∑

m∈Z(|µ|q+|>η0|q|)

fm(q)q+, ∀µ ≥ 0. (3.1)
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Proof. Fix x, y ∈ R. Let

g(r) =
1 + r2

2
fm(x)x− r2fm(x)y + Fm(ry)− Fm(x).

If xy ≤ 0, using the assumption (f1), we have

g(r) =
1 + r2

2
fm(x)x− r2fm(x)y + Fm(ry)− Fm(x)

≥ 1 + r2

2
fm(x)x− Fm(x), ∀r ≥ 0. (3.2)

If xy ≥ 0, let η = ry/x. Using the assumptions (f1), (f2) and (f4), we have

g(r) =
1 + r2

2
fm(x)x− r2fm(x)y + F (ry)− F (x)

=
1 + r2 − 2ηr

2
fm(x)x−

∫ x

ηx
fm(s)ds

=
(η − r)2

2
fm(x)x+

1− η2

2
fm(x)x−

∫ x

ηx
fm(s)ds

≥ 1− η2

2
fm(x)x−

∫ x

ηx
fm(s)ds

≥ 0, r ≥ 0,
ry

x
≤ η0. (3.3)

Based on the above two arguments, we obtain

1 + r2

2
fm(x)x− r2fm(x)y + Fm(ry)− Fm(x) ≥ 0, r ≥ 0, |ry| ≤ η0|x|. (3.4)

Taking the assumption (f4) into consideration, we get

J(q)− J(rq+)

=
1

2
[(A q, q)− (A (rq+, rq+))] +

∑
m∈Z

[Fm(r(q+))− Fm(q)]

=
1

2
[(1− r2)(A q, q) + r2(A q, q−)] +

∑
m∈Z

[Fm(r(q+))− Fm(q)]

=
r2

2
‖q−‖2 +

1− r2

2
(A q, q) + r2(A q, q−) +

∑
m∈Z

[Fm(r(q+))− Fm(q)]

=
r2

2
‖q−‖2 +

1− r2

2
〈J ′(q), q〉+ r2〈J ′(q), q−〉

+
∑
m∈Z

[
1− r2

2
fm(q)q + r2fm(q)q−

]
+
∑
m∈Z

[
Fm(r(q+))− Fm(q)

]
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=
r2

2
‖q−‖2 +

1− r2

2
〈J ′(q), q〉+ r2〈J ′(q), q−〉

+
∑
m∈Z

[
1 + r2

2
fm(q)q − r2fm(q)q−

]
+
∑
m∈Z

[
Fm(r(q+))− Fm(q)

]
=
r2

2
‖q−‖2 +

1− r2

2
〈J ′(q), q〉+ r2〈J ′(q), q−〉

+
∑

m∈Z{µ|q+|≤η0|q|}

[
1 + r2

2
fm(q)q − r2fm(q)q−

]
+

∑
m∈Z{µ|q+|≤η0|q|}

[
Fm(r(q+))− Fm(q)

]
+

∑
m∈Z{µ|q+|≤η0|q|}

[
1 + r2

2
fm(q)q − r2fm(q)q−

]
+

∑
m∈Z{µ|q+|≤η0|q|}

[
Fm(rq+)− Fm(q)

]
≥ r2

2
‖q−‖2 +

1− r2

2
〈J ′(q), q〉+ r2〈J ′(q), q−〉

− r2
∑

m∈Z{µ|q+|≤η0|q|}

fm(q)q+, r ≥ 0.

Lemma 3.3. Assume that (V1), (f0)–(f2) are satisfied. Then there is a con-
stant ρ > 0 such that κ := inf J(S+

ρ ) > 0, where S+
ρ = ∂Bρ ∩H+.

Lemma 3.3 can be proved in the same way as [26].

Lemma 3.4. Suppose that (V1), (f0)–(f3) are satisfied. Let e ∈ H+ with
‖e‖ = 1. Then there is a constant r0 > 0 such that sup J(∂Q) ≤ 0, where

Q = {q = se+ q− : q− ∈ H−, s ≥ 0, ‖q‖ ≤ r0}.

Proof. From (f1) we have Fm(t) ≥ 0 for all m, so we get J(q) ≤ 0 for any
q ∈ H−. Next, it remains to show that J(q)→ −∞ as q ∈ H−⊕Re, ‖q‖ → ∞.
The proof is by contradiction. Assume that for some sequence {q(n)} ⊂ H−⊕Re
with ‖q(n)‖ → ∞, there exists M > 0 such that J(q(n)) ≥ −M for all n ∈ N.
Denote h(n) = q(n)/‖q(n)‖ = h(n)− + sne, obviously ‖h(n)‖ = 1. Passing to a
subsequence, we may suppose that h(n) ⇀ h in H, thus h(n) → h for all m ∈ Z,
h(n)− ⇀ h− in H, sn → s̄ and

− M

‖q(n)‖2
≤ J(q(n))

‖q(n)‖2
=
s2
n

2
− 1

2
‖h(n)−‖2 −

∑
m∈Z

Fm(q(n))

‖q(n)‖2
. (3.5)
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If s̄ = 0, thanks to (3.5), it follows that

0 ≤ 1

2
‖h(n)−‖2 +

∑
m∈Z

Fm(q(n))

‖q(n)‖2
≤ s2

n

2
+

M

‖q(n)‖2
→ 0,

which leads to ‖h(n)−‖ → 0, and so 1 = ‖h(n)‖ → 0, a contradiction.
If s̄ 6= 0, then h 6= 0, combining (3.5), (f3) and Fatou’s lemma, we see that

0 ≤ lim
n→∞

sup

[
s2
n

2
− 1

2
‖h(n)−‖2 −

∑
m∈Z

Fm(q(n))

‖q(n)‖2

]

= lim
n→∞

sup

[
s2
n

2
− 1

2
‖h(n)−‖2 −

∑
m∈Z

Fm(q(n))

|q(n)|2
(h(n))2

]

≤ 1

2
lim
n→∞

s2
n − lim

n→∞
inf
∑
m∈Z

Fm(q(n))

|q(n)|2
(h(n))2

≤ s̄2

2
−
∑
m∈Z

lim
n→∞

inf
Fm(q(n))

|q(n)|2
(h(n))2

= −∞, (3.6)

which leads to a contradiction. Hence Lemma 3.4 is proved.

Lemma 3.5. Assume that (V1), (f0)–(f4) are satisfied. Then there exists a
constant c ≥ κ and a sequence {q(n)} ⊂ H satisfying

J(q(n))→ c, ‖J ′(q(n))‖(1 + ‖q(n)‖)→ 0. (3.7)

Proof. Lemma 3.5 is a direct corollary of Lemmas 2.1, 3.1, 3.3 and 3.4.

Lemma 3.6. Suppose that (V1), (f0)–(f4) are satisfied. Then any sequence
{q(n)} ⊂ H satisfying

J(q(n))→ c, 〈J ′(q(n)), (q(n))±〉 → 0 (3.8)

is bounded in H.

Proof. We prove boundedness of {q(n)} by contradiction. Suppose that ‖q(n)‖ →
∞. Letting h(n) = q(n)/‖q(n)‖, it is easy to show that ‖h(n)‖ = 1 and there
exists a constant C1 such that ‖h(n)‖2 ≤ C1. Passing to a subsequence, we may
assume that h(n) ⇀ h in H, h(n) → h for all m ∈ Z. Based on the concentration
compactness principle of Lions, we will divide our proof into two cases: either
((h(n))+) is vanishing or it is nonvanishing.

Now, we assume that ((h(n))+) is vanishing, that is

lim sup
n→∞

‖(h(n))+‖∞ = 0.
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Fix R = [2(1 + c)1/2]. It follows from (f1) and (f2) that

|Fm(t)| ≤ t2

4(RC1)2
, ∀m ∈ Z, |t| ≤ η. (3.9)

It follows that ‖(h(n))+‖∞ ≤ η
R , where n is sufficiently large. Hence,

lim
n→∞

sup
∑
m∈Z

Fm(h(n)) ≤ 1

4C2
1

lim
n→∞

‖h(n)‖22 ≤
1

4
. (3.10)

Using (f1) and (f2), for ε > 0, there exists Cε > 0 such that

|fm(t)| ≤ ε|t|+ Cε|t|p−1 (3.11)

and

|Fm(t)| ≤ ε|t|2 + Cε|t|p (3.12)

for any t ∈ R and m ∈ Z, where p > 2. Then,

lim
n→∞

R2

‖q(n)‖
∑

m∈Z{R|h+|>η0|q|}

fm(q)|(h(n))+|

≤ lim
n→∞

R2

‖q(n)‖
∑

m∈Z{R|h+|>η0|q|}

(ε|q|+ Cε|q|p−1)|(h(n))+|

≤ lim
n→∞

R2

‖q(n)‖
∑

m∈Z{R|(h(n))+|>η0|q|}

(εRη−1
0 |(h

(n))+|2 + CεR
p−1η1−p

0 |(h(n))+|p)

≤ lim
n→∞

εR3η−1
0 ‖(h(n))+‖22 + CεR

p+1η1−p
0 ‖(h(n))+‖pp

‖q(n)‖
= 0. (3.13)

Letting µn = R/‖q(n)‖, it follows from (3.8), (3.10), (3.13) and Lemma 3.2 that

c+ o(1) = J(q(n))

≥ J(µn(q(n))+) +
µ2
n‖(q(n))−‖2

2

+
1− µ2

n

2
〈J ′(q(n)), q(n)〉+ µ2

n〈J ′(q(n)), (q(n))−〉

− µ2
n

∑
m∈Z{µn|(h(n))+|>η0|q|}

fm(q)(h(n))+

= J(R(h(n))+) +
R2‖(h(n))−‖

2
+

(
1

2
− R2

2‖q(n))‖2

)
〈J ′(q(n)), q(n)〉

+
R2

‖q(n))‖2
〈J ′(q(n)), (q(n))−〉 − R2

‖q(n))‖
∑

m∈Z{R|(h(n))+|>η0|q|}

fm(q)|(h(n))+|
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=
R2

2
(‖(h(n))+‖2 + ‖(h(n))−‖2)− R2

‖q(n))‖
∑

m∈Z{R|(h(n))+|>η0|q|}

fm(q)|(h(n))+|

−
∑
m∈Z

Fm(R(h(n))+) +

(
1

2
− R2

2‖q(n))‖2

)
〈J ′(q(n)), q(n)〉

+
R2

‖q(n))‖2
〈J ′(q(n)), (q(n))−〉

≥ R2

2
−
∑
m∈Z

Fm(R((h(n))+))

− R2

‖q(n))‖
∑

m∈Z{R|(h(n))+|>η0|q|}

fm(q)|(h(n))+|+ o(1)

≥ R2

2
− 1

4
+ o(1)

> c+
3

4
+ o(1),

which leads to a contradiction.
Going if necessary to a subsequence, we may assume the existence of mk ∈ Z

such that

|(h(n)
mk

)+| = ‖(h(n)
m )+‖∞ >

δ

2
.

Choose integers ik and nk with 0 ≤ nk ≤ N − 1 such that mk = ikN + nk. Let

w
(n)
m = h

(n)
m+ikN . Then

|(w(n)
nk

)+| > δ

2
, ∀k ∈ N. (3.14)

Now we define q̃
(n)
m = q

(n)
m+ikN

. Then q̃
(n)
m /‖q̃(n)

m ‖ = w
(n)
m and ‖w(n)

m ‖2 = ‖h(n)
m ‖2 ≤

C1. Passing to a subsequence, we have w
(n)
m ⇀ wm in H, then w

(n)
m → wm for

all m ∈ Z. Thus, (3.14) implies that wm 6= 0 for some m ∈ {0, 1, . . . , N − 1}.
It is obvious that wm 6= 0 implies limn→∞ |q̃(n)

m | =∞.
Hence, it follows from (2.3), (f1) and (f3) that

0 = lim
n→∞

c+ o(1)

‖q(n)‖2

= lim
n→∞

J(q(n))

‖q(n)‖2

= lim
n→∞

[
1

2
(‖(q(n))+‖2 − ‖(q(n))−‖2)−

∑
m∈Z

Fm(q(n))

|q(n)|2
|h(n)|2

]

= lim
n→∞

[
1

2
(‖(q(n))+‖2 − ‖(q(n))−‖2)−

∑
m∈Z

Fm
(
q

(n)
m+ikN

)∣∣q(n)
m+ikN

∣∣2 ∣∣h(n)
m+ikN

∣∣2]
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= lim
n→∞

[
1

2
(‖(q(n))+‖2 − ‖(q(n))−‖2)−

∑
m∈Z

Fm
(
q̃

(n)
m

)∣∣q̃(n)
m

∣∣2 ∣∣w(n)
m

∣∣2]

≤ 1

2
− lim inf

n→∞

∑
m∈Z

Fm
(
q̃

(n)
m

)∣∣q̃(n)
m

∣∣2 ∣∣w(n)
m

∣∣2
≤ 1

2
− lim inf

n→∞

N−1∑
m=0

Fm
(
q̃

(n)
m

)∣∣q̃(n)
m

∣∣2 ∣∣w(n)
m

∣∣2
= −∞, (3.15)

which is a contradiction. Hence the statement of Lemma 3.6 is proved.

Lemma 3.7. Suppose that (V), (f0)–(f4) are satisfied. Then problem (1.3) has
a nontrivial solution, i.e., M 6= ∅.

Proof. Lemma 3.5 implies the existence of a sequence {q(n)} ⊂ H satisfying
(3.3). By Lemma 3.6, {q(n)} is bounded in H. If δ := lim supn→∞ ‖(h(n))+‖∞ =
0, by virtue of (f1) and (f2), one can get that

lim sup
n→∞

∑
m∈Z

[
1

2
fm(q(n))− Fm(q(n))

]
= 0. (3.16)

From (2.3), (2.4), (3.7) and (3.16), one has

c = J(q(n))− 1

2
〈J ′(q(n)), q(n)〉+ o(1)

=
∑
m∈Z

[
1

2
fm(q(n))− Fm(q(n))

]
+ o(1) = o(1),

which is a contradiction. Thus δ > 0.
Going if necessary to a subsequence, we may assume the existence of mk ∈ Z

such that

|h(n)
mk
| = ‖h(n)

m ‖∞ >
δ

2
.

Choose integers ik and nk with 0 ≤ nk ≤ N − 1 such that mk = ikN + nk. Let

w
(n)
m = h

(n)
m+ikN . Then

|w(n)
nk
| > δ

2
, ∀k ∈ N. (3.17)

Since Vm and fm(t) are N -periodic on m, then ‖w(n)
m ‖ = ‖h(n)

m ‖ and

J(w(n)
m )→ c∗, ‖J ′(w(n)

m )‖(1 + ‖w(n)
m ‖)→ 0. (3.18)

Passing to a subsequence, we have w
(n)
m ⇀ w in H, and w

(n)
m → wm for all

m ∈ Z. Hence, it follows from (3.17) and (3.18) that J ′(w) = 0 and w 6= 0.
This shows that w ∈M is a nontrivial of problem (1.3).
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Proof of Theorem 1.1. Lemma 3.7 shows that M is not an empty set. Let
c0 = infM J . By Lemma 2.3, one has J(q) ≥ J(0) = 0 for all q ∈ M . Thus
c0 ≥ 0. Let {q(n)} ⊂M such that J(q(n)) → c0. The 〈J ′(q(n)), p〉 = 0 for any
p ∈ H. According to the proof of Lemma 3.6 (c > 0 is not necessary), we can
certify that {q(n)} is bounded in H and

0 = 〈J ′(q(n)), (q(n))+〉 = ‖(q(n))+‖2 −
∑
m∈Z

fm(q(n))(q(n))+ (3.19)

and

0 = 〈J ′(q(n)), (q(n))−〉 = ‖(q(n))−‖2 −
∑
m∈Z

fm(q(n))(q(n))−. (3.20)

By (3.11) with ε0 = η0
2(2+η0)γ22

, (3.19), (3.20) and the Hölder inequality, one has

‖q(n)‖2 = ‖(q(n))+‖2 + ‖(q(n))−‖2

=
∑

m∈Z(q(n) 6=0)

fm(q(n))

q(n)

[
|(q(n))+|2 − |(q(n))−|2

]
≤ ε0

∑
m∈Z(q

(n)
m 6=0)

|(q(n))+|2 + Cε0
∑

m∈Z(q
(n)
m 6=0)

[
|(q(n))+|p−2|(q(n))+|2

]
≤ ε0‖(q(n))+‖22 + Cε0‖q(n)‖p−2

p ‖q(n)‖2p
≤ ε0γ

2
2‖q(n)‖2 + Cε0γ

p
p‖q(n)‖p

≤ 1

2
‖q(n)‖2 + Cε0γ

p
p‖q(n)‖p, (3.21)

which, together with (3.21), shows that

8Θ0‖q(n)‖p−2 ≥ 2Cε0γ
p
p‖q(n)‖p−2 > 1. (3.22)

Let tn = 1
‖q(n)‖

(
1

8Θ0

)1/p−1
. Then (3.22) implies that 0 < tn < 1. Since q(n) ∈

M , it follows from (1.5), (3.1), (3.11), (3.12) that

J(q(n)) ≥ t2n‖q(n)‖2

2
− t2n

∑
m∈Z(µ|q+|>η0|q|)

fm(q(n))(q(n))+ −
∑
m∈Z

Fm(tn(q(n))+)

≥ t2n‖q(n)‖2

2
−
(
tn
η0

+
1

2

)
ε0t

2
n‖(q(n))+‖22 −

(
tn

ηp−1
0

+
1

p

)
Cε0t

p
n‖(q(n))+‖pp

≥ t2n‖q(n)‖2

2
−
(

1

η0
+

1

2

)
ε0γ

2
2t

2
n‖q(n)‖2 −

(
1

ηp−1
0

+
1

p

)
Cε0γ

p
pt
p
n‖q(n)‖p

=
t2n‖q(n)‖2

4
−Θ0t

p
n‖q(n)‖p =

(
1

8

)1/p−2

Θ
2/p−2
0 .

This shows that c0 ≥
(

1
8

)1/p−2
Θ

2/p−2
0 . By a standard argument, we can demon-

strate that q ∈M such that J(q) = c0 = infM J .
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4 Proof of Theorem 1.2

Lemma 4.1. Suppose that (V1), (f0) and (f2) hold, then B(q) is non-negative
and weakly sequentially lower semi-continuous, and B′(q) is weakly sequentially
continuous.

Using Sobolev’s imbedding theorem, one can check the above lemma easily.
So we omit the proof.

Lemma 4.2. Suppose that (V1), (f0), (f2), (f4′) hold. Then ∀q ∈ H, µ ≥ 0,
p ∈ H−, there holds

J(q) ≥ J(µq + p) +
1

2
‖p‖2 +

1− µ2

2
〈J ′(q), q〉 − µ〈J ′(q), p〉. (4.1)

Proof. For any m ∈ Z and τ 6= 0, we have

fm(s) ≤ fm(τ)

|τ |
|s|, s ≤ τ, fm(s) ≥ fm(τ)

|τ |
|s|, s ≥ τ. (4.2)

It is easy to prove that(
1− µ2

2
τ − µσ

)
fm(τ) ≥

∫ τ

µτ+σ
fm(s)ds, µ ≥ 0, σ ∈ R. (4.3)

Thus, by (2.1), (2.2), (2.8), (2.9) and (4.3), one has

J(q)− J(µq + p)

=
1− µ2

2
(A q, q)− µ(A q, p)− 1

2
(A p, p) +

∑
m∈Z

[Fm(µq)− Fm(q)]

= −1

2
(A p, p) +

1− µ2

2
〈J ′(q), q〉 − µ〈J ′(q), p〉 −

∑
m∈Z

∫ q

µq
fm(s)ds

+
∑
m∈Z

[
1− µ2

2
fm(q)q − µfm(q)p

]
=

1

2
‖p‖2 +

1− µ2

2
〈J ′(q), q〉 − µ〈J ′(q), p〉 −

∑
m∈Z

∫ q

µq+p
fm(s)ds

+
∑
m∈Z

[
1− µ2

2
fm(q)q − µfm(q)p

]
≥ 1

2
‖p‖2 +

1− µ2

2
〈J ′(q), q〉 − µ〈J ′(q), p〉.

From Lemma 4.2, we have the following corollaries.
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Corollary 4.1. Suppose that (V1), (f0), (f2), (f4′) are satisfied. Then

J(q) ≥ J(µq + p) +
1

2
‖q‖2, ∀µ ≥ 0, p ∈ H−, q ∈ N −. (4.4)

Corollary 4.2. Suppose that (V1), (f0), (f2), (f4′) are satisfied. Then for
q ∈ H, µ ≥ 0,

J(q) ≥ µ2

2
‖q‖2 +

1− µ2

2
〈J ′(q), q〉+ µ2〈J ′(q), q−〉 −

∑
m∈Z

Fm(µq+). (4.5)

Lemma 4.3. Suppose that (V1′), (f0), (f2), (f4′) are satisfied. Then
(i) there exists ρ > 0 such that

b := inf
N −

J ≥ κ := inf{J(q) : q ∈ H+, ‖q‖ = ρ} > 0;

(ii) for all q ∈ N −,

‖q+‖ ≥ max{‖q−‖,
√

2b}.

Lemma 4.4. Suppose that (V1), (f0), (f2)–(f3), (f4′) are satisfied. Then for
any e ∈ H+, sup J(H− ⊕ R+e) <∞, and there is Re > 0 such that

J(q) ≤ 0, ∀q ∈ H− ⊕ R+e, ‖q‖ ≥ Re. (4.6)

Proof. Notice that Fm(t) ≥ 0 for any (m, t) ∈ Z × R. Then we have J(q) ≤ 0
as q ∈ H−. To prove this lemma, it suffices to show that J(q) → −∞ as
q ∈ H− ⊕ Re, ‖q‖ → ∞. Arguing indirectly, assume that for some sequence
(q(n)) ⊂ H− ⊕ Re with ‖q(n)‖ → ∞ such that J(q(n)) ≥ 0 for all n ∈ N, set
h(n) = q(n)/‖q(n)‖ = h(n)− + sne, then ‖h(n)‖ = 1. Passing to a subsequence,
we may assume that sn → s̄, h(n) ⇀ h, (h(n))− ⇀ h− in H−, and (h(n))+ ⇀ h+

in H+. Hence

0 ≤ J(q(n))

‖q(n)‖2
=
s2
n

2
‖e‖2 − 1

2
‖h(n)−‖2 −

∑
m∈Z

Fm(q(n))

‖q(n)‖2
. (4.7)

If s̄ = 0, then by (4.7), we have

0 ≤ 1

2
‖h(n)−‖2 +

∑
m∈Z

Fm(q(n))

‖q(n)‖2
≤ s2

n

2
‖e‖2 → 0,

which yields ‖h(n)−‖ → 0, and so 1 = ‖h(n)− + sne‖2 → 0, a contradiction.
If s̄ 6= 0, similar to the proof in Lemma 3.4, we can get (3.6), which is a

contradiction.
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Corollary 4.3. Suppose that (V1), (f0), (f2)–(f3) and (f4′) are satisfied. Let
e ∈ H+ with ‖e‖ = 1. Then there exists r0 > ρ such that sup J(∂Q) ≤ 0 for
r ≥ r0, where

Q = {p+ se : p ∈ H−, s ≥ 0, ‖p+ se‖ ≤ r}. (4.8)

Lemma 4.5. Suppose that (V1), (f0), (f2)–(f3) and (f4′) are satisfied. Then
there exist a constant c ∈ [κ, sup J(Q)] and a sequence {q(n)} ⊂ H satisfying

J(q(n))→ c, ‖J ′(q(n))‖(1 + ‖q(n)‖)→ 0,

where Q is defined by (4.8).

Proof. Lemma 4.5 is a direct corollary of Lemmas 2.1, 4.1, 4.5 (i) and Corollary
4.3.

Lemma 4.6. Suppose that (V1), (f0), (f2)–(f3) and (f4′) are satisfied. Then
there exist a constant c∗ ∈ [κ, b] and a sequence {q(n)} ⊂ H such that

J(q(n))→ c∗, ‖J ′(q(n))‖(1 + ‖q(n)‖)→ 0. (4.9)

Proof. Choose w(k) ∈ N − such that

b ≤ J(w(k)) < b+
1

k
, k ∈ N. (4.10)

By Lemma 4.3, ‖(w(k))+‖ ≥
√

2b > 0. Set ek = w(k)/‖w(k)‖, then ek ∈ H+

and ‖ek‖ = 1. There exists a sequence (q(k,n))n∈N ⊂ H satisfying

J(q(k,n))→ ck, ‖J ′(q(k,n))‖(1 + ‖q(k,n)‖)→ 0, k ∈ N. (4.11)

By Corollary 4.3, one can get that

J(w(k)) ≥ J(ηw(k) + p), ∀η ≥ 0, p ∈ H−. (4.12)

Since w(k) ∈ Qk, it follows that from Corollary 4.3, there exists rk > max{ρ,
‖w(k)‖} such that sup J(∂Qk) ≤ 0, where

Qk = {p+ sek : p ∈ H−, s ≥ 0, ‖p+ sek‖ ≤ rk}, k ∈ N. (4.13)

Hence, applying Lemma 4.5 to the above set Qk, there exists a constant ck ∈
[κ, sup J(Qk)] and from (4.13) and (4.12) we have J(w(k)) = supJ(Qk). Hence,
by virtue of (4.10) and (4.11), one has

J(q(k,n))→ ck < b+
1

k
, ‖J ′(q(k,n))‖(1 + ‖q(k,n)‖)→ 0, k ∈ N.

Now, we can choose a sequence {nk} ⊂ N such that

J(q(k,nk)) < b+
1

k
, ‖J ′(q(k,nk))‖(1 + ‖q(k,nk)‖) < 1

k
, k ∈ N.
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Let q(k) = q(k,nk). Then going if necessary to a subsequence, we have

J(q(n))→ c∗ ∈ [κ, b], ‖J ′(q(n))‖(1 + ‖q(n)‖)→ 0.

The proof of Lemma 4.6 is complete.

Lemma 4.7. Suppose that (V1), (f0), (f2)–(f3) and (f4′) are satisfied. Then for
any q ∈ H \H−, there exist s(q) > 0 and ω(q) ∈ H− such that s(q)q + w(q) ∈
N −.

Proof. Since H−⊕R+q = H−⊕R+q+, we may assume that q ∈ H+. By Lemma
4.4, there exists R > 0 such that J(q) ≤ 0 for any q ∈ (H−⊕R+q) \BR(0). By
Lemma 4.3 (i), J(sq) > 0 for small s ≥ 0. Thus, 0 < sup J(H−⊕R+q) <∞. It
is easy to see that J is weakly upper semi-continuous on H− ⊕R+q, therefore,
J(q̄) = supJ(H− ⊕ R+q) for some q̄ ∈ H− ⊕ R+q. This q̄ is a critical point
of J |H−⊕Rq, so 〈J ′(q̄), q̄〉 = 〈J ′(q̄), p〉 for all p ∈ H− ⊕ Rq. Consequently,
q̄ ∈ N − ∩ (H− ⊕ R+q).

Lemma 4.8. Suppose that (V1), (f0), (f2)–(f3) and (f4′) are satisfied. Then
any {q(n)} ⊂ H satisfying

J ′(q(n))→ c ≥ 0, 〈J ′(q(n)), (q(n))±〉 → 0 (4.14)

is bounded in H.

Proof. We prove the boundedness of {q(n)} by contradiction. If the assertion
would not hold, then ‖q(n)‖ → ∞. Denoting h(n) = q(n)/‖q(n)‖, we have
‖h(n)‖ = 1 and there exists a constant C1 > 0 such that ‖h(n)‖2 ≤ C1. Passing
to a subsequence, we may assume that h(n) ⇀ h in l2, then h(n) → h for all
n ∈ Z. Fixing Λ = [2(1 + c)]1/2, by (f2), there exists ω > 0 such that

|Fm(t)| ≤ |t|2

4(ΛC1)2
, ∀m ∈ Z, |t| ≤ ω. (4.15)

Let

δ := lim sup
n→∞

‖(h(n))+‖∞.

If δ = 0, then ‖(h(n))+‖∞ < ω
Λ for large n. Thus, it follows from (4.15) that

lim sup
n→∞

∑
m∈Z

Fm
(
Λ(h(n))+

)
≤ 1

4C2
1

lim sup
n→∞

‖(h(n))+‖22 ≤
1

4
. (4.16)

Set θ(n) = Λ/‖(h(n))+‖. Combining (4.14) and (4.16), we have, in light of
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Corollary 4.14,

c+ o(1) = J((h(n))+)

≥ (θ(n))
2

2
‖h(n)‖2 −

∑
m∈Z

Fm
(
θ(n)(h(n))+

)
+

1− (θ(n))2

2
〈J ′(h(n)), h(n)〉+ (θ(n))2〈J ′(h(n)), h(n)−〉

=
Λ2

2
−
∑
m∈Z

Fm

(
Λ(h(n))+

‖h(n)‖

)
+

(
1

2
− Λ2

2‖h(n)‖2

)
〈J ′(h(n)), h(n)〉

+
Λ2

‖h(n)‖2
〈J ′(h(n)), h(n)−〉

=
Λ2

2
−
∑
m∈Z

Fm

(
Λh(n)+

‖h(n)‖

)
+ o(1)

≥ Λ2

2
− 1

4
+ o(1)

>
3

4
+ c+ o(1).

This leads to a contradiction, so δ > 0. Similar to the proof of Lemma 3.6,
we can verify (3.14) holds, which is a contradiction. Hence the statement of
Lemma 4.8 is proved.

Proof of Theorem 1.2. Lemmas 4.6 and 4.8 imply the existence of a bounded
sequence {q(n)} ⊂ H satisfying (4.9). Thus there exist constants C2, C3 > 0
such that

‖q(n)‖ ≤ ‖q(n)‖2 ≤ C2‖q(n)‖ ≤ C3, ∀n ∈ Z. (4.17)

Hence, by (f2) and (f3), there exists a constant C4 > 0 such that

|fm(t)t− 2Fm(t)| ≤ c∗

2C2
3

|t|2 + C4|t|3, ∀(m, t) ∈ Z× R, |t| ≤ C3. (4.18)

If

δ := lim sup
n→∞

‖q(n)‖∞ = 0,

then for p > 2,∑
m∈Z
|q(n)|p ≤ ‖q(n)‖p−2

∞
∑
m∈Z
|q(n)|2 ≤ C3‖q(n)‖p−2

∞ → 0, n→∞. (4.19)

Thus
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lim
n→∞

sup
∑
m∈Z

[
1

2
fm(q(n))q(n) − Fm(q(n))

]
≤ 3ε

2
C2

2 +
3ε

2
Cε lim

n→∞
|q(n)|p

=
3c∗
8
.

Then

c∗ = J(q(n))− 1

2
〈J ′(q(n)), q(n)〉+ o(1)

=
∑
m∈Z

[
1

2
fm(q(n))q(n) − Fm(q(n))

]
+ o(1)

≤ 3c∗
8

+ o(1),

which is a contradiction. Then δ > 0.
Going if necessary to a subsequence, we may assume the existence of mk ∈ Z

such that

|h(n)
mk
| = ‖h(n)

m ‖∞ >
δ

2
.

Choose integers ik and nk with 0 ≤ nk ≤ N − 1 such that mk = ikN + nk. Let

w
(n)
m = h

(n)
m+ikN . Then

|w(n)
nk
| > δ

2
, ∀k ∈ N. (4.20)

Since Vm and fm(t) are N -periodic on m, then ‖w(n)
m ‖ = ‖h(n)

m ‖ and

J(w(n)
m )→ c∗, ‖J ′(w(n)

m )‖(1 + ‖w(n)
m ‖)→ 0. (4.21)

Passing to a subsequence, we have w(n) ⇀ w in l2, w(n) → w for all m ∈ Z.
Thus, (4.20) implies that w 6= 0. Let

l0 = {qm ∈ l2 : m ∈ Z, |qm| > 0 is a finite set}.

Then for every ϕ ∈ l0, there exists an m0 ∈ Z such that ϕm = 0 for all |m| > m0.
Hence, it follows from (2.4) and (4.21) that

〈J ′(w), ϕ〉 = (A w,ϕ)l2(Z) −
∑
m∈Z

fm(w)ϕ

= (A w,ϕ)l2(|m|≤m0) −
∑
|m|≤m0

fm(w)ϕ

= lim
n→∞

[
(A w(n), ϕ)l2(|m|≤m0) −

∑
|m|≤m0

fm(w(n))ϕ

]
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= lim
n→∞

〈J ′(w(n)), ϕ〉

= 0.

Since l0 is dense in l2, then J ′(w) = 0. This shows that w ∈ N − and so
J(w) ≥ b. On the other way, it follows from (2.8), (2.9), (4.9), (f4′) and Fatou
Lemma that

b ≥ c∗

= lim
n→∞

[
J(wm)− 1

2
〈J ′(w(n)

m ), w(n)
m 〉
]

= lim
n→∞

∑
m∈Z

[
1

2
fm(w(n)

m )w(n)
m − Fm(w(n)

m )

]
≥
∑
m∈Z

lim
n→∞

[
1

2
fm(w(n)

m )w(n)
m − Fm(w(n)

m )

]
=
∑
m∈Z

[
1

2
fm(w)wm − Fm(w)

]
= J(w)− 1

2
〈J ′(w), w〉

= J(w),

which implies that J(w) ≤ b. So J(w) = b = infN − J > 0. The proof is
completed.

5 Proof of Theorem 1.3

In this section, we always assume that V satisfies (V1′) and define functionals
J, J0 as follows:

J(q) =
1

2
((−∆ +Wm +Rm)q, q)l2 −

∑
m∈Z

[Gm(q) +Hm(q)],

J0(q) =
1

2
((−∆ +Wm)q, q)l2 −

∑
m∈Z

Gm(q),

where Gm(t) :=
∫ t

0 gm(s)ds, Hm(t) :=
∫ t

0 hm(s)ds.
Then (V1′), (f0), (f2) and (f4′′) imply that J ∈ C1(H,R) and

〈J ′(q), w〉 = ((−∆ +Wm +Rm)q, w)l2 −
∑
m∈Z

[gm(q) + hm(q)]w,

〈J ′0(q), w〉 = ((−∆ +Wm)q, w)l2 −
∑
m∈Z

gm(q)w.
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Lemma 5.1. Suppose that (V1′), (f0) and (f2) hold. Then B(q) is non-negative
and weakly sequentially lower semi-continuous, and B′(q) is weakly sequentially
continuous.

Lemma 5.2. Suppose that (V1′), (f0), (f2)–(f3) and (f4′′) hold. Then for
q ∈ H, µ ≥ 0, p ∈ H−, there holds

J(q) ≥ J(µq+ p) +
1

2
‖p‖2− 1

2

∑
m∈Z

Rmp
2 +

1− µ2

2
〈J ′(q), q〉−µ〈J ′(q), p〉. (5.1)

From Lemma 5.2, we have the following corollaries.

Corollary 5.1. Suppose that (V1′), (f0), (f2)–(f3) and (f4′′) are satisfied. Then

J(q) ≥ J(µq + p) +
1

2
‖p‖2 − 1

2

∑
m∈Z

Rmp
2, ∀µ ≥ 0, p ∈ H−, q ∈ N −. (5.2)

Corollary 5.2. Suppose that (V1′), (f0), (f2)–(f3) and (f4′′) are satisfied. Then
for q ∈ H,µ ≥ 0

J(q) ≥ µ2

2
‖q‖2 +

1− µ2

2
〈J ′(q), q〉+ µ2〈J ′(q), q−〉

−
∑
m∈Z

Fm(µq+) +
µ2

2

∑
m∈Z

Rm[(q+)2 − (q−)2]. (5.3)

Lemma 5.3. Suppose that (V1′), (f0), (f2) are satisfied. Then
(i) there exists ρ > 0 such that

b := inf
N −

J ≥ κ := inf{J(q) : q ∈ H+ : ‖q‖ = ρ} > 0;

(ii) for all q ∈ N −,

‖q+‖ ≥ max{‖q−‖,
√

2b}.

Proof. Set γ0 = supZ(−Rm). Then (f2) and (f3) imply that there exists a
constant Cε0 > 0 such that

Fm(q) ≤ ε0|q|2 + Cε0 |q|p, ∀m ∈ Z.

Then we have for q ∈ N −,
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J(q) =
1

2
‖q‖2 +

1

2

∑
m∈Z

Rmq
2 −

∑
m∈Z

Fm(q)

≥ 1

2
‖q‖2 − γ0

2
‖q‖22 − ε0‖q‖22 − Cε0‖q‖pp

≥ 1

2

(
1− γ0 + 2ε0

Π0

)
‖q‖2 − Cε0γp‖q‖p > 0, ∀q ∈ H+.

This shows that there exists a ρ > 0 such that (i) holds.
On the other hand, we have for q ∈ N −,

b ≤ 1

2
‖q+‖2 − 1

2
‖q−‖2 +

1

2

∑
m∈Z

Rmq
2 −

∑
m∈Z

Fm(q)

≤ 1

2
‖q+‖2 − 1

2
‖q−‖2 ≤ 1

2
‖q+‖2,

which implies that ‖q+‖ ≥ max{‖q−‖,
√

2b}.

Lemma 5.4. Suppose that (V1′), (f0)–(f3) are satisfied. Then for any e ∈ H+,
sup J(H− ⊕ R+e) <∞, and there is Re > 0 such that

J(q) ≤ 0, ∀q ∈ H− ⊕ R+e, ‖q‖ ≥ Re. (5.4)

Proof. Notice that Fm(t) ≥ 0 for any (m, t) ∈ Z × R. Then we have J(q) ≤ 0
as q ∈ H−. To prove this lemma, it suffices to show that J(q) → −∞ as
q ∈ H− ⊕ Re, ‖q‖ → ∞. Arguing indirectly, assume that for some sequence
(q(n)) ⊂ H− ⊕ Re with ‖q(n)‖ → ∞ such that J(q(n)) ≥ 0 for all n ∈ N, set
h(n) = q(n)/‖q(n)‖ = h(n)− + sne, then ‖h(n)‖ = 1. Passing to a subsequence,
we may assume that sn → s̄, h(n) ⇀ h, h(n)− ⇀ h− in H−, and h(n)+ ⇀ h+ in
H+. Hence

0 ≤ J(q(n))

‖q(n)‖2
=
s2
n

2
‖e‖2 − 1

2
‖h(n)−‖2 +

∑
m∈Z

Rm(h(n))2 +
∑
m∈Z

Fm(q(n))

‖q(n)‖2
. (5.5)

If s̄ = 0, then by (5.5), we have

0 ≤ 1

2
‖h(n)−‖2 +

∑
m∈Z

Fm(q(n))

‖q(n)‖2
≤ s2

n

2
‖e‖2 → 0,

which yields ‖h(n)−‖ → 0, and so 1 = ‖h(n)− + sne‖2 → 0, a contradiction.
If s̄ 6= 0, similar to the proof of Lemma 3.4, we can get (3.6), which is a

contradiction.

Lemma 5.5. Suppose that (V1′), (f0), (f2), (f3) and (f4′′) are satisfied. Then
any {q(n)} ⊂ H satisfying

J ′(q(n))→ c ≥ 0, 〈J ′(q(n)), (q(n))±〉 → 0 (5.6)

is bounded in H.
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Proof. To prove the boundedness of {q(n)}, arguing by contradiction, suppose
that ‖q(n)‖ → ∞. Let h(n) = q(n)/‖q(n)‖. Then 1 = ‖h(n)‖ . By Sobolev
imbedding theorem, there exists a constant C4 > 0 such that ‖h(n)‖2 ≤ C4.
Passing to a subsequence, we have h(n) ⇀ h in H. There are two possible
cases: (i) h = 0 and (ii) h 6= 0.

Case (i): h = 0, i.e., h(n) ⇀ 0 in H. Then (h(n))+ → 0 and (h(n))− → 0 for
all m ∈ Z. By (V1′), it is easy to show that

lim
n→∞

∑
m∈Z

Rm((h(n))+)2 = lim
n→∞

∑
m∈Z

Rm((h(n))−)2 = 0. (5.7)

Letting
δ := lim sup

n→∞
‖(h(n))+‖∞,

if δ = 0, then ‖(h(n))+‖∞ < ω
Λ for large n. Thus,

lim sup
n→∞

∑
m∈Z

Fm(Λ(h(n))+) ≤ 1

4C2
1

lim sup
n→∞

‖(h(n))+‖22 ≤
1

4
. (5.8)

Set θ(n) = Λ/‖(h(n))+‖. Combining (5.7) and (5.8), we have, in light of
Corollary 5.2

c+ o(1) = J((h(n))+)

≥ (θ(n))
2

2
‖h(n)‖2 −

∑
m∈Z

Fm(θ(n)(h(n))+) +
1− (θ(n))2

2
〈J ′(h(n)), h(n)〉

+(θ(n))2〈J ′(h(n)), h(n)−〉+
(θ(n))2

2

∑
m∈Z

Rm
[
((h(n))+)2 − ((h(n))−)2

]
=

Λ2

2
−
∑
m∈Z

Fm

(
Λ(h(n))+

‖h(n)‖

)
+

(
1

2
− Λ2

2‖h(n)‖2

)
〈J ′(h(n)), h(n)〉

+
Λ2

‖h(n)‖2
〈J ′(h(n)), h(n)−〉+

(θ(n))2

2

∑
m∈Z

Rm
[
((h(n))+)2 − ((h(n))−)2

]
=

Λ2

2
−
∑
m∈Z

Fm

(
Λh(n)+

‖h(n)‖

)
+ o(1)

≥ Λ2

2
− 1

4
+ o(1) >

3

4
+ c+ o(1).

This leads to a contradiction, so δ > 0.
Similar to the proof in Lemma 3.6, we can verify (3.14) holds, which is a

contradiction. Hence the statement of Lemma 5.5 are proved.
Case (ii): h 6= 0. In this case, we can also deduce a contradiction by a

standard argument.
Cases (i) and (ii) show that {h(n)} is bounded in H.
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Proof of Theorem 1.3. Applying Lemmas 4.9 and 5.7, we deduce that there ex-
ists a bounded sequence {q(n)} ⊂ H satisfying (4.9). Passing to a subsequence,
we have q(n) ⇀ q in H. Next, we prove q 6= 0.

Arguing by contradiction, suppose that q = 0, i.e., q(n) ⇀ 0 in H, and so
q(n) ⇀ 0 in l2 and un → 0 for all m ∈ Z. By (V1′) and (f4′′), it is easy to show
that

lim
n→∞

∑
m∈Z

Rm(q(n))(q(n))2 = 0, lim
n→∞

∑
m∈Z

Rm(q(n))(q(n))p = 0 (5.9)

and

lim
n→∞

Hm(q(n)) = 0, lim
n→∞

hm(q(n))p = 0, ∀p ∈ H. (5.10)

Note that

J0(q) = J(q)− 1

2

∑
m∈Z

Rmq
2 +

∑
m∈Z

Hm(q), ∀q ∈ H (5.11)

and

〈J ′0(q), p〉 = 〈J ′(q), p〉 −
∑
m∈Z

Rm(q)qp+
∑
m∈Z

hm(q)p, ∀q, p ∈ H. (5.12)

From (3.4), (5.5)–(5.8), one can get that

J0(q(n))→ c, ‖J ′0(q(n))‖(1 + ‖q(n)‖)→ 0. (5.13)

Going if necessary to a subsequence, we may assume the existence of mk ∈ Z
such that

|h(n)
mk
| = ‖h(n)

m ‖∞ >
δ

2
.

Choose integers ik and nk with 0 ≤ nk ≤ N − 1 such that mk = ikN + nk. Let

w
(n)
m = h

(n)
m+ikN . Then

|(w(n)
nk

)+| > δ

2
, ∀k ∈ N. (5.14)

Since Vm and fm(t) are N -periodic on m, then ‖w(n)
m ‖ = ‖h(n)

m ‖ and

J0(w(n)
m )→ c∗, ‖J ′0(w(n)

m )‖(1 + ‖w(n)
m ‖)→ 0. (5.15)

In the same way as the last part of the proof of Theorem 1.2, we can prove
that J ′0(w) = 0 and J0(w) ≤ c∗.

It follows from J ′0(w) = 0 and (5.12) that w+ 6= 0. By Lemma 4.7, there
exist s0 = s(w) > 0 and w0 = ω(w) ∈ H− such that s0w + w0 ∈ N −,
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and so J(s0w + w0) > b. By virtue of (f4′′), gm(t)/|t| is non-decreasing on
t ∈ (−∞, 0) ∪ (0,∞), similar to (4.3), we have

1− s2
0

2
gm(w)w − s0gm(w)w0 −

∫ w

s0w+w0

gm(s)ds ≥ 0.

Hence, from the fact that Hm(t)− 1
2Vmt

2 > 0, for (m, t) ∈ Z× R, we have

b ≥ c∗ ≥ J0(w)

= J0(s0w + w0) +
1

2
‖w0‖2 +

1− s2
0

2
〈J ′0(w), w〉 − s0〈J ′0(w), w0〉

+
∑
m∈Z

[
1− t20

2
gm(w)w − t0gm(w)w0 −

∫ w

t0w+w0

gm(s)ds

]
≥ J0(s0w + w0) +

1

2
‖w0‖2

=
1

2
‖w0‖2 + J(s0w + w0)− 1

2

∑
m∈Z

Vm(s0w + w0)2 +
∑
m∈Z

Hm(s0w + w0)

> J(s0w + w0) ≥ b.

This contradiction implies that q 6= 0. In the same way as the last part of the
proof of Theorem 1.2, we can certify that J ′(q) = 0 and J(q) = b = infN − J .
This shows that q ∈ H is a solution to (1.3) with J(q) = infN − J > 0. The
proof is completed.
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