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Abstract We study a kind of partial information non-zero sum differential
games of mean-field backward doubly stochastic differential equations, in which
the coefficient contains not only the state process but also its marginal
distribution, and the cost functional is also of mean-field type. It is required
that the control is adapted to a sub-filtration of the filtration generated by the
underlying Brownian motions. We establish a necessary condition in the form
of maximum principle and a verification theorem, which is a sufficient condition
for Nash equilibrium point. We use the theoretical results to deal with a
partial information linear-quadratic (LQ) game, and obtain the unique Nash
equilibrium point for our LQ game problem by virtue of the unique solvability
of mean-field forward-backward doubly stochastic differential equation.
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1 Introduction

Pardoux and Peng [14] first introduced the following backward doubly
stochastic differential equations (BDSDEs):
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y(t) = ζ +

∫ T

t
f(s, y(s), z(s))ds+

∫ T

t
g(s, y(s), z(s))

←−
dB(s)

−
∫ T

t
z(s)
−→
dW (s), 0 6 t 6 T. (1)

Pardoux and Peng [14] established the existence and uniqueness of solution for
BDSDEs (1), and the probabilistic interpretation for the solutions of a class
of semilinear stochastic partial differential equations (SPDEs). By virtue of
Malliavin calculus, Wen and Shi [22] extended the nonlinear stochastic
Feynman-Kac formula in [14] to non-Markovian situation. Peng and Shi [15]
introduced a type of forward-backward doubly stochastic differential equations
(FBDSDEs):

p(t) = x+

∫ t

0
F (s, p(s), y(s), q(s), z(s))ds−

∫ t

0
q(s)
←−
dB(s)

+

∫ t

0
G(s, p(s), y(s), q(s), z(s))

−→
dW (s),

y(t) = Φ(p(T )) +

∫ T

t
f(s, p(s), y(s), q(s), z(s))ds−

∫ T

t
z(s)
−→
dW (s)

+

∫ T

t
g(s, p(s), y(s), q(s), z(s))

←−
dB(s).

(2)

Peng and Shi [15] gave the existence and uniqueness of solution for FBDSDEs
(2) by method of continuation. Based on FBDSDEs, the interest for doubly
stochastic optimal control problems grew a lot (see [7,16,17,23,27,28,31,32]).

Game theory was first introduced by Von Neumann and Morgenstern [18].
Nash [12] gave the classical notion of Nash equilibrium point for non-cooperate
games. In recent years, stochastic differential game problems driven by
stochastic differential equations (SDEs) have appeared (see [5,6,19,24,30]).
Recently, An and Øksendal [1,2] and Kieu et al. [9] researched partial
information differential games of stochastic differential equations with jump
(SDEJ). Then this kind of partial information game problems was widely
discussed (see [3,8,10,13,20,21,26]).

In this paper, we discuss a kind of partial information non-zero sum
differential games of mean-field backward doubly stochastic differential
equations (MF-BDSDE). We establish a necessary maximum principle under
partial information and a sufficient condition for Nash equilibrium point. We
use the theoretical results to research a partial information linear-quadratic
(LQ) game. In order to obtain the unique Nash equilibrium point, we study
a new kind of fully coupled mean-field forward-backward doubly stochastic
differential equations (MF-FBDSDE), and get the existence and uniqueness
theorem for solutions to such kind of equations under some monotonicity
conditions.



Mean-field type forward-backward doubly SDEs and related games 1309

This paper is structured as follows. We state our partial information
differential game problem of MF-BDSDE in Section 2. In Section 3, we study
fully coupled MF-FBDSDE, and give the existence and uniqueness theorem
for solutions to such kind of equations under some monotonicity conditions.
Section 4 is devoted to the necessary optimality conditions under partial
information. In Section 5, we obtain the sufficient maximum principle of
differential game of MF-BDSDE under partial information. In Section 6, we
give a partial information LQ game as an example to show the applications of
our theoretical results, and obtain the unique Nash equilibrium point for our
LQ game problem by virtue of the unique solvability of MF-FBDSDE.

2 Statement of problems

Let (Ω,F , P ) be a complete probability space on which are defined two
mutually independent Brownian motions {Wt}t>0 and {Bt}t>0, with values,
respectively, in Rd and Rl. We denote by

Ft := FW
t ∨FB

t,T , ∀ t ∈ [0, T ],

where

FW
t := σ{Wr; 0 6 r 6 t} ∨N , FB

t,T := σ{BT −Br; t 6 r 6 T} ∨N ,

with N is the class of P -null sets of F . In this case, the collection
{Ft, t ∈ [0, T ]} is neither increasing nor decreasing, while {FW

t , t ∈ [0, T ]}
is an increasing filtration and {FB

t,T , t ∈ [0, T ]} is a decreasing filtration. We

use the usual inner product 〈·, ·〉 and Euclidean norm | · | in Rn, Rm,Rm×l, and
Rn×d. The notation ‘>’ appearing in the superscripts denotes the transpose of
a matrix. All the equalities and inequalities mentioned in this paper are in the
sense of dt× dP almost surely on [0, T ]× Ω.

Let

(Ω2,F 2, P 2) = (Ω× Ω,F ⊗F , P ⊗ P )

be the completion of the product probability space of the above (Ω,F , P ) with
itself, where we define

F 2
t = Ft ⊗Ft, t ∈ [0, T ],

and Ft ⊗Ft being the completion of Ft ×Ft. It is worthy of noting that any
random variable ξ = ξ(ω) defined on Ω can be extended naturally to Ω2 as
ξ′(ω, ω′) = ξ(ω) with (ω, ω′) ∈ Ω2. For H = Rn, etc., let L1(Ω2,F 2, P 2;H) be
the set of random variable ξ : Ω2 → H, which is F 2-measurable such that

E2|ξ| ≡
∫

Ω2

|ξ(ω′, ω)|P (dω′)P (dω) <∞.
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For any η ∈ L1(Ω2,F 2, P 2;H), we denote

E′η(ω, ·) :=

∫
Ω
η(ω, ω′)P (dω′).

Particularly, for example, if η1(ω, ω′) = η1(ω′), then

E′η1 =

∫
Ω
η1(ω′)P (dω′) = Eη1.

We denote some spaces:

• M2(0, T ;Rn) is the space of all Ft-measurable Rn-valued processes v such
that

E
∫ T

0
|v(t, ω)|2dt <∞;

• L2(Ω,FT , P ;Rn) is the space of all FT -measurable Rn-valued random
variable ξ such that E|ξ|2 <∞.

Consider the following MF-BDSDE:
−dy(t) = E′f(t, y(t), z(t), y′(t), z′(t), v(t))dt− z(t)

−→
dW (t)

+E′g(t, y(t), z(t), y′(t), z′(t), v(t))
←−
dB(t),

y(T ) = ξ,

(3)

where
ξ ∈ L2(Ω,FT , P ;Rn),

f : [0, T ]× Rn × Rn×d × Rn × Rn×d × Rk1 × Rk2 → Rn,

g : [0, T ]× Rn × Rn×d × Rn × Rn×d × Rk1 × Rk2 → Rn×l,

v1(·) and v2(·) are the control processes of Player 1 and Player 2, respectively,
and v(·) = (v1(·), v2(·)). We make use of the subscript i to mean the variables
corresponding to Player i, i = 1, 2. The mean-field backward stochastic game
system (3) means that, at the terminal time T, the two players have the same
goal ξ.

We suppose that Ui is a nonempty convex subset of Rki (i = 1, 2), and
E i
t ⊆ Ft (i = 1, 2) is a given sub-filtration which represents the information

available to Player i at time t ∈ [0, T ], respectively. Our admissible control set
is

Ui =

{
vi : [0, T ]× Ω→ Ui

∣∣∣ vi is E i
t -adapted, E

∫ T

0
|vi(t)|2dt <∞

}
, i = 1, 2.

For Player i (i = 1, 2), vi ∈ Ui is called an open-loop admissible control.
We assume

(H1) f and g are continuously differentiable in (y, z, y′, z′, v1, v2);
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(H2) the norm of fy, fz, fy′ , fz′ , fv1 , fv2 , gy, gy′ , gv1 , gv2 are bounded by c > 0,
and the norm of gz, gz′ are bounded by α ∈ (0, 1).

Now, if both v1(·) and v2(·) are admissible controls, and assumptions (H1)
and (H2) hold, then MF-BDSDE (3) admits a unique solution

(y(·), z(·)) ∈M2(0, T ;Rn)×M2(0, T ;Rn×d)

(see [4,29,33]). Ensuring to achieve the goal ξ, the players have their own
benefits, which are described by the following cost functionals:

Ji(v(·)) = E
[ ∫ T

0
E′li(t, y(t), z(t), y′(t), z′(t), v(t))dt+ Φi(y(0))

]
,

where
v(·) = (v1(·), v2(·)),

li : [0, T ]× Rn × Rn×d × Rn × Rn×d × Rk1 × Rk2 → R,

Φi : Rn → R, i = 1, 2,

satisfying the condition

E
[ ∫ T

0
|E′li(t, y(t), z(t), y′(t), z′(t), v(t))|dt+ |Φi(y(0))|

]
<∞, i = 1, 2.

We also assume

(H3) li is continuously differentiable in (y, z, y′, z′, v1, v2), its partial
derivatives are continuous in (y, z, y′, z′, v1, v2) and bounded by

c(1 + |y|+ |z|+ |y′|+ |z′|+ |v1|+ |v2|);

(H4) Φi is continuously differentiable and Φiy is bounded by c(1 + |y|).
Suppose that each player choose her/his appropriate admissible control

vi(·) (i = 1, 2) to maximize every cost functional Ji(v1(·), v2(·)). Then our game
problem is to find a pair of admissible controls (u1(·), u2(·)) ∈ U1 ×U2

J1(u1(·), u2(·)) = max
v1(·)∈U1

J1(v1(·), u2(·)),

J2(u1(·), u2(·)) = max
v2(·)∈U2

J2(u1(·), v2(·)). (4)

We call the problem above a backward doubly stochastic differential game,
and denote it by Problem (B). If an admissible controls u(·) = (u1(·), u2(·))
satisfying (4) can be found, then we call it an equilibrium point of Problem (B)
and denote the corresponding state trajectory by

(y(·), z(·)) = (yu(·), zu(·)).
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3 Fully coupled MF-FBDSDE

To obtain the unique Nash equilibrium points for our above LQ game problem,
we give an existence and uniqueness theorem of fully coupled MF-FBDSDE.
Given an n×m full-rank matrix H. We denote some notations:

ζ =


p
y
q
z

 , ζ ′ =


p′

y′

q′

z′

 , A(t, ζ, ζ ′) =


−H>f
HF
−H>g
HG

 (t, ζ, ζ ′),

where H>g = (H>g1, . . . ,H
>gl), and HG = (HG1, . . . ,HGd).

Consider the following MF-FBDSDE:

p(t) = E′Φ(y(0), y′(0)) +

∫ t

0
E′F (s, ζ(s), ζ ′(s))ds−

∫ t

0
q(s)
←−
dB(s)

+

∫ t

0
E′G(s, ζ(s), ζ ′(s))

−→
dW (s),

y(t) = ξ −
∫ T

t
E′f(s, ζ(s), ζ ′(s))ds−

∫ T

t
z(s)
−→
dW (s)

−
∫ T

t
E′g(s, ζ(s), ζ ′(s))

←−
dB(s),

(5)

where

f : Ω× [0, T ]× Rn × Rm × Rn×l × Rm×d × Rn × Rm × Rn×l × Rm×d → Rm,

F : Ω× [0, T ]× Rn × Rm × Rn×l × Rm×d × Rn × Rm × Rn×l × Rm×d → Rn,

g : Ω× [0, T ]× Rn × Rm × Rn×l × Rm×d × Rn × Rm × Rn×l × Rm×d → Rm×l,

G : Ω× [0, T ]× Rn × Rm × Rn×l × Rm×d × Rn × Rm × Rn×l × Rm×d → Rn×d,

Φ: Ω× Rm × Rm → Rn.

Definition 1 A quaternion (p, y, q, z) ∈ M2(0, T ;Rn+m+n×l+m×d) is called
an Ft-measurable solution of MF-FBDSDEs (5), if (5) is satisfied.

We assume

(A1) for each ζ, ζ ′ ∈ Rn+m+n×l+m×d, A(·, ζ, ζ ′) is an Ft-measurable process
defined on [0, T ] with

A(·, 0, 0) ∈M2(0, T ;Rn+m+n×l+m×d+n+m+n×l+m×d);

(A2) A(t, ζ, ζ ′) and Φ(y) satisfy the Lipschitz conditions: there exist
constants k > 0 and λ ∈ (0, 1/2) such that

|F (t, ζ, ζ ′)−F (t, ζ, ζ
′
)|2 6 k(|p̂|2 + |ŷ|2 + |q̂|2 + |ẑ|2 + |p̂′|2 + |ŷ′|2 + |q̂′|2 + |ẑ′|2),
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|f(t, ζ, ζ ′)− f(t, ζ, ζ
′
)|2 6 k(|p̂|2 + |ŷ|2 + |q̂|2 + |ẑ|2 + |p̂′|2 + |ŷ′|2 + |q̂′|2 + |ẑ′|2),

|G(t, ζ, ζ ′)−G(t, ζ, ζ
′
)|2 6 k(|p̂|2 + |ŷ|2 + |ẑ|2 + |p̂′|2 + |ŷ′|2 + |ẑ′|2)+λ(|q̂|2 + |q̂′|2),

|g(t, ζ, ζ ′)−g(t, ζ, ζ
′
)|2 6 k(|p̂|2 + |ŷ|2 + |q̂|2 + |p̂′|2 + |ŷ′|2 + |q̂′|2)+λ(|ẑ|2 + |ẑ′|2),

∀ ζ, ζ ′ ∈ Rn+m+n×l+m×d, ∀ t ∈ [0, T ],

p̂ = p− p, ŷ = y − y, q̂ = q − q, ẑ = z − z,

p̂′ = p′ − p′, ŷ′ = y′ − y′, q̂′ = q′ − q′, ẑ′ = z′ − z′,

|Φ(y, y′)− Φ(y, y′)| 6 k|y − y|+ k|y′ − y′|, ∀ y, y′, y, y′ ∈ Rn;

(A3) A(t, ζ, ζ ′) and Φ(y) satisfy the monotonic conditions:

〈A(t, ζ, ζ ′)−A(t, ζ, ζ
′
), ζ − ζ〉

6 − µ1(|H(p− p)|2 + |H(q − q)|2)− µ2(|H>(y − y)|2 + |H>(z − z)|2),

∀ ζ = (p, y, q, z)>, ζ ′ = (p′, y′, q′, z′)>, ζ = (p, y, q, z)>,

ζ
′
= (p′, y′, q′, z′)> ∈ Rn+m+n×l+m×d, ∀ t ∈ [0, T ],

〈Φ(y, y′)− Φ(y, y′), y − y〉 6 −β2|H>(y − y)|2, ∀ y, y ∈ Rn,

where µ1, µ2, and β2 are given nonnegative constants with

µ1 + µ2 > 0, µ1 + β2 > 0.

Moreover, we have µ1 > 0 (resp., µ2 > 0, β2 > 0) when m < n (resp., m > n).

By the similar arguments of Yu and Ji [30], Wang and Yu [20], and Min
et al. [11], we have the following existence and uniqueness theorem.

Theorem 1 We assume that (A1)–(A3) hold. Then there exists a unique
solution (p(t), y(t), q(t), z(t)) ∈M2(0, T ;Rn+m+n×l+m×d) for MF-FBDSDE (5).

Remark 1 The condition λ ∈ (0, 1/2) is necessary to construct the
contractive mapping in the proof of Theorem 1, that is, when 1/2 < λ < 1, the
contractive mapping to prove Theorem 1 cannot be obtained.

4 A partial information necessary maximum principle

Let u(·) = (u1(·), u2(·)) be an equilibrium point of Problem (B), and let
(y(·), z(·)) be the corresponding optimal state trajectory of game system (3).
Let (v1(·), v2(·)) satisfy

(u1(·) + v1(·), u2(·) + v2(·)) ∈ U1 ×U2.

Since U1 and U2 are convex, for any ρ ∈ [0, 1],

(uρ1(·), uρ2(·)) = (u1(·) + ρv1(·), u1(·) + ρv1(·))
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is also in U1 × U2. For the controls (uρ1(·), u2(·)) and (u1(·), uρ2(·)), the

corresponding state trajectories of system (3) are denoted as (yu
ρ
1(·), zu

ρ
1(·))

and (yu
ρ
2(·), zu

ρ
2(·)), respectively.

For ϕ = f, g, and l, respectively, we denote

ϕ(t) = ϕ(t, y(t), z(t), y′(t), z′(t), u1(t), u2(t)),

ϕv(t) = ϕ(t, y(t), z(t), y′(t), z′(t), v1(t), v2(t)),

ϕu
ρ
1(t) = ϕ(t, y(t), z(t), y′(t), z′(t), uρ1(t), u2(t)),

ϕu
ρ
2(t) = ϕ(t, y(t), z(t), y′(t), z′(t), u1(t), uρ2(t)).

Our variational equations are the following: for i = 1, 2,

−dy1
i (t) = E′[fy(t)y1

i (t) + fz(t)z
1
i (t) + fy′(t)(y

1
i (t))

′

+ fz′(t)(z
1
i (t))′ + fvi(t)vi(t)]dt− z1

i (t)
−→
dW (t)

+E′[gy(t)y1
i (t) + gz(t)z

1
i (t) + gy′(t)(y

1
i (t))

′

+ gz′(t)(z
1
i (t))′ + gvi(t)vi(t)]

←−
dB(t),

y1
i (T ) = 0.

(6)

By (H1)–(H4), we know that MF-BDSDE (6) admits a unique adapted solution
(y1
i (t), z

1
i (t)) ∈M2(0, T ;Rn)×M2(0, T ;Rn×d), i = 1, 2.

For t ∈ [0, T ] and ρ > 0, we set

ỹρi (t) =
yu

ρ
i (t)− yi(t)

ρ
− y1

i (t),

z̃ρi (t) =
zu

ρ
i (t)− zi(t)

ρ
− z1

i (t),

i = 1, 2.

We derive the following result.

Lemma 1 We assume that (H1)–(H4) hold. Then, for i = 1, 2,

lim
ρ→0

sup
06t6T

E|ỹρi (t)|2 = 0, (7)

lim
ρ→0

E
∫ T

0
|z̃ρi (t)|2dt = 0. (8)

Proof For i = 1, we have

−dỹρ1(t) =
[1

ρ
E′(fu

ρ
1(t)− f(t))− E′(fy(t)y1

1(t) + fz(t)z
1
1(t)

+ fy′(t)(y
1
1(t))′ + fz′(t)(z

1
1(t))′ + fv1(t)v1(t))

]
dt− z̃ρ1(t)

−→
dW (t)

+
[1

ρ
E′(gu

ρ
1(t)− g(t))− E′(gy(t)y1

1(t) + gz(t)z
1
1(t)

+ gy′(t)(y
1
1(t))′ + gz′(t)(z

1
1(t))′ + gv1(t)v1(t))

]←−
dB(t),

ỹρ1(T ) = 0,
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or 
−dỹρ1(t) = E′[Aρ1(t)ỹρ1(t) +Bρ

1(t)z̃ρ1(t) +A
ρ
1(t)(ỹρ1(t)) +B

ρ
1(t)(z̃ρ1(t))′

+Gρ1(t)]dt+ E′[Cρ1 (t)ỹρ1(t) +Dρ
1(t)z̃ρ1(t) + C

ρ
1(t)(ỹρ1(t))

+D
ρ
1(t)(z̃ρ1(t))′ +Gρ2(t)]

←−
dB(t)− z̃ρ1(t)

−→
dW (t),

ỹρ1(T ) = 0,

where we denote

(Θ) = (t, y1(t) + λρ(y1
1(t) + ỹρ1(t)), z1(t) + λρ(z1

1(t) + z̃ρ1(t)),

(y1(t))′ + λρ((y1
1(t))′ + (ỹρ1(t))′), (z1(t))′ + λρ((z1

1(t))′ + (z̃ρ1(t))′),

u1(t) + λρv1(t), u2(t)),

and

Aρ1(t) =

∫ 1

0
fy(Θ)dλ, Bρ

1(t) =

∫ 1

0
fz(Θ)dλ,

A
ρ
1(t) =

∫ 1

0
fy′(Θ)dλ, B

ρ
1(t) =

∫ 1

0
fz′(Θ)dλ,

Cρ1 (t) =

∫ 1

0
gy(Θ)dλ, Dρ

1(t) =

∫ 1

0
gz(Θ)dλ,

C
ρ
1(t) =

∫ 1

0
gy′(Θ)dλ, D

ρ
1(t) =

∫ 1

0
gz′(Θ)dλ,

Gρ1(t) =

∫ 1

0
(fv1(Θ)− fv1(t))v1(t)dλ+ [Aρ1(t)− fy(t)]y1(t) + [Bρ

1(t)

− fz(t)]z1(t) + [A
ρ
1(t)− fy′(t)](y1(t))′ + [B

ρ
1(t)− fz′(t)](z1(t))′,

Gρ2(t) =

∫ 1

0
(gv1(Θ)− gv1(t))v1(t)dλ+ [Cρ1 (t)− gy(t)]y1(t) + [Dρ

1(t)

− gz(t)]z1(t) + [C
ρ
1(t)− gy′(t)](y1(t))′ + [D

ρ
1(t)− gz′(t)](z1(t))′.

Using Itô’s formula to |ỹρ1(t)|2 on [t, T ], we get

E|ỹρ1(t)|2 + E
∫ T

t
|z̃ρ1(s)|2ds

= 2EE′
∫ T

t
|〈ỹρ1(s), Aρ1(s, ·)ỹρ1(s) +Bρ

1(s, ·)z̃ρ1(s) +A
ρ
1(s, ·)(ỹρ1(s))′

+B
ρ
1(s, ·)(z̃ρ1(s))′ +Gρ1(s, ·)〉|ds+ EE′

∫ T

t
|Cρ1 (s, ·)ỹρ1(s)

+Dρ
1(s, ·)z̃ρ1(s) + C

ρ
1(s, ·)(ỹρ1(s))′ +D

ρ
1(s, ·)(z̃ρ1(s))′ +Gρ2(s, ·)|2ds

6 K0E
∫ T

t
|ỹρ1(s)|2ds+K1E

∫ T

t
|z̃ρ1(s)|2ds

+K2α

(
E
∫ T

t
|Gρ1(s)|2 + E

∫ T

t
|Gρ2(s)|2

)
ds.
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By Grownwall’s inequality, we easily derive the desired result (7). Similarly, we
can show that conclusion (8) holds for i = 2. �

Since (u1(·), u2(·)) is an equilibrium point of Problem (B), we have

ρ−1[J1(uρ1(·), u2(·))− J1(u1(·), u2(·)] 6 0, (9)

ρ−1[J2(u1(·), uρ2(·))− J2(u1(·), u2(·)] 6 0. (10)

Combining Lemma 1, (9), and (10), we derive the following variational
inequality.

Lemma 2 We assume that (H1)–(H4) hold. Then

E
∫ T

0
E′[liy(t)y1

i (t) + liz(t)z
1
i (t) + liy′(t)(y

1
i (t))

′

+ liz′(t)(z
1
i (t))′ + livi(t)vi(t)]dt+ E[Φiy(y(0))y1

i (0)] 6 0, i = 1, 2. (11)

Proof For i = 1, from (7), we derive

ρ−1[Φ1(yu
ρ
1(0))− Φ1(y(0))]

= ρ−1E
∫ 1

0
Φ1y(y(0) + λ(yu

ρ
1(0)− y(0)))(yu

ρ
1(0)− y(0))dλ

→ E[Φ1y(y(0))y1
1(0)], ρ→ 0.

Similarly, we have

ρ−1

{
E
∫ T

0
E′[lu

ρ
1

1 (t)− l1(t)]dt

}
→ E

∫ T

0
E′[l1y(t)y1

1(t) + l1z(t)z
1
1(t) + l1y′(t)(y

1
1(t))′

+ l1z′(t)(z
1
1(t))′ + l1v1(t)v1(t)]dt, ρ→ 0.

Let ρ → 0 in (9). Then we get that (11) holds for i = 1. Similarly, from (10),
we can show that the conclusion holds for i = 2. �

We define the Hamiltonian function

Hi : [0, T ]× Rn × Rn×d × Rn × Rn×d × Rk1 × Rk2 × Rn → R, i = 1, 2,

as follows:

Hi(t, y, z, y
′, z′, v1, v2, pi)

= − 〈f(t, y, z, y′, z′, v1, v2), pi〉 − 〈g(t, y, z, y′, z′, v1, v2), qi〉
+ li(t, y, z, y

′, z′, v1, v2), i = 1, 2.

Let
Hi(t) = Hi(t, y, z, y

′, z′, u1, u2, pi),

Hv1,v2
i (t) = Hi(t, y, z, y

′, z′, v1, v2, pi),
i = 1, 2.
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We introduce the following adjoint equation:
dpi(t) = −E′[Hv1,v2

iy (t) +Hv1,v2
iy′ (t)]dt

−E′[Hv1,v2
iz (t) +Hv1,v2

iz′ (t)]
−→
dW (t)− qi(t)

←−
dB(t), i = 1, 2.

pi(0) = −Φiy(y(0)),

(12)

Starting from the variational inequality (11), we can now state the necessary
optimality conditions.

Theorem 2 (Partial information necessary maximum principle) We assume
that (H1) and (H2) hold. Suppose that (u1(·), u2(·)) is an equilibrium point of
Problem (B) and (y(·), z(·)) is the corresponding state trajectory. Then we have

E[〈H1v1(t), v1 − u1(t)〉 | E 1
t ] 6 0,

E[〈H2v2(t), v2 − u2(t)〉 | E 2
t ] 6 0,

hold for any (v1, v2) ∈ U1 × U2, a.e., a.s., where pi(·) (i = 1, 2) is the solution
of the adjoint equation (12).

Proof For i = 1, using Itô’s formula to 〈y1
1(t), p1(t)〉, we obtain

E
∫ T

0
E′[l1y(t)y1

1(t) + l1z(t)z
1
1(t) + l1y′(t)(y

1
1(t))′

+ l1z′(t)(z
1
1(t))′ + l1v1(t)v1(t)]dt+ E[Φ1y(y(0))y1

1(0)]

= E〈−f>v1(t)p1(t) + l1v1(t), v1(t)〉dt.

From Lemma 2, we have

E
∫ T

0
〈H1v1(t), v1(t)〉dt 6 0.

Because v1(t) satisfies u1(t) + v1(t) ∈ U1, we have

E
∫ T

0
〈H1v1(t), v1 − u1(t)〉dt 6 0, ∀ v1 ∈ U1,

which implies that

E〈H1v1(t), v1 − u1(t)〉 6 0, ∀ v1 ∈ U1.

Now, let v1(t) ∈ U1 be a deterministic element and F be an arbitrary element
of the σ-algebra E 1

t . And set

w1(t) = v1(t)1F + u1(t)1Ω−F .

It is obvious that w1 is an admissible control.
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Applying the above inequality with w1, we get

E[1F 〈H1v1(t), v1 − u1(t)〉] 6 0, ∀F ∈ E 1
t ,

which implies that

E[〈H1v1(t), v1 − u1(t)〉|E 1
t ] 6 0, ∀ v1 ∈ U1, a.e., a.s.

Proceeding in the same way as the above arguments, we can show that the
other inequality holds for any v2 ∈ U2. Then the proof is completed. �

5 A partial information sufficient maximum principle

In this section, we investigate a sufficient maximum principle for Problem (B).
Let (y(t), z(t), u1(t), u2(t)) be a quintuple satisfying (3) and suppose that there
exists a solution pi(t) of the corresponding adjoint forward SDE (12). We
assume

(H5) for i = 1, 2, and for all t ∈ [0, T ], Hi(t, y, z, y
′, z′, v1, v2, pi) is convex

in (y, z, y′, z′, v1, v2), and Φi(y) is convex in y.

Let

Hi(t) = Hi(t, y(t), z(t), y′(t), z′(t), u1(t), u2(t), pi(t)),

Hv1
i (t) = Hi(t, y(t), z(t), y′(t), z′(t), v1(t), u2(t), pi(t)),

Hv2
i (t) = Hi(t, y(t), z(t), y′(t), z′(t), u1(t), v2(t), pi(t)),

i = 1, 2,

and
ϕ(t) = ϕ(t, y(t), z(t), y′(t), z′(t), u1(t), u2(t)),

ϕv1(t) = ϕ(t, y(t), z(t), y′(t), z′(t), v1(t), u2(t)),

ϕv2(t) = ϕ(t, y(t), z(t), y′(t), z′(t), u1(t), v2(t)),

where ϕ = f, g, and l, respectively.

Theorem 3 (Partial information sufficient maximum principle) We assume
that (H1)–(H5) hold. Moreover, the following partial information maximum
conditions hold:

E[H1(t) | E 1
t ] = max

v1∈U1

E[Hv1
1 (t) | E 1

t ], (13)

E[H2(t) | E 2
t ] = max

v2∈U2

E[Hv2
2 (t) | E 2

t ]. (14)

Then (u1(·), u2(·)) is an equilibrium point of Problem (B).

Proof For any v1(·) ∈ U1, we consider

J1(u1(·), u2(·))− J1(v1(·), u2(·)) = I1 + I2,
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where

I1 := E
∫ T

0
E′[l1(t)− lv11 (t)]dt,

I2 := E[Φ1(y(0))− Φ1(yv1(0))].

Now, using Itô’s formula to 〈p1(t), y(t)− yv1(t)〉 on [0, T ], we get

E〈Φ1y(y(0)), y(0)− yv1(0)〉

= E
∫ T

0
E′[〈y(t)− yv1(t),−H1y(t)〉+ 〈y′(t)− (yv1(t))′,−H1y′(t)〉]dt

+E
∫ T

0
E′[〈z(t)− zv1(t),−H1z(t)〉+ 〈z′(t)− (zv1(t))′,−H1z′(t)〉]dt

−E
∫ T

0
E′[〈p1(t), f(t)− fv1(t)〉]dt. (15)

Moreover, by virtue of (15) and the convexity of Φ1, it instantly follows that

I2 > E〈Φ1y(y(0)), y(0)− yv1(0)〉 = −Ξ1 + Ξ2, (16)

where

Ξ1 := E
∫ T

0
E′[〈y(t)− yv1(t), H1y(t)〉+ 〈y′(t)− (yv1(t))′, H1y′(t)〉]dt

+ E
∫ T

0
E′[〈z(t)− zv1(t), H1z(t)〉+ 〈z′(t)− (zv1(t))′, H1z′(t)〉]dt,

Ξ2 := −E
∫ T

0
E′[〈p1(t), f(t)− fv1(t)〉]dt.

Noting the definition of H1 and I1, we have

I1 = E
∫ T

0
E′[H1(t)−Hv1

1 (t)]dt+ E
∫ T

0
E′[〈p1(t), f(t)− fv1(t)〉]dt

= Ξ3 − Ξ2,

where

Ξ3 := E
∫ T

0
E′[H1(t)−Hv1

1 (t)]dt. (17)

Using the convexity of H1(t, y, z, y′, z′, v1, v2, p1) with respect to (y, z, y′, z′, v1,
v2), we obtain

H1(t)−Hv1
1 (t) > H1y(t)(y(t)− yv1(t)) +H1z(t)(z(t)− zv1(t))

+H1y′(t)((y
′(t)− yv1(t))′)

+H1z′(t)((z
′(t)− zv1(t))′) +H1u1(t)(u1(t)− v1(t)). (18)
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Since v1 → E[Hv1
1 (t)|E 1

t ], v1 ∈ U1, is maximal at u1(t), and v1(t) and u1(t) are
E 1
t -measurable, we get

E[H1u1(t) | E 1
t ](u1(t)− v1(t)) = E[H1u1(t)(u1(t)− v1(t)) | E 1

t ] > 0. (19)

Hence, combining (17)–(19), we obtain

Ξ3 > E
∫ T

0
E′[〈y(t)− yv1(t),−H1y(t)〉+ 〈y′(t)− (yv1(t))′,−H1y′(t)〉]dt

+E
∫ T

0
E′[〈z(t)− zv1(t),−H1z(t)〉+ 〈z′(t)− (zv1(t))′,−H1z′(t)〉]dt

= Ξ1. (20)

Therefore, it follows from (13), (16), and (20) that

J1(u1(·), u2(·))− J1(v1(·), u2(·)) > Ξ3 − Ξ2 − Ξ1 + Ξ2

> Ξ1 − Ξ2 − Ξ1 + Ξ2

= 0.

Then it implies that

J1(u1(·), u2(·)) = max
v1(·)∈U1

J1(v1(·), u2(·)).

In the same way, from (14),

J2(u1(·), u2(·)) = max
v2(·)∈U2

J2(u1(·), v2(·)).

Hence, we draw the desired conclusion. The proof is completed. �

6 A partial information LQ case

In this section, we apply the above results to study the partial information LQ
differential games of MF-BDSDE. For notational simplification, we assume

n = d = l = k1 = k2 = 1, U1 = U2 = R, E 1
t = E 2

t = Et ⊆ Ft.

Consider
−dy(t) = E′[A(t)y(t) +B(t)z(t) +A(t)y′(t) +B(t)z′(t)

+E1(t)v1(t) + E2(t)v2(t)]dt− z(t)
−→
dW (t)

+E′[C(t)y(t) +D(t)z(t) + C(t)y′(t) +D(t)z′(t)]
←−
dB(t),

y(T ) = ξ.
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The cost functional is

Ji(v1(·), v2(·)) =
1

2
E
[ ∫ T

0
E′(Mi(t)v

2
i (t) +Ni(t)(y(t))2

+N i(t)(y
′(t))2)dt+ Li(y(0))2

]
, i = 1, 2,

where constants Li > 0, i = 1, 2. Functions A(·), A(·), B(·), B(·), C(·), C(·),
D(·), D(·), E1(·), E2(·) are bounded and deterministic; Ni(·), N i(·), i = 1, 2,
are nonnegative, deterministic, and bounded; Mi(·), i = 1, 2, are positive,
deterministic, and bounded, and M−1

i (·), i = 1, 2, are also bounded. Our
task is to find (u1(·), u2(·)) ∈ U1 ×U2 satisfying (4).

Theorem 4 The mapping{
u1(t) = M−1

1 (t)E1(t)E[p1(t) | Et],
u2(t) = M−1

2 (t)E2(t)E[p2(t) | Et],

is a Nash equilibrium point for the above LQ game problem, where (p1(t),
p2(t), q1(t), q2(t), y(t), z(t)) is the solution of the following MF-FBDSDE: for
i = 1, 2,

dpi(t) = E′[A(t)pi(t) +A(t)p′i(t) + C(t)qi(t) + C(t)q′i(t)

−Ni(t)y(t)−N i(t)y
′(t)]dt+ qi(t)

←−
dB(t)

+E′[B(t)pi(t) +B(t)p′i(t) +D(t)qi(t) +D(t)q′i(t)]
−→
dW (t),

−dy(t) = E′{A(t)y(t) +B(t)z(t) +A(t)y′(t) +B(t)z′(t)

+E2
1(t)M−1

1 (t)E[p1(t)|Et] + E2
2(t)M−1

2 (t)E[p2(t)|Et]}dt

+E′{C(t)y(t) +D(t)z(t) + C(t)y′(t) +D(t)z′(t)}
←−
dB(t)

− z(t)
−→
dW (t),

pi(0) = −Liy(0), y(T ) = ξ.

(21)

Proof We first prove the existence of the solution of equation (21). We set

θ̂(t) = E[θ(t) | Et], θ = y, z, y′, z′, p1, p2, q1, q2.

Similar to [25, Lemma 5.4], the optimal filter

(ŷ(t), ẑ(t), ŷ′(t), ẑ′(t), p̂1(t), q̂1(t), p̂2(t), q̂2(t))

of

(y(t), z(t), y′(t), z′(t), p1(t), q1(t), p2(t), q2(t))
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satisfies

dp̂i(t) = E′[A(t)p̂i(t) +A(t)p̂′i(t) + C(t)q̂i(t) + C(t)q̂′i(t)

−Ni(t)ŷ(t)−N i(t)ŷ
′(t)]dt+ q̂i(t)

←−
dB(t)

+E′[B(t)p̂i(t) +B(t)p̂′i(t) +D(t)q̂i(t) +D(t)q̂′i(t)]
−→
dW (t),

−dŷ(t) = E′{A(t)ŷ(t) +B(t)ẑ(t) +A(t)ŷ′(t) +B(t)ẑ′(t)

+E2
1(t)M−1

1 (t)p̂1(t) + E2
2(t)M−1

2 (t)p̂2(t)}dt− ẑ(t)
−→
dW (t)

+E′{C(t)ŷ(t) +D(t)ẑ(t) + C(t)ŷ′(t) +D(t)ẑ′(t)}
←−
dB(t),

p̂i(0) = −Liŷ(0), ŷ(T ) = E[ξ|ET ],

(22)

for i = 1, 2. Due to the above analysis, the candidate equilibrium point
(u1(·), u2(·)) can be rewritten as{

u1(t) = M−1
1 (t)E1(t)p̂1(t),

u2(t) = M−1
2 (t)E2(t)p̂2(t),

where p̂i(t), i = 1, 2, admits MF-FBDSDE (22). We introduce a new MF-
FBDSDE:

dP (t) = E′[A(t)P (t) +A(t)P ′(t) + C(t)Q(t) + C(t)Q′(t)

− (E2
1(t)M−1

1 (t)N1(t) + E2
2(t)M−1

2 (t)N2(t))Y (t)

− (E2
1(t)M−1

1 (t)N1(t) + E2
2(t)M−1

2 (t)N2(t))Y ′(t)]dt

+E′[B(t)P (t) +B(t)P ′(t) +D(t)Q(t) +D(t)Q′(t)]
−→
dW (t)

+Q(t)
←−
dB(t),

−dY (t) = E′[A(t)Y (t) +B(t)Z(t) +A(t)Y ′(t) +B(t)Z ′(t) + P (t)]dt

+E′[C(t)Y (t) +D(t)Z(t) + C(t)Y ′(t) +D(t)Z ′(t)]
←−
dB(t)

−Z(t)
−→
dW (t),

P (0) = −[E2
1(0)M−1

1 (0)L1 + E2
2(0)M−1

2 (0)L2]Y (0), Y (T ) = ξ.

(23)

Based on the analysis above, we can say that the existence and uniqueness of
MF-FBDSDE (22) are equivalent to that of MF-FBDSDE (23). It is easy to
check that MF-FBDSDE (23) satisfies assumptions (A1)–(A3) with

H = 1, µ1 = 1, µ2 = β2 = 0.

According to Theorem 2, there exists a unique solution (P (t), Q(t), Y (t), Z(t))
of MF-FBDSDE (23), where

P (t) = E2
1(t)M−1

1 (t)p̂1(t) + E2
2(t)M−1

2 (t)p̂2(t),

Q(t) = E2
1(t)M−1

1 (t)q̂1(t) + E2
2(t)M−1

2 (t)q̂2(t),

Y (t) = ŷ(t), Z(t) = ẑ(t).
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Then there exists a unique solution (p̂1(t), p̂2(t), ŷ(t), ẑ(t)) of MF-FBDSDE (22).
Furthermore, there exists at most one equilibrium point for the underlying
game.

Now, we try to prove that (u1(·), u2(·)) is a Nash equilibrium point for our
backward LQ game problem. We only prove

J1(u1(·), u2(·)) = max
v1(·)∈U1

J1(v1(·), u2(·)).

It is similar to get another inequality of (4). Denote (yv1(t), zv1(t)) the solution
of the system

−dyv1(t) = E′[A(t)yv1(t) +B(t)zv1(t) +A(t)(yv1(t))′

+B(t)(zv1(t))′ + E1(t)v1(t) + E2(t)u2(t)]dt

+E′[C(t)yv1(t) +D(t)zv1(t) + C(t)(yv1(t))′

+D(t)(zv1(t))′]
←−
dB(t)− zv1(t)

−→
dW (t),

yv1(T ) = ξ.

Then

J1(u1(·), u2(·))− J1(v1(·), u2(·))

=
1

2
E
[ ∫ T

0
E′(M1(t)(u1(t)− v1(t))2 + 2M1(t)v1(t)(u1(t)− v1(t))

+N1(t)(y(t)− yv1(t))2 + 2N1(t)y(t)(y(t)− yv1(t))

+N1(t)(y′(t)− (yv1(t))′)2 + 2N1(t)(yv1(t))′(y′(t)− (yv1(t))′))dt

+ L1(y(0)− yv1(0))2 + 2L1y
v1(0)(y(0)− yv1(0))

]
.

Applying Itô’s formula to (y(t)− yv1(t))p̂1(t), we have

E{L1y(0)(y(0)− yv1(0))}

= − E
∫ T

0
E′[E1(t)p̂1(t)(u1(t)− v1(t)) +N1(t)y(t)(y(t)− yv1(t))

+N1(t)y′(t)(y′(t)− (yv1(t))′)]dt.

Since

M1(t) > 0, N1(t) > 0, N1(t) > 0, ∀ t ∈ [0, T ], L1 > 0,

noting that
u1(t) = M−1

1 (t)B1(t)p̂1(t),

we have

J1(u1(·), u2(·))− J1(v1(·), u2(·))

> E
∫ T

0
E′[(M1(t)u1(t)− E1(t)p̂1(t))(u1(t)− v1(t))]dt

= 0.
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So
(u1(t), u2(t)) = (M−1

1 (t)E1(t)p̂1(t),M−1
2 (t)E2(t)p̂2(t))

is a Nash equilibrium point for our backward LQ nonzero-sum differential game
problem. �

7 Conclusion

In this paper, we research a kind of non-zero sum differential games of mean-field
backward doubly stochastic differential equations (MF-BDSDE) under partial
information. First, we establish a partial information necessary maximum
principle and a sufficient condition for the Nash equilibrium point. Then we use
the theoretical results to research a partial information linear-quadratic (LQ)
game. In order to obtain the unique Nash equilibrium point for our LQ game
problem, we study a new kind of fully coupled mean-field forward-backward
doubly stochastic differential equations (MF-FBDSDE), and get the existence
and uniqueness theorem for solutions to such kind of equations under some
monotonicity conditions. To our knowledge, under the full information case,
the result in our paper is also new.
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