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Abstract Recently, Gowda and Sossa [Math. Program., 2019, 177: 149–171]
studied the existence of solutions to weakly homogeneous variational inequali-
ties. In particular, their main result, based on a degree-theoretic condition and
a constraint on the corresponding cone complementarity problem, covers a ma-
jority of existence results on the subcategory problems of weakly homogeneous
variational inequalities. In this paper, what we achieve is a new copositivity-
type existence result for the weakly homogeneous variational inequality. The
conditions we used are easier to check than the degree-theoretic condition and
our result crosses each other with the main result established by Gowda and
Sossa and the main result given by Ma, Zheng and Huang [SIAM J. Optim.,
2020, 30(1): 132–148], respectively. Besides, we show the distinctiveness of our
existence result by comparing it with the well-known coercivity result obtained
for variational inequalities and a norm-coercivity result obtained for comple-
mentarity problems, respectively.
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1 Introduction

Very recently, Gowda and Sossa investigated a class of continuous map, named
as weakly homogeneous map, and the corresponding variational inequality (VI)
over a finite dimensional real Hilbert space in [5]. As an application, they
discussed the solvability of nonlinear equations with weakly homogeneous maps
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over closed convex cones, which covers tensor equations (or multilinear systems)
[2,6,8,19] as special cases. Let H be a finite dimensional real Hilbert space with
inner product 〈·, ·〉 and norm ‖ · ‖, C be a closed convex cone in H and R++ be
the set of positively real numbers. Recall that a continuous map h: C → H is
called positively homogeneous of degree γ(≥ 0) if and only if h(λx) = λγh(x)
for any x ∈ C and λ ∈ R++. As a generalization of the positively homogeneous
map, a weakly homogeneous map of degree γ(≥ 0) f is defined to be a sum of a
positively homogeneous of degree γ(≥ 0) h and a remainder which is continuous

on C and satisfies lim‖x‖→∞
f(x)−h(x)
‖x‖γ = 0 where x ∈ C. Owing to the fact that

limλ→∞
f(λx)
λγ = h(x) for all x ∈ C, the positively homogeneous part h is often

called the “leading term” or “recession map” of the weakly homogeneous map
f and denoted by f∞.

Given a weakly homogeneous map f on a closed convex cone C and a
closed convex subset K in C, the weakly homogeneous variational inequality
(WHVI) [1,5,15,20], denoted by WHVI(f,K) with SOL(f,K) being its solution
set, is to find a vector x∗ ∈ H such that

x∗ ∈ K, 〈f(x∗), y − x∗〉 ≥ 0, for all y ∈ K. (1.1)

When K is a cone, (1.1) is called the weakly homogeneous complementarity
problem (WHCP), denoted by WHCP(f,K). WHVIs and WHCPs cover sev-
eral recently researched special VIs and CPs as subcategory problems. Specif-
ically, when f is a polynomial, WHVI(f,K) and WHCP(f,K) come back to
a polynomial variational inequality (PVI) studied in [9] and polynomial com-
plementarity problem (PCP) studied in [4, 13, 14, 21], respectively; when f is
the sum of a homogeneous polynomial and a constant vector, WHVI(f,K) and
WHCP(f,K) come back to a tensor variational inequality (TVI) studied in [18]
and tensor complementarity problem (TCP) studied in [10,11,16], respectively.

In [5], the authors established some close connections between VIs and CPs
with involved maps being weakly homogeneous map of positive degree. For
instance, letting K∞ := {u ∈ H : u+K ⊆ K} represent the recession cone [17]
of K, the main result given in [5, Theorem 4.1] showed that if the correspond-
ing recession cone complementarity problem WHCP(f∞,K∞) has and only
has the zero solution, and the (topological) index of the natural map [3] of
WHCP(f∞,K∞) at the origin is nonzero, then WHVI(f,K) has a nonempty,
compact solution set. To the best of our knowledge, this degree-theoretic the-
orem is different from the famous coercivity result [3] and covers a majority of
existence results on the subcategory problems of WHVIs, including the well-
known Karamardian’s theorem [12] for homogeneous maps on proper cones.
However, an undesirable fact is that the degree-theoretic condition is often not
easy to check. In addition, an interesting observation is that in all proofs of
these results on the nonemptiness and compactness of solution sets to WHVIs
achieved in [5], when deriving the existence of the solution, the boundedness of
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the solution set of WHVIs is required to hold first, because of the participate of
the homotopy invariance principle of the degree. Then an important question is
whether the existence of the solution can be broken away from the boundedness
of the solution set or not.

Inspired by above, we aim to find some easy-verified conditions to guarantee
the existence of solutions for the WHVI where the involved set contains zero,
and its proof does not depend on the boundedness of the solution set. Our
paper is organized as follows. In Section 2, we show an alternative theorem
for WHVIs. In Section 3, we establish a copositivity-type existence result for
WHVIs. In Section 4, we compare our results with existing ones, including the
main result given in [5, Theorem 4.1], the main result given in [15, Theorem
3.1] and the well-known coercivity result given for VIs. Finally, we sum up the
conclusions in the last section.

2 An Alternative Theorem

In this section, we give an alternative theorem for WHVIs by making use of
degree theory. Let Ω be a bounded open set in H and map φ : cl Ω → H be
continuous where cl Ω denotes the closure of Ω and p ∈ H. Recall that the
topological degree of φ over Ω with respect to p is well-defined if p /∈ φ(∂Ω)
where ∂Ω denotes the boundary of Ω, which is an integer used to judge the
existence of a solution to the equation φ(x) = p, denoted by deg(φ,Ω, p). The
following properties of the topological degree play important roles in our proof
of alternative theorem for WHVIs.

Lemma 2.1 [3]. Let K be a closed convex set in C and f : C → H be
continuous. If there exists a bounded open set U with clU ⊆ C such that
deg(F nat

K , U, 0) 6= 0 where F nat
K (x) := x − ΠK(x − F (x)) is the natural map of

VI(f,K) with F being a given continuous extension of f and ΠK(x) meaning
the orthogonal projection of an x ∈ H onto K, then VI(f,K) has a solution in
U .

Lemma 2.2 [3]. Let Ω be a nonempty, bounded open subset in H. Then the
(topological) degree deg(H (·, t),Ω, p(t)) is independent of t ∈ [0, 1] for any
two continuous maps H : cl Ω × [0, 1] → Rn and p : [0, 1] → Rn such that
p(t) /∈H (∂Ω, t) for any t ∈ [0, 1].

By Lemma 2.2, we can see when the continuous map ϕ : cl Ω→ H satisfies
ϕ(x) = 0 if and only if x = 0, then, deg(ϕ,Ω′, 0) is invariant for any bounded
open set Ω′ containing 0 and contained in Ω, and the common degree is written
as ind(ϕ, 0).

In addition, we need the following result given in [5].

Lemma 2.3 [5]. Let K be a closed convex set in cone C and f : C → H be
a weakly homogeneous map of positive degree. If f∞ is copositive on K∞ and
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SOL(f∞,K∞) = {0}, then WHVI(f,K) has a nonempty, compact solution set
and deg(F nat

K ,Ω, 0) 6= 0 for any bounded open set Ω containing SOL(f,K).

Recall that a map ψ : D → H is said to be copositive on D ⊆ H [7],
if 〈ψ(x) − ψ(0), x〉 ≥ 0 holds for any x ∈ D. Now, we show an alternative
theorem for WHVIs by employing copositivity of maps and above lemmas.

Theorem 2.1. Let K be a closed convex set in cone C and f : C → H be a
weakly homogeneous map of positive degree. If f∞ is copositive on K∞, then
either the WHVI(f,K) has a solution or there exists an unbounded sequence
{xk} ⊆ K and a positive sequence {tk} ⊆ (0, 1) such that for each k,

〈f∞(xk) + tkxk + (1− tk)(f(xk)− f∞(xk)), y − xk〉 ≥ 0, ∀y ∈ K. (2.1)

Proof. Let F and F∞ be any given continuous extensions of f and f∞, respec-
tively. For the sake of contradiction, we assume that SOL(f,K) = ∅ and⋃

0<t<1

SOL(f∞ + tI + (1− t)(f − f∞),K)

is bounded, where I means the identity map from H into H. Then, consider
the following homotopy map:

H (x, t) = x−ΠK(x−(F∞(x)+tx+(1−t)(F (x)−F∞(x)))), ∀(x, t) ∈ H×[0, 1].

It is easy to see that H (·, t) is exactly the natural map of WHVI(f∞ + tI +
(1− t)(f − f∞),K) for each t ∈ [0, 1]. Denote the set of zeros of H (·, t) by

Z := {x ∈ H : H (x, t) = 0 for some t ∈ [0, 1]}.

Since SOL(f,K) = ∅, it follows that {x ∈ H : H (x, 0) = 0} is bounded, which,
together with another assumption, implies that

{x ∈ H : H (x, t) = 0 for some t ∈ [0, 1)}

is bounded. Now, we consider the set {x ∈ H : H (x, 1) = 0}. When t = 1,
H (x, t) becomes

H (x, 1) = x−ΠK(x− (F∞(x) + x)).

Since f∞ is copositive on K∞, it is not difficult to see that

SOL((f∞ + I )∞,K∞) = {0}

and (f∞ + I )∞ is copositive on K∞. So from Lemma 2.3, it follows that
SOL(f∞ + I ,K) is nonempty and compact and deg((F∞ + I )natK ,Ω, 0) 6= 0
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for any bounded open set Ω containing SOL(f∞ + I ,K). Hence, the set Z is
uniformly bounded.

Let Ω ⊆ Z be a bounded open set in H. Then for all t ∈ [0, 1], 0 /∈H (∂Ω, t).
By Lemma 2.2, it follows that

deg(H (·, 0),Ω, 0) = deg(H (·, 1),Ω, 0) = deg((F∞ + I )natK ,Ω, 0) 6= 0,

which means that SOL(f, g,K) is nonempty by Lemma 2.1. This contradiction
means Theorem 2.1 holds.

3 An Existence Result

Recall that in [5], the authors investigated the nonemptiness and compactness of
the solution set of WHVI(f,K) well, and established some good results based
on a condition that SOL(f∞,K∞) = {0}, which is an important condition
for both deriving the nonemptiness and boundedness of the solution set of
WHVI(f,K). However, it is not an easy task to judge whether the solution
set of WHCP(f∞,K∞) contains only zero or not, since WHCP(f∞,K∞) is
a complementarity problem. In this section, we give an existence result for
WHVI(f,K) without adding special constraint to SOL(f∞,K∞), where the
conditions for the existence of solutions is separate from the conditions for the
boundedness of the solution set, and their proofs are also separate.

Theorem 3.1. Let 0 ∈ K be a closed convex set in cone C and f : C → H
be weakly homogeneous of degree γ > 0. Suppose that one of the following
conditions hold:

(a) limx∈K,‖x‖→∞
f(x)−f∞(x)
‖x‖ = 0; f∞ is copositive on K∞ and there exists

some constant M > 0 such that 〈f(x), x〉 > 0 for any x ∈ K satisfying
‖x‖ ≥M ;

(b) f∞ is copositive on K; there exists some constant M ′ > 0 such that
‖f(x) − f∞(x)‖ ≤ ‖F nat

K (x)‖ for any x ∈ K satisfying ‖x‖ ≥ M ′ and
there exists no c > 0 such that −x = c(f(x) − f∞(x)) for any x ∈ K
satisfying ‖x‖ ≥M ′,

where F nat
K (x) := x − ΠK(x − F (x)) is the natural map of VI(f,K) with F

being a given continuous extension of f . Then WHVI(f,K) has a nonempty
solution set. If additional, limx∈K,‖x‖→∞ ‖F nat

K (x)‖ = ∞, then WHVI(f,K)
has a nonempty and compact solution set.

Proof. First, we show that f∞ is copositive on K can imply that f∞ is copos-
itive on K∞. From the definition of the recession cone, it follows that for
any u ∈ K∞, there exist two sequences {tk} ⊆ R+ and {xk} ⊆ K such that
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u = limk→∞
xk
tk

. Thus, we have that for any u ∈ K∞, it follows

〈f∞(u), u〉 = lim
k→∞

〈
f∞
(
xk
tk

)
,
xk
tk

〉
= lim

k→∞

〈f∞(xk), xk〉
tγ+1
k

.

If f∞ is copositive on K, then we can obtain that 〈f∞(xk), xk〉 ≥ 0, which
means that 〈f∞(u), u〉 ≥ 0 for any u ∈ K∞. That is to say, f∞ is copositive
on K∞.

Second, we show that SOL(f,K) 6= ∅ both in conditions (a) and (b). Sup-
pose that SOL(f,K) = ∅, then from Theorem 2.1, there exists an unbounded
sequence {xk} and a positive sequence {tk} ⊆ (0, 1) such that xk ∈ K and (2.1)
holds for each k. Noting that 0 ∈ K, thus we have that

〈xk, f∞(xk) + tkxk + (1− tk)(f(xk)− f∞(xk))〉 ≤ 0. (3.1)

Below, we divide the discussion into the following two cases.
Case 1: Condition (a) holds. In this case, from limx∈K,‖x‖→∞

f(x)−f∞(x)
‖x‖

= 0 and limk→∞ ‖xk‖ =∞, we obtain that

lim
k→∞

〈
xk
‖xk‖

,
f(xk)− f∞(xk)

‖xk‖

〉
= 0,

which implies that

〈xk, tkxk − tk(f(xk)− f∞(xk))〉 ≥ 0,

when k is sufficiently large. Furthermore, from (3.1), it follows that

〈xk, f(xk)〉 ≤ 0,

when k is sufficiently large with ‖xk‖ ≥ M . This contradicts condition (a).
Hence, the assumption is not true and SOL(f,K) 6= ∅.

Case 2: Condition (b) holds. Noting that (3.1), together with xk ∈ K
and the condition that f∞ is copositive on K, can imply that

〈xk, tkxk + (1− tk)(f(xk)− f∞(xk))〉 ≤ 0,

we have that
tk‖xk‖ ≤ (1− tk)‖f(xk)− f∞(xk)‖, (3.2)

which implies that f(xk)−f∞(xk) 6= 0 for sufficiently large k. Furthermore, by
tk > 0, the condition that there exists no c > 0 such that −x = c(f(x)−f∞(x))
for any x ∈ K satisfying ‖x‖ ≥ M ′, and the trigonometric inequality of the
norm, we can obtain that

‖ − tkxk + tk(f(xk)− f∞(xk))‖ < tk‖xk‖+ tk‖f(xk)− f∞(xk)‖ (3.3)



A Copositivity-type Existence Result for WHVIs 565

for sufficiently large k with ‖xk‖ ≥ M ′. In addition, by Lemma 2.1 and (2.1),
it follows that

xk = ΠK(xk − f∞(xk)− tkxk − (1− tk)(f(xk)− f∞(xk))),

which, together with F (xk) = f(xk) for any xk ∈ K, implies that for sufficiently
large k with ‖xk‖ ≥M ′,

‖F nat
K (xk)‖
= ‖xk −ΠK(xk − F (xk))‖
= ‖ΠK(xk−f∞(xk)−tkxk−(1−tk)(f(xk)−f∞(xk)))−ΠK(xk−f(xk))‖
≤ ‖ − tkxk + tk(f(xk)− f∞(xk))‖
< tk‖xk‖+ tk‖f(xk)− f∞(xk)‖
≤ (1− tk)‖f(xk)− f∞(xk)‖+ tk‖f(xk)− f∞(xk)‖
= ‖f(xk)− f∞(xk)‖, (3.4)

where the first inequality follows from non-expansiveness of Euclidean projector,
the second inequality follows from (3.3) and the third inequality follows from
(3.2).

On one hand, it follows from (3.4) that

‖F nat
K (xk)‖ < ‖f(xk)− f∞(xk)‖

for sufficiently large k with ‖xk‖ ≥ M ′. On the other hand, by the condition
that ‖f(x)− f∞(x)‖ ≤ ‖F nat

K (x)‖ for any x ∈ K with ‖xk‖ ≥M ′, we have

‖f(xk)− f∞(xk)‖ ≤ ‖F nat
K (xk)‖

for sufficiently large k with ‖xk‖ ≥M ′. This contradiction means SOL(f,K) 6=
∅.

Last, from limx∈K,‖x‖→∞ ‖F nat
K (x)‖ =∞, it follows that SOL(f,K) is bound-

ed. Therefore, we obtain that SOL(f,K) is nonempty and compact.

Since the condition that “〈f(x), x〉 > 0 for any x ∈ K satisfying ‖x‖ ≥M”
can imply the boundedness of the solution set of WHCP(f,K), the following
corollary of Theorem 3.1 holds immediately.

Corollary 3.1. Let 0 ∈ K be a closed convex cone and f : K → H be weak-
ly homogeneous of degree γ > 0 with limx∈K,‖x‖→∞

f(x)−f∞(x)
‖x‖ = 0. Suppose

that f∞ is copositive on K∞ and there exists some constant M > 0 such that
〈f(x), x〉 > 0 for any x ∈ K satisfying ‖x‖ ≥ M . Then WHCP(f,K) has a
nonempty and compact solution set.
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Remark 3.1. In [5, Theorem 6.1], a copositivity result was given. However,
the condition that “SOL(f∞,K∞) = {0}” in [5, Theorem 6.1 (a)] is relatively
complicated to verify, while the condition that “f∞ is strictly copositive onK∞”
in [5, Theorem 6.1 (b)] is relatively easy-verified but a little strict. Theorem
3.1 (a) shows that in the case of 0 ∈ K, the condition that “SOL(f∞,K∞) =
{0}” in [5, Theorem 6.1 (a)] can be replaced by “〈f(x), x〉 > 0 for any x ∈ K
satisfying ‖x‖ ≥ M” and limx∈K,‖x‖→∞

f(x)−f∞(x)
‖x‖ = 0 to derive the existence

of solutions to WHVIs, which are both relatively easy to check. Besides, both
of conditions “〈f(x), x〉 > 0 for any x ∈ K satisfying ‖x‖ ≥ M” and “f∞ is
copositive on K∞” in Theorem 3.1 (a) are weaker than the condition that “f∞

is strictly copositive on K∞” in [5, Theorem 6.1 (b)].

Below, we show that conditions (a) and (b) in Theorem 3.1 are different via
the following examples:

Example 3.1. Consider WHCP(f,K) where K = {x ∈ R2 : x1 = 0, x2 ≥ 0},
and for any x ∈ R2,

f(x) = (
√
x2 − 4

√
x1,
√
x1 − 4

√
x2)

T.

Obviously, K is a convex cone, and f is weakly homogeneous of degree 1
2 .

• First, for any x ∈ K, we have that 〈f∞(x), x〉 = x1
√
x2 + x2

√
x1 = 0,

thus f∞ is copositive on K.

• Second, take M ′ = 2. It is easy to see that for any x ∈ K with ‖x‖ ≥M ′,
there exists no c > 0 such that

−x = c(f(x)− f∞(x)) = c(− 4
√
x1,− 4

√
x2)

T.

• Furthermore, for any x ∈ K with ‖x‖ ≥M ′ = 2, it follows that{
(x− f(x))1 = x1 − (

√
x2 − 4

√
x1) < 0,

(x− f(x))2 = x2 − (
√
x1 − 4

√
x2) > 0,

which implies that

ΠK(x− f(x)) = (0, x2 + 4
√
x2)

T.

Thus, we have that

‖fnatK (x)‖ = ‖x−ΠK(x− f(x))‖ = 4
√
x2

and
‖fnatK (x)‖

‖f(x)− f∞(x)‖
=

4
√
x2

4
√
x2

= 1

for any x ∈ K with ‖x‖ ≥M ′.
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So, condition (b) in Theorem 3.1 holds.
However, it is easy to see 〈f(x), x〉 = x2(− 4

√
x2) < 0 for any x ∈ K \ {0},

which means that condition (a) in Theorem 3.1 does not hold.

Example 3.2. Consider WHVI(f,K) where K := {x ∈ R2 : x1 ≥ −1, x2 ≥ 0}
and for any x ∈ R2,

f(x) =
(

3

√
x21 + 5

√
(x1 + x2)2,

3

√
x21 + 5

√
(x1 + x2)2

)T
.

Obviously, 0 ∈ K is a convex subset in R2 with K∞ = R2
+, and f is weakly

homogeneous of degree 2
3 .

• First, it is easy to see

lim
x∈K,‖x‖→∞

f(x)− f∞(x)

‖x‖

= lim
x∈K,‖x‖→∞

(
5
√

(x1 + x2)2√
(x1 + x2)2

,
5
√

(x1 + x2)2√
(x1 + x2)2

)T

= 0.

• Second, for any x ∈ K∞, we have that 〈f∞(x), x〉 = 3
√
x21(x1 + x2) ≥ 0,

thus f∞ is copositive on K∞.

• Third, take M = 2, then for any x ∈ K with ‖x‖ ≥ M , it follows that
x1 + x2 > 0, which means that

〈f(x), x〉 = 3

√
x21(x1 + x2) + 5

√
(x1 + x2)2(x1 + x2) > 0.

So, condition (a) in Theorem 3.1 holds.
However, it is easy to see 〈f∞(x̂), x̂〉 = 3

√
x̂21(x̂1 + x̂2) = −1 < 0 by taking

x̂ = (−1, 0) ∈ K, which means that f∞ is not copositive on K, i.e., condition
(b) in Theorem 3.1 does not hold.

Besides, we can see that SOL(f∞,K∞) = {x ∈ R2
+ : x1 = 0} 6= {0}, which

implies that the condition “SOL(f∞,K∞) = {0}” in [5, Theorem 6.1 (a)] does
not hold, either. This example also demonstrates that Theorem 3.1 (a) is a
different copositivity result from the corresponding one given in [5, Theorem
6.1].

In [5], an extension of the Z-property for nonlinear maps was given as
follows:

Lemma 3.1. Suppose C is a closed convex cone with the dual cone being
C∗ := {y ∈ H : 〈y, x〉 ≥ 0,∀x ∈ C} and f : C → H satisfies:

x ∈ C, y ∈ C∗ and 〈x, y〉 = 0 =⇒ 〈f(x), y〉 ≤ 0. (3.5)

Then, f(x∗) = q if and only if q ∈ C and x∗ ∈ SOL(f̄ , C) where f̄(x) :=
f(x)− q.
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With Lemma 3.1, we can obtain the following corollary of Theorem 3.1.

Corollary 3.2. Suppose conditions of Theorem 3.1 hold with K = K∞ = C
and f satisfies (3.5). Then for all q ∈ C, the equation f(x) = q has a solution
in C.

4 Some Comparisons Between Our Existence Result and Four Related
Results

As an important subclass of VIs, which covers PVIs and TVIs as special cases,
the WHVI has received extensive attention recently, and the existence of so-
lutions for WHVIs has been well studied. In this section, we compare our
existence results with several main related existence results for WHVIs or VIs
in the setting of weakly homogeneous situation.

4.1 Comparison with the Main Result in [5]

In this section, we compare our result with the main result given in [5]:

Theorem 4.1 [5]. Let K be a closed convex set in cone C and f : C →
H be a weakly homogeneous map of positive degree. If SOL(f∞,K∞) = {0}
and ind(GK∞ , 0) 6= 0 where GK∞(x) := x − ΠK∞(x − G(x)) with G being a
given continuous extension of f∞, then WHVI(f,K) has a nonempty, compact
solution set.

Below, we construct three examples to show that conditions of Theorem 3.1
and Theorem 4.1 cross each other.

Example 4.1. Consider WHVI(f,K) where K := {x ∈ R2 : x1 = x2 ≥ −1}
and for any x ∈ R2,

f(x) = ((x1 − x2)2 + x1, (x1 − x2)2 + x2)
T.

Obviously, K is a convex subset in R2 with 0 ∈ K, and f is weakly homogeneous
of degree 2.

• First, for any x ∈ K, we have that 〈f∞(x), x〉 = (x1 − x2)2(x1 + x2) = 0,
thus f∞ is copositive on K.

• Second, take M ′ = 2, then for any x ∈ K with ‖x‖ ≥M ′, there exists no
c > 0 such that

−x = c(f(x)− f∞(x)) = cx.

• Third, for any x ∈ K with ‖x‖ ≥ M ′ = 2, it follows that x − f(x) = 0.
Thus, for any x ∈ K with ‖x‖ ≥M ′, we have that

‖f(x)− f∞(x)‖ = ‖fnatK (x)‖ = ‖x‖
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and
lim

x∈K,‖x‖→∞
‖fnatK (x)‖ = lim

x∈K,‖x‖→∞
‖x‖ =∞.

Thus, the norm coercivity condition limx∈K,‖x‖→∞ ‖fnatK (x)‖ =∞ and all condi-
tions of Theorem 3.1 (b) are satisfied, which means that SOL(f,K) is nonempty
and compact.

However, noting that

SOL(f∞,K∞) = K∞ = {x ∈ R2 : x1 = x2 ≥ 0} 6= {0},

thus at least there is one condition of the main result given in Theorem 4.1 that
does not hold. That is to say, conditions in Theorem 3.1 cannot be covered by
those of Theorem 4.1. In addition, we can see that conditions in Theorem 3.1
are easy to check, while it is not clear whether deg(GK∞ ,Ω, 0) 6= 0 holds or not
where Ω ⊇ SOL(f∞,K∞) is a bounded open set and GK∞(x) = x−ΠK∞(x−
G(x)) with G being a given continuous extension of f∞(x) = ((x1−x2)2, (x1−
x2)

2)T.

Example 4.2. Consider WHCP(f,K) where K := R2
+ and for any x ∈ R2,

f(x) = ((x1 + x2)
2 + x1, (x1 + x2)

2 + x2)
T.

Obviously, K is a convex cone, and f is weakly homogeneous of degree 2.

• First, for any x ∈ K, we have 〈f∞(x), x〉 = (x1 + x2)
3 ≥ 0, thus f∞ is

copositive on K.

• Second, for any x ∈ K \ {0}, there exists no c > 0 such that −x =
c(f(x)− f∞(x)) = cx.

• Third, for any x ∈ K, it follows that

(x− f(x))1 = (x− f(x))2 = −(x1 + x2)
2 < 0,

which implies that ΠK(x− f(x)) = 0. So, for any x ∈ K, we can obtain
that

‖f(x)− f∞(x)‖ = ‖fnatK (x)‖ = ‖x‖

and
lim

x∈K,‖x‖→∞
‖fnatK (x)‖ = lim

x∈K,‖x‖→∞
‖x‖ =∞.

Thus, the norm coercivity condition limx∈K,‖x‖→∞ ‖fnatK (x)‖ =∞ and all con-
ditions of Theorem 3.1 (b) are satisfied.

In addition, it is not difficult to see that SOL(f∞,K∞) = {0}, which,
together with f∞ is copositive on K∞, implies that conditions in Theorem 4.1
hold by Lemma 2.3.
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Example 4.3. Consider WHVI(f,K) where

K = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1},

and for any x ∈ R2,

f(x) =
(

(x1 + x2)
2 − 4

√
x21, (x1 + x2)

2 − 4

√
x22

)T
.

Obviously, K is a convex subset in R2 with K∞ = R2
+, and f is weakly

homogeneous of degree 2.
By a similar discussion as Example 4.2, we can see that all conditions of

Theorem 4.1 are satisfied. However, noting that 0 /∈ K, those conditions in
Theorem 3.1 do not hold.

From Examples 4.1–4.3, we can see that Theorem 4.1 and Theorem 3.1
cannot contain each other. Hence, our result enriches the theory for not only
WHVIs, but also its subcategory problems such as WHCPs, PVIs, PCPs, TVIs
and TCPs, in the sense that the main result established by Gowda and Sossa
covers a majority of existence results on the subcategory problems of WHVIs.

4.2 Comparison with the Main Result in [15]

In this subsection, we compare our result with the main result given in [15]:

Theorem 4.2 [15]. Let K be a nonempty closed convex subset of H, f : K → H
be a weakly homogeneous mapping of degree γ, and p ∈ H. Suppose that the
following conditions hold:

(a) f is q-copositive on K, i.e., 〈f(x)− q, x〉 ≥ 0 for any x ∈ K;

(b) there exists a vector x̂ ∈ K such that 〈f(x), x̂〉 ≤ 0 for all x ∈ K;

(c) S := SOL(f∞,K∞) and p+ q ∈ int(S ∗),

then VI(f,K, p) has a nonempty compact solution set.

Here, we construct three examples to show that conditions of Theorem 3.1
and Theorem 4.2 cross each other.

Example 4.4. Consider WHVI(f,K) where K := {x ∈ R2 : x1 ≥ −1, x2 ≥ 0}
and for any x ∈ R2,

f(x) = ((x1 + x2)
2 + 5

√
(x1 + x2)2, (x1 + x2)

2 + 5
√

(x1 + x2)2)
T.

Obviously, 0 ∈ K is a convex subset in R2 with K∞ = R2
+, and f is weakly

homogeneous of degree 2.
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• First, it is easy to see

lim
x∈K,‖x‖→∞

f(x)− f∞(x)

‖x‖

= lim
x∈K,‖x‖→∞

(
5
√

(x1 + x2)2√
(x1 + x2)2

,
5
√

(x1 + x2)2√
(x1 + x2)2

)T

= 0.

• Second, for any x ∈ K∞, we have that 〈f∞(x), x〉 = (x1 + x2)
3 ≥ 0, thus

f∞ is copositive on K∞.

• Third, take M = 16, then for any x ∈ K with ‖x‖ ≥ M , it follows that
x1 + x2 ≥ 4, which means that

〈f(x), x〉 = (x1 + x2)
3 + 5

√
(x1 + x2)2(x1 + x2) > 0.

• Furthermore, for any x ∈ K with ‖x‖ ≥M = 16, it follows that{
(x− f(x))1 = x1 − (x1 + x2)

2 − 5
√

(x1 + x2)2 < −1,

(x− f(x))2 = x2 − (x1 + x2)
2 − 5

√
(x1 + x2)2 < 0,

which implies that ΠK(x− f(x)) = (−1, 0)T. So, for any x ∈ K, we can
obtain that

lim
x∈K,‖x‖→∞

‖fnatK (x)‖ = lim
x∈K,‖x‖→∞

√
(x1 + 1)2 + x22 =∞.

So, the norm coercivity condition limx∈K,‖x‖→∞ ‖fnatK (x)‖ = ∞ and all condi-
tions of Theorem 3.1 (a) are satisfied, which means that SOL(f,K) is nonempty
and compact.

Now, we show that condition (a) in Theorem 4.2 does not hold. Suppose
that there exists a vector q ∈ Rn such that f is q-copositive on K. Since
(−1, 0)T ∈ K, we can obtain that q1 ≥ 2. But (12 , 0)T ∈ K, so it must follow
that q1 < 2. This contradiction means condition (a) in Theorem 4.2 does not
hold.

Example 4.5 [15, Example 3.1]. Consider WHVI(f,K) where

K :=

{
(x1, x2)

T ∈ R2 : x1 ≥ 0, x2 =
1

2

}
and for any x ∈ R2,

f(x) = (x22 + x1,−x22 − x1 − x2)T.

Obviously, f is weakly homogeneous of degree 2.
In [15, Example 3.1], it has been shown that all conditions of Theorem 4.2

are satisfied. However, noting that 0 /∈ K, those conditions in Theorem 3.1 do
not hold.
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Example 4.6. Consider WHVI(F,K) where K := R2
+ and for any x ∈ R2,

F (x) := f(x) + p with p := (2, 2)T and

f(x) =
(
x1 + 5

√
(x1 + x2)2, x2 + 5

√
(x1 + x2)2

)T
.

Obviously, 0 ∈ K is a convex cone in R2, and f is weakly homogeneous of
degree 1.

• First, it is easy to see

lim
x∈K,‖x‖→∞

F (x)− F∞(x)

‖x‖

= lim
x∈K,‖x‖→∞

(
5
√

(x1 + x2)2 + 2√
(x1 + x2)2

,
5
√

(x1 + x2)2 + 2√
(x1 + x2)2

)T

= 0.

• Second, for any x ∈ K∞, we have that 〈F∞(x), x〉 = x21 + x22 ≥ 0, thus
F∞ is copositive on K∞.

• Third, for any x ∈ K \ {0}, it follows that

〈F (x), x〉 = x21 + x22 + 5
√

(x1 + x2)2(x1 + x2) + 2(x1 + x2) > 0.

• Furthermore, for any x ∈ K, it follows that{
(x− f(x))1 = − 5

√
(x1 + x2)2 ≤ 0,

(x− f(x))2 = − 5
√

(x1 + x2)2 ≤ 0,

which implies that ΠK(x− f(x)) = 0, and

lim
x∈K,‖x‖→∞

‖fnatK (x)‖ = lim
x∈K,‖x‖→∞

‖x‖ =∞.

So, the norm coercivity condition limx∈K,‖x‖→∞ ‖fnatK (x)‖ = ∞ and all condi-
tions of Theorem 3.1 (a) are satisfied, which means that SOL(f,K) is nonempty
and compact.

Noting that 0 ∈ K, f is copositive on K, i.e., f is q-copositive on K with
q = 0, S = SOL(f∞,K∞) = {0} and p + q ∈ int(S∗) = Rn, it follows that all
conditions of Theorem 4.2 hold.

From Examples 4.4–4.6, we can see that Theorem 4.2 and Theorem 3.1
cannot contain each other. In addition, since Theorem 4.2 is a genuine gen-
eralization of another copositivity-type result given in [5, Theorem 6.2], our
existence result cannot be covered by [5, Theorem 6.2].
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4.3 Comparison with Two Coercivity-type Results

In this subsection, we compare our copositivity-type existence result with two
coercivity-type results. It was shown in [3, 7] that for a general VI(f,K), em-
ploying the coercivity property of f to establish existence is a common approach.
Last, we compare our result with the following well-known coercivity result for
VIs.

Theorem 4.3 [3]. Let K be a closed convex set in Rn and f : K → Rn
be continuous. If f is coercive on K, which is to say that there exists some
xref ∈ K, c > 0 and ξ ≥ 0 such that 〈f(x), x − xref〉 ≥ c‖x‖ξ for any x ∈ K
with ‖x‖ → ∞, then VI(f,K) has a nonempty, compact solution set.

The following example illustrates that the conditions in Theorem 3.1 cannot
be deduced by the above coercive one.

Example 4.7. Consider WHCP(f,K) where K := {x ∈ R2 : x1 = x2}, and
for any x ∈ R2,

f(x) = (x32 − 2x1,−x31)T.

Obviously, K is a convex cone, and f is weakly homogeneous of degree 3.
First, we show that all conditions of Theorem 3.1 are satisfied.

• First, for any x ∈ K, i.e., x1 = x2, we have that

〈f∞(x), x〉 = x1(x
3
2) + x2(−x31) = 0,

thus f∞ is copositive on K.

• Second, for any x ∈ K \ {0}, there exists no c > 0 such that

(−x1,−x1)T = −x = c(f(x)− f∞(x)) = (−2cx1, 0).

• Third, for any x ∈ K, it follows that x − f(x) = (−x31 + 3x1, x
3
1 + x1)

T.
Thus, we have that ΠK(x− f(x)) = (2x1, 2x1), for any x ∈ K,

‖f(x)− f∞(x)‖ = ‖fnatK (x)‖ = ‖x‖

and
lim

x∈K,‖x‖→∞
‖fnatK (x)‖ = lim

x∈K,‖x‖→∞
‖ − x‖ =∞.

Thus, the norm coercivity condition limx∈K,‖x‖→∞ ‖fnatK (x)‖ =∞ and all condi-
tions of Theorem 3.1 (b) are satisfied, which means that SOL(f,K) is nonempty
and compact.

Second, we show the coercivity condition of Theorem 4.3 does not hold. For
any xref ∈ K, we have that xref1 = xref2 . Then for any x ∈ K, i.e., x1 = x2, we
have

〈f(x), x− xref〉 = −2x21 − 2x1x
ref
1 → −∞ as ‖x‖ → ∞.
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Thus, we cannot find some xref ∈ K, c > 0 and ξ ≥ 0 such that 〈f(x), x−xref〉 ≥
c‖x‖ξ for any x ∈ K satisfying ‖x‖ → ∞, which implies that f is not coercive
on K.

Recall that for CPs, a related existence result which requires the norm-
coercivity of the natural map is as follows:

Theorem 4.4 [3]. Let K be a closed convex cone in Rn and f : K → Rn be
a continuous map. Suppose that for any x ∈ K, lim‖x‖→∞ ‖fnatK (x)‖ = ∞ and
〈x, f(x)− f(0)〉 ≥ 0, then CP(f,K) has a nonempty, compact solution set.

Actually, the condition that “〈x, f(x) − f(0)〉 ≥ 0” implies that f is a
q-copositive map on cone K with q = f(0). From [15, Theorem 5.1], it fol-
lows that if f is a q-copositive map on cone K, then f∞ is copositive on
cone K. Furthermore, when K is a closed convex cone and the involved map
f(x) = f∞(x) + p with p being a vector in H, ‖f(x)− f∞(x)‖ = ‖p‖ is a con-
stant, which implies that Theorem 3.1 (b) together with the norm-coercivity
condition “lim‖x‖→∞ ‖fnatK (x)‖ = ∞” coincides with Theorem 4.4 in this case.
However, for the case where f − f∞ is not a constant vector in H, Theorem
3.1 is different from Theorem 4.4, which can be illustrated from the following
example, where WHCP(f,K) satisfies all the conditions in Theorem 3.1 (b)
and the norm-coercivity condition “lim‖x‖→∞ ‖fnatK (x)‖ =∞”, but it does not
satisfy the conditions of Theorem 4.4.

Example 4.8. Consider WHCP(f,K) where K = {x ∈ R2 : x1 ≥ 0, x2 ≤ 0},
and for any x ∈ R2,

f(x) =
(
x21 + x22 −

4

√
x21 + 1,−(x21 + x22)−

4

√
x22 + 2

)T
.

Obviously, K is a convex cone, and f is weakly homogeneous of degree 2.

• For any x ∈ K, we have that 〈f∞(x), x〉 = (x21 + x22)(x1 − x2) ≥ 0, thus
f∞ is copositive on K.

• For any x ∈ K with ‖x‖ → ∞, since −x2 ≥ 0 and −
√
−x2 ≤ 0, it is easy

to see that there exists no c > 0 such that

−x = c(f(x)− f∞(x)) = c(−
√
x1 + 1,−

√
−x2 + 2)T.

• For any x ∈ K, as ‖x‖ → ∞, it follows that{
(x− f(x))1 = x1 − (x21 + x22) +

√
x1 − 1→ −∞,

(x− f(x))2 = x2 + (x21 + x22) +
√
−x2 − 2→ +∞.

So, ΠK(x− f(x)) = 0,

lim
x∈K,‖x‖→∞

‖fnatK (x)‖ = lim
x∈K,‖x‖→∞

‖x−ΠK(x− f(x))‖ =∞
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and

lim
x∈K,‖x‖→∞

‖fnatK (x)‖
‖f(x)− f∞(x)‖

= lim
x∈K,‖x‖→∞

√
x21 + x22√

(1−√x1)2 + (−
√
−x2 + 2)2

=∞.

Thus, the norm coercivity condition limx∈K,‖x‖→∞ ‖fnatK (x)‖ =∞ and all condi-
tions of Theorem 3.1 (b) are satisfied, which means that SOL(f,K) is nonempty
and compact.

By taking x ∈ K with x1 = 1
4 and x2 = 0, we have that 〈x, f(x)− f(0)〉 =

1
64 −

1
8 < 0, so the conditions in Theorem 4.4 do not hold.

5 Conclusions

In this paper, we established an existence result for WHVI(f,K) under the
copositivity of f∞ and some additional easy-verified conditions. Some examples
were constructed to demonstrate that our conditions cannot be deduced by the
existing ones, especially the wide degree-theoretic theorem given for WHVIs
in the main result of [5], the main result in [15] and the well-known coercivity
result given for general VIs in [3]. Our result also provided a supplement to the
existence theory for those subclasses of WHVIs.

Besides, for the case where K is a set with 0 /∈ K, whether can easy-verified
conditions be found to guarantee the existence of solutions for WHVI(f,K) or
not? It is an interesting issue which deserves further study.
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