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Abstract Consider the generalized dispersive equation defined by{
i ∂tu+ φ(

√
−∆ )u = 0, (x, t) ∈ Rn × R,

u(x, 0) = f(x), f ∈ S (Rn),
(∗)

where φ(
√
−∆ ) is a pseudo-differential operator with symbol φ(|ξ|). In the

present paper, assuming that φ satisfies suitable growth conditions and the
initial data in Hs(Rn), we bound the Hausdorff dimension of the sets on which
the pointwise convergence of solutions to the dispersive equations (∗) fails.
These upper bounds of Hausdorff dimension shall be obtained via the
Kolmogorov-Seliverstov-Plessner method.
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MSC 42B20, 42B25, 35S10

1 Introduction and main results

Let f be a Schwartz function in S (Rn), and let

eit∆f(x) = (2π)−n
∫
Rn

eix·ξ+it|ξ|2 f̂(ξ)dξ, (x, t) ∈ Rn × R.

Here, f̂ denotes the Fourier transform of f defined by

f̂(ξ) =

∫
Rn

e−iξ·xf(x)dx.
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It is well known that
u(x, t) := eit∆f(x)

is the solution of the Schrödinger equation{
i ∂tu−∆u = 0, (x, t) ∈ Rn × R,
u(x, 0) = f(x), f ∈ S (Rn).

Carleson [5] proposed a problem: determining the optimal exponents s for which

lim
t→0

eit∆f(x) = f(x), a.e. x ∈ Rn, (1)

holds whenever f ∈ Hs(Rn). Here, Hs(Rn) (s ∈ R) is the non-homogeneous
Sobolev space, defined by

Hs(Rn) = {Gs ∗ f : f ∈ L2(Rn)},

where Gs is the Bessel potential defined by

Ĝs(ξ) = (1 + |ξ|2)−s/2.

Carleson [5] first considered this problem for one spatial dimension and
showed that the pointwise convergence (1) holds for data in Hs(R) with s > 1/4,
and Dahlberg and Kenig [8] showed that s > 1/4 is sharp. Recently, in two
spatial dimensions, Du et al. [12] showed that (1) holds for data in Hs(R2)
with s > 1/3, which improved the result of (1) that holds for s > 3/8 in [20].
Moreover, Bourgain [4] gave examples showing that such convergence (1) can
fail for any s < 1/3 when n = 2, so the result in [12] is sharp up to the endpoint.
In higher dimensions, Bourgain [3] showed that (1) holds for data in Hs(Rn)
with

s >
1

2
− 1

4n
.

In particular, in the case f is a radial function, Prestini [22] proved that, if
f ∈ Hs(Rn) (n > 2), then the convergence (1) holds for s = 1/4. For more
results on the pointwise convergence (1), see, e.g., [13,24,26–28,32].

Naturally, one may consider a refinement of this question which is the
Hausdorff dimension of sets on which the pointwise convergence fails. In this
direction, Sjögren and Sjölin [23] made the solution of Schrödinger equation
precise by the ball or the disc method, and they had previously obtained
some upper bound of the Hausdorff dimension of the divergence set (see
[23, Theorem 2]). Carleson [5] and Sjögren and Sjölin [23] obtained some
results of the pointwise convergence of the solution to the Schrödinger equation.
Recently, Barceló et al. [1] and Bennett and Rogers [2] refined the above results
of [5,23]. Barceló et al. [1] considered the pointwise convergence to the initial
data of the solution to the fractional Schrödinger equation defined by{

i ∂tu+ (−∆)m/2u = 0, (x, t) ∈ Rn × R,
u(x, 0) = u0(x),
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and bounded the Hausdorff dimension of the sets on which convergence fails.
We denote by αm,n(s) the supremum of

dimH{x ∈ Rn : u(x, tk) 9 u0(x), k →∞}

over all u0 ∈ Hs(Rn) and all sequences {tk} which converge to zero. Here, dimH

denotes the Hausdorff dimension. More precisely, in one dimension, Barceló
et al. [1] proved the following result for f ∈ Hs(R).

Theorem A [1] Assume n = 1 and m > 1. Then

αm,1(s) =


1, s <

1

4
,

1− 2s,
1

4
6 s <

1

2
,

0, s >
1

2
.

And for the radial data, Bennett and Rogers [2] obtained the following
result.

Theorem B [2] Assume that n > 2, m > 1, and f is radial. Then

αm,n(s) =


n, s <

1

4
,

n− 2s,
1

4
6 s <

1

2
,

0, s >
1

2
.

A class of generalized dispersive equations is defined by{
i ∂tu+ φ(

√
−∆ )u = 0, (x, t) ∈ Rn × R,

u(x, 0) = u0(x) = f(x), f ∈ S (Rn),
(2)

where φ(
√
−∆ ) is a pseudo-differential operator with symbol φ(|ξ|). For initial

data u0 belonging to the Schwartz class, the formal solution of equation (2) can
be written as

u(x, t, φ) = eitφ(
√
−∆ )f(x) = (2π)−n

∫
Rn

eix·ξ+itφ(|ξ|)f̂(ξ)dξ.

We would like to point out that some Strichartz estimates for the generalized
dispersive equation (2) have been discussed recently. In fact, many dispersive
equations can be reduced to this type. For instance, the half-wave equation
(φ(r) = r), the fractional Schrödinger equation (φ(r) = ra (0 < a 6= 1)), the
Beam equation (φ(r) =

√
1 + r4), Klein-Gordon or semirelativistic equation

(φ(r) =
√

1 + r2 ), iBq (φ(r) = r
√

1 + r2 ), imBq (φ(r) = r/
√

1 + r2 ), and the
fourth-order Schrödinger equation (φ(r) = r2 + r4) (see [6,7,14,16–19,29–31]
and references therein).
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Inspired by the work of Barceló et al. [1] and Bennett and Rogers [2], in the
present paper, under φ : R+ → R satisfying suitable growth conditions and the
initial data in Sobolev space Hs(Rn), we bound the Hausdorff dimension of the
sets on which the pointwise convergence to the initial data of the solution to
equation (2) fails. We denote by αφ,n(s) the supremum of

dimH{x ∈ Rn : eitkφ(
√
−∆ )f(x) 9 u0(x), k →∞}

over all u0 ∈ Hs(Rn) and all sequences (tk) which converge to zero. Here, dimH

denotes the Hausdorff dimension.
For u0 ∈ Hs(Rn), we may define u as in pointwise limit:

u(x, t) = lim
N→∞

SNt,φf(x)

whenever the limit exists, where the operator SNt,φ is defined by

SNt,φf(x) = (2π)−n
∫
Rn

ψ
( |ξ|
N

)
eix·ξ+itφ(|ξ|)f̂(ξ)dξ.

Here, for convenience, we choose ψ to be the Gaussian ψ(r) = e−r
2
. By standard

argument, we can obtain

u(x, t) = St,φf(x) a.e. x ∈ Rn

with respect to the Lebesgue measure, where

St,φf(x) = lim
N→∞

SNt,φf(x)

in the L2-sense. However, u(·, t) is also well defined regarding fractal measures
when s > 0, see [1].

Let 0 6 α 6 n. We say that a positive Borel measure µ is α-dimensional if

cα(µ) := sup
x∈Rn,r>0

µ(B(x, r))

rα
<∞.

We denote by M α(An) the α-dimensional probability measures which are
supported in the unit annulus

An =
{
x ∈ Rn :

1

2
6 |x| 6 1

}
.

Assume that φ : R+ → R satisfies the following conditions:

(H1) there exists m1 > 1 such that

|φ′(r)| ∼ rm1−1, |φ′′(r)| & rm1−2, ∀ r ∈ (0, 1);
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(H2) there exists m2 > 1 such that

|φ′(r)| ∼ rm2−1, |φ′′(r)| & rm2−2, ∀ r > 1;

(H3) either φ′′(r) > 0 or φ′′(r) < 0 for all r > 0.

Our main result in this paper is as follows.

Theorem 1 Assume that n = 1 and φ satisfies conditions (H1)–(H3). Then

(i) αφ,1(s) = 1− 2s for 1/4 6 s < 1/2;

(ii) αφ,1(s) = 0 for s > 1/2.

In higher dimensions, we obtain the following result for radial data.

Theorem 2 Assume that n > 2 and φ satisfies conditions (H1)–(H3). If f is
radial, then

(i) αφ,n(s) = n− 2s for 1/4 6 s < 1/2;

(ii) αφ,n(s) = 0 for s > 1/2.

Remark 1 From the results in [10,11], for φ satisfying conditions (H1)–(H3),
s > 1/4, and initial data f ∈ Hs(R) or f is radial and f ∈ Hs(Rn), the pointwise
convergence

lim
t→0

eitφ(
√
−∆ )f(x) = f(x) a.e. x ∈ Rn (3)

holds with respect to Lebesgue measure. Hence, by the results of Theorems 1
and 2, we give a refinement of this question regarding the Hausdorff dimension
of the set on convergence (3) fails.

Remark 2 There are many elements φ satisfying conditions (H1)–(H3), for
instance, ra (a > 1),

√
1 + r4, and r2 + r4. Therefore, Theorems 1 and 2 are

apparently good extensions to the results of Theorems A and B, respectively.

2 Proof of Theorem 1

In this section, we will prove Theorem 1. To do this, we need two important
lemmas (i.e., Lemmas 1 and 2 below), which play a key role in proving Theorems
1 and 2.

Lemma 1 Assume that φ satisfies (H1)–(H3) and µ is a Schwartz function.
If 1/2 6 s < 1, then∣∣∣ ∫

R
eixξ+itφ(|ξ|)|ξ|−sµ

( ξ
N

)
dξ
∣∣∣ 6 C

|x|1−s
, x ∈ R, t ∈ R, N = 1, 2, . . . .

Here, the constant C may depend on s, m1, m2, and µ, but not on x, t, and N.

Remark 3 The proof of Lemma 1 is similar to that of [10, Lemma 2.1], so
we omit it here.
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Lemma 2 If∥∥ sup
k>1

sup
N>1
|SNtk,φf |

∥∥
L1(dµ)

6 C
√
cα(µ) ‖f‖Hs(Rn), ∀α > α0 > n− 2s, (4)

whenever µ ∈M α(An), f ∈ Hs(Rn), and (tk) ∈ RN, then αφ,n(s) 6 α0.

Proof We choose a Schwartz function g such that

‖u0 − g‖Hs(Rn) < ε,

and notice that

|SNt,φu0 − u0| 6 |SNt,φu0 − SNt,φg|+ |SNt,φg − g|+ |g − u0|.

Thus, we have

µ{x : lim sup
k→∞

lim sup
N→∞

|SNtk,φu0 − u0| > λ}

6 µ
{
x : sup

k>1
sup
N>1
|SNtk,φ(u0 − g)| > λ

3

}
+ µ

{
x : lim

k→∞
lim
N→∞

|SNtk,φg − g| >
λ

3

}
+ µ

{
x : |g − u0| >

λ

3

}
=: I1 + I2 + I3.

Letting tk → 0, we have
I2 = 0. (5)

By the maximal inequality (4), we have

I1 6 Cλ
−1
√
cα(µ) ‖u0 − g‖Hs(Rn) 6 Cλ

−1
√
cα(µ) ε. (6)

Noting that
‖f‖L1(dµ) 6 C

√
cα(µ) ‖f‖Hs(Rn)

for µ ∈M α(An) with α > n− 2s, see [2, p. 3], we have

I3 6 Cλ
−1|g−u0‖L1(dµ) 6 Cλ

−1
√
cα(µ) ‖u0− g‖Hs(Rn) 6 Cλ

−1
√
cα(µ) ε. (7)

Hence, by (5)–(7), we obtain

µ{x : lim
k→∞

lim
N→∞

|SNtk,φu0 − u0| > λ} 6 Cλ−1
√
cα(µ) ε.

Letting ε→ 0, and then λ→ 0, we have

µ{x : u(x, tk) 9 u0(x), k →∞} = 0

whenever µ ∈M α(An) with α > α0. By Frostman’ lemma [21, p. 112], we get

H α{x ∈ An : u(x, tk) 9 u(x, 0), k →∞} = 0,
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where H α denotes the α-Hausdorff measure. By translation invariance and the
countable additivity of Hausdorff measure, we have

H α{x ∈ Rn : u(x, tk) 9 u(x, 0), k →∞} = 0,

which holds for every α > α0. Thus,

dimH{x ∈ Rn : u(x, tk) 9 u0(x), k →∞} 6 α0

whenever f ∈ Hs(Rn) and tk → 0. We complete the proof. �

As a similar proof on [1, pp. 613, 614], when 1/4 6 s < 1/2, we can obtain
the lower bound on the exponents αφ,1(s), that is, αφ,1(s) > 1 − 2s. Hence,
when 1/4 6 s < 1/2, to prove Theorem l, it suffices to set up the following
lemma.

Lemma 3 Assume that n = 1 and φ satisfies (H1)–(H3). If 1/4 6 s 6 1/2
and α > 1− 2s, then∥∥ sup

k>1
sup
N>1
|SNtk,φf |

∥∥
L1(dµ)

6 C
√
cα(µ) ‖f‖Hs(R) (8)

whenever µ ∈M α(A), f ∈ Hs(R), and (tk) ∈ RN, which yields αφ,1(s) 6 1−2s.

Proof By the embedding property of the non-homogenous Sobolev spaces, we
only prove inequality (8) holds when 1/4 6 s < 1/2. We recall the α-energy of
µ defined by

Iα(µ) =

∫∫
dµ(x)dµ(y)

|x− y|α
.

By the dyadic decomposition, for all µ ∈M α(A) with α > 1− 2s, we have∫∫
dµ(x)dµ(y)

|x− y|1−2s
=

∫ ∞∑
j=0

∫
2−j<|x−y|62−j+1

dµ(x)dµ(y)

|x− y|1−2s

6 2αcα(µ)

∫ ∞∑
j=0

2−jα2j(1−2s)dµ(y)

6 Ccα(µ).

Thus, the inequality
I1−2s(µ) 6 Ccα(µ)

holds for all µ ∈ M α(A) with α > 1 − 2s. Therefore, in order to prove (8), it
suffices to prove∫

sup
k>1

sup
N>1
|SNtk,φf(x)|dµ(x) 6 C

√
I1−2s(µ) ‖f‖Hs(R) (9)

whenever µ ∈ M α(A), f ∈ Hs(R). Let t(x), N(x), and ω(x) be measurable
functions with

t : (−1, 1)→ R, N : (−1, 1)→ [1,∞), ω : (−1, 1)→ S1.
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By linearizing the maximal function, to prove (9), it suffices to prove∣∣∣ ∫ S
N(x)
t(x),φf(x)ω(x)dµ(x)

∣∣∣2 6 CI1−2s(µ)‖f‖2Hs(R). (10)

By Fubini’s theorem, and invoking the Cauchy-Schwarz inequality, we have∣∣∣ ∫ S
N(x)
t(x),φf(x)ω(x)dµ(x)

∣∣∣2
6
∫
R
|ξ|2s|f̂(ξ)|2dξ

∫ ∣∣∣ ∫ ψ
( |ξ|
N(x)

)
ei(xξ+t(x)φ(|ξ|))ω(x)dµ(x)

∣∣∣2 dξ

|ξ|2s

6 ‖f‖2Hs(R)

∫ ∣∣∣ ∫ ψ
( |ξ|
N(x)

)
ei(xξ+t(x)φ(|ξ|))ω(x)dµ(x)

∣∣∣2 dξ

|ξ|2s
. (11)

Applying Fubini’s theorem and by Lemma 1, we get∫ ∣∣∣ ∫ ψ
( |ξ|
N(x)

)
ei(xξ+t(x)φ(|ξ|))ω(x)dµ(x)

∣∣∣2 dξ

|ξ|2s

=

∫∫∫
ψ
( |ξ|
N(x)

)
ψ
( |ξ|
N(y)

)
ei[(y−x)ξ+(t(y)−t(x))φ(|ξ|)] dξ

|ξ|2s
ω(x)ω(y)dµ(x)dµ(y)

6 C
∫∫

dµ(x)dµ(y)

|x− y|1−2s

= CI1−2s(µ) (12)

uniformly in the functions t, N, and ω. Hence, inequality (10) holds from (11)
and (12). Hence, it follows that (8) holds, and applying Lemma 2, we get
αφ,1(s) 6 1− 2s. Thus, we complete the proof. �

When s > 1/2, to prove Theorem 1, it suffices to set up the following lemma.

Lemma 4 Assume that φ satisfies (H1)–(H3). If n = 1 and s > 1/2, then∥∥ sup
k>1

sup
N>1
|SNtk,φf |

∥∥
L1(dµ)

6 C‖f‖Hs(R) (13)

whenever µ ∈M α(A), f ∈ Hs(R), and (tk) ∈ RN, which yields αφ,1(s) = 0.

Proof Let f = Gs ∗ g. To prove (13), it suffices to prove∫
A

sup
k>1

sup
N>1

∣∣∣ ∫
R

ψ(|ξ|/N)ĝ(ξ)ei(x·ξ+tkφ(|ξ|))

(1 + |ξ|2)s/2
dξ
∣∣∣dµ(x) 6 C‖g‖L2(R) (14)

for all µ ∈ M α(A), g ∈ L2(R), and (tk) ∈ RN. Note that µ is a probability
measure. Thus, in order to prove (14), it suffices to prove∣∣∣ ∫

R

ψ(|ξ|/N)ĝ(ξ)ei(x·ξ+tφ(|ξ|))

(1 + |ξ|2)s/2
dξ
∣∣∣ 6 C‖g‖L2(R) (15)
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uniformly in N > 1, t ∈ R, x ∈ A, and g ∈ L2(R). Note that for s > 1/2,

(∫ ∞
0

1

(1 + |r|2)s
dr

)1/2

6 C.

Then, applying the Cauchy-Schwarz inequality and Plancherel’s theorem, we
obtain∣∣∣ ∫

R

ψ(|ξ|/N)ĝ(ξ)ei(x·ξ+tφ(|ξ|))

(1 + |ξ|2)s/2
dξ
∣∣∣ 6 C

∫
R

|ĝ(ξ)|
(1 + |ξ|2)s/2

dξ

6 C

(∫
R
|ĝ(ξ)|2dξ

)1/2(∫
R

dξ

(1 + |ξ|2)s

)1/2

6 C‖g‖L2(R)

uniformly in N > 1, t ∈ R, x ∈ A, and g ∈ L2(R). Thus, we verify estimate
(15). It follows that (13) holds. Thus, applying Lemma 2, when s > 1/2, we
get αφ,1(s) = 0. We complete the proof. �

3 Proof of Theorem 2

Let Hs
rad(Rn) be the set of all radial elements of Hs(Rn), and let L2

rad(Rn) be
the set of all radial elements of L2(Rn). When s > 1/2, to prove Theorem 2, it
suffices to set up the following lemma.

Lemma 5 Assume that φ satisfies (H1)–(H3). If n > 2 and s > 1/2, then∥∥ sup
k>1

sup
N>1
|SNtk,φf |

∥∥
L1(dµ)

6 C‖f‖Hs(Rn) (16)

whenever µ ∈M α(An), f ∈ Hs
rad(Rn), and (tk) ∈ RN, which yields αφ,n(s) = 0.

Proof Writing f = Gs ∗ g, to prove (16), it suffices to prove∫
An

sup
k>1

sup
N>1

∣∣∣ ∫
Rn

ψ(|ξ|/N)ĝ(ξ)ei(x·ξ+tkφ(|ξ|))

(1 + |ξ|2)s/2
dξ
∣∣∣dµ(x) 6 C‖g‖L2(Rn) (17)

for all µ ∈M α(An), g ∈ L2
rad(Rn), and (tk) ∈ RN. Noting that µ is a probability

measure, in order to prove (17), it suffices to prove

∣∣∣ ∫
Rn

ψ(|ξ|/N)ĝ(ξ)ei(x·ξ+tφ(|ξ|))

(1 + |ξ|2)s/2
dξ
∣∣∣ 6 C‖g‖L2(Rn) (18)

uniformly in N > 1, t ∈ R, x ∈ An, and g ∈ L2
rad(Rn). Using the polar
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coordinates, we have∣∣∣ ∫
Rn

ψ( |ξ|N )ĝ(ξ)ei(x·ξ+tφ(|ξ|))

(1 + |ξ|2)s/2
dξ
∣∣∣

=
∣∣∣ ∫ ∞

0

ψ(r/N)rn−1ĝ(r)eitφ(r)

(1 + |r|2)s/2

∫
Sn−1

eirx·ξ′dσ(ξ′)dr
∣∣∣

= Cn

∣∣∣ ∫ ∞
0

ψ(r/N)rn−1ĝ(r)eitφ(r)

(1 + |r|2)s/2
J(n−2)/2(r|x|)
(r|x|)(n−2)/2

dr
∣∣∣,

where Cn is a constant which dependent on n, J(n−2)/2 denotes the Bessel
function of order (n− 2)/2, and the Bessel function Jm(r) is defined by

Jm(r) =
(r/2)m

Γ(m+ 1
2)π1/2

∫ 1

−1
eirt(1− t2)m−

1
2 dt, m > −1

2
.

By the result on [15, pp. 430, 431], we have

(r|x|)1/2J(n−2)/2(r|x|) 6 cn.

Thus, applying the Cauchy-Schwarz inequality and Plancherel’s theorem, we
obtain∣∣∣ ∫

Rn

ψ(|ξ|/N)ĝ(ξ)ei(x·ξ+tφ(|ξ|))

(1 + |ξ|2)s/2
dξ
∣∣∣

6 C
1

|x|(n−1)/2

∫ ∞
0

r(n−1)/2|ĝ(r)|
(1 + |r|2)s/2

dr

6 C
1

|x|(n−1)/2

(∫ ∞
0

rn−1|ĝ(r)|2dr

)1/2(∫ ∞
0

1

(1 + |r|2)s
dr

)1/2

6 C
1

|x|(n−1)/2
‖g‖L2(Rn)

6 C‖g‖L2(Rn)

uniformly in N > 1, t ∈ R, x ∈ An, and g ∈ L2
rad(Rn). Thus, we verify estimate

(18). It follows that (16) holds. Then, applying Lemma 2, when s > 1/2, we
get αφ,n(s) = 0. Thus, we complete the proof. �

On the other hand, similar to the proof on [2, p. 8], when 1/4 6 s < 1/2,
we can get the lower bound on the exponents αφ,n(s), that is, αφ,n(s) > n− 2s.
Hence, when 1/4 6 s < 1/2, to prove Theorem 2, it suffices to set up the
following lemma.

Lemma 6 Assume that n > 2 and φ satisfies (H1)–(H3). If 1/4 6 s < 1/2,
then, for α > n− 2s, we have∥∥ sup

k>1
sup
N>1
|SNtk,φf |

∥∥
L1(dµ)

6 C
√
cα(µ) ‖f‖Hs(Rn) (19)
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whenever µ ∈ M α(An), f ∈ Hs
rad(Rn), and (tk) ∈ RN, which yields αφ,n(s) 6

n− 2s.

Proof Denote f = Gs ∗ g. To prove (19), it suffices to prove∫
sup
k>1

sup
N>1
|SNtk,φGs ∗ g(x)|dµ(x) 6 C

√
cα(µ) ‖g‖L2(Rn) (20)

whenever µ ∈ M α(An) and g ∈ L2
rad(Rn). Notice that the operator SNt,φ maps

radial functions to radial functions. Thus, it suffices to consider the radial
measures. We write dµ0(v) = dµ(x) when |x| = v, and recall the energy I1−2s

defined by

I1−2s(µ0) =

∫ 1

0

∫ 1

0

dµ0(v)dµ0(ω)

|ω − v|1−2s
.

And noting that the inequality

I1−2s(µ0) 6 Ccα(µ)

holds for all µ ∈ M α(An) with α > n − 2s. Using the polar coordinates, to
prove (20), it suffices to prove∫

sup
k>1

sup
N>1
|SNtk,φGs ∗ g(v)|v(n−1)/2dµ0(v) 6 C

√
I1−2s(µ0) ‖g‖L2(Rn). (21)

As in the proof of Lemma 5, we have

SNtk,φGs ∗ g(v) =
Cn

v(n−1)/2

∫ ∞
0

ψ(r/N)ĝ(r)(rv)1/2J(n−1)/2(rv)eitkφ(r)r(n−2)/2dr

(1 + r2)s/2
.

Let t(v) be a measurable function with [0, 1]→ R, and let N(v) be a measurable
function with [0, 1] → [0,∞). By linearizing the maximal function, in order to
prove (21), it suffices to prove∣∣∣ ∫ 1

0
S
N(v)
t(v),φGs ∗ g(v)v(n−1)/2h(v)dµ0(v)

∣∣∣
6 C

√
I1−2s(µ0) ‖g‖L2(Rn) ‖h‖L∞(dµ0), (22)

where h ∈ L∞(dµ0). By the duality, to show (22), it suffices to show that

‖Th‖L2(0,∞) 6 C
√
I1−2s(µ0) ‖h‖L∞(dµ0), (23)

where

Th(r) = (1 + r2)−s/2
∫ 1

0
ψ
( r

N(v)

)
(rv)1/2J(n−2)/2(rv)eit(v)φ(r)h(v)dµ0(v).

To prove inequality (23), we need the following lemma.
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Lemma 7 [25, p. 158] As r →∞,

Jm(r) =

√
2

πr
cos
(
r − πm

2
− π

4

)
+O(r−3/2).

In particular, Jm(r) = O(r−1/2) as r →∞.

Applying Lemma 7 and by [22] or [9, p. 15], we may get the following
estimates:

|t1/2J(n−2)/2(t)− (b1eit + b2e−it)| 6 C

t
, t > 1, (24)

and

|t1/2J(n−2)/2(t)− (b1eit + b2e−it)| 6 C, 0 < t 6 1, (25)

where b1 and b2 are the constants depending on n. Invoking (24) and (25), we
have

Th(r) =: b1B1(r) + b2B2(r) + C(r), (26)

where

B1(r) = (1 + r2)−s/2
∫ 1

0
ψ
( r

N(v)

)
ei(rv+t(v)φ(r))h(v)dµ0(v),

B2(r) = (1 + r2)−s/2
∫ 1

0
ψ
( r

N(v)

)
ei(−rv+t(v)φ(r))h(v)dµ0(v),

and

|C(r)| 6 C(1 + r2)−s/2
∫ 1

0
min

{
1,

1

rv

}
|h(v)|dµ0(v).

From the proof of [2, Theorem 3.3], we have(∫ ∞
0
|C(r)|2dr

)1/2

6 C
√
I1−2s(µ0) ‖h‖L∞(dµ0). (27)

Set

B(ξ) = (1 + ξ2)−s/2
∫ 1

0
ψ
(
|ξ|/N(v)

)
ei(ξv+t(v)φ(|ξ|))h(v)dµ0(v), ξ ∈ R.

We first prove (∫
R
|B(ξ)|2dξ

)1/2

6 C
√
I1−2s(µ0) ‖h‖L∞(dµ0). (28)

Notice that (∫
R
|B(ξ)|2dξ

)1/2

6

(∫
R
|B′(ξ)|2dξ

)1/2

, (29)
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where

B′(ξ) = |ξ|−s
∫
R
ψ
( |ξ|
N(v)

)
ei(ξv+t(v)φ(|ξ|))h(v)dµ0(v), ξ ∈ R.

By Fubini’s theorem, we have∫
R
|B′(ξ)|2dξ =

∫∫
I(v, ω)h(v)h(ω) dµ0(v)dµ0(ω),

where

I(v, ω) =

∫
R
ψ
( |ξ|
N(v)

)
ψ
( |ξ|
N(ω)

)
ei[(v−ω)ξ−(t(ν)−t(ω))φ(|ξ|)]|ξ|−2sdξ.

By Lemma 1, we have

I(v, ω) 6 C
1

|v − ω|1−2s
. (30)

By (29) and (30), we have(∫
R
|B(ξ)|2dξ

)1/2

6
∫ 1

0

∫ 1

0

|h(v)| |h(ω)|
|v − ω|1−2s

dµ0(v)dµ0(ω)

6 C
√
I1−2s(µ0) ‖h‖L∞(dµ0),

which is estimate (28). Note that(∫ ∞
0
|Bi(ξ)|2dξ

)1/2

6 C

(∫
R
|B(ξ)|2dξ

)1/2

, i = 1, 2. (31)

Thus, by (28) and (31), we have(∫ ∞
0
|Bi(ξ)|2dξ

)1/2

6 C
√
I1−2s(µ0) ‖h‖L∞(dµ0), i = 1, 2. (32)

Hence, (22) holds from (26), (27), and (32). Thus, estimate (19) holds, and
then applying Lemma 2, when 1/4 6 s < 1/2, we get αφ,n(s) 6 n − 2s. Thus,
we complete the proof of Lemma 6. �
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23. Sjögren P, Sjölin P. Convergence properties for the time dependent Schrödinger
equation. Ann Acad Sci Fenn Math, 1989, 14: 13–25
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