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Abstract Let K3 be a non-normal cubic extension over Q. We study the higher
moment of the coefficients aK3(n) of Dedekind zeta function over sum of two
squares

∑
n2
1+n

2
26x

alK3
(n21 + n22), where 2 6 l 6 8 and n1, n2, l ∈ Z.
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1 Introduction

Let K be a number field of degree d over the rational field Q, let OK be the
ring of integers of K, and let the Dedekind zeta function be defined by

ζK(s) =
∑
a

(Na)
−s, Re s > 1,

where the sum runs over all integral ideals in OK , and Na is the norm of the
integral ideals a. We can rewrite the Dedekind zeta function as

ζK(s) =
∞∑
n=1

aK(n)

ns
, Re s > 1,

where aK(n) denotes the number of integral ideals in K with norm n, which
is the so-called coefficients of Dedekind zeta function. Since aK(n) is a multi-
plicative function, we get that for Re s > 1,

ζK(s) =

∞∑
n=1

aK(n)

ns
=
∏
p

(
1 +

aK(p)

ps
+
aK(p2)

p2s
+ · · ·

)
.

It is known that for any ε > 0,

aK(n) 6 τ(n)d � nε, (1)
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where τ(n) is the divisor function and d = [K : Q].
It is a classical and important problem in number theory to study the

arithmetic function aK(n). Landau [15] proved the asymptotic formula∑
n6x

aK(n) = cx+O(x
d−1
d+1

+ε)

for arbitrary algebraic number field of degree d > 2, where c > 0 is a positive
constant depending on K. Chandrasekharan and Narasimhan [3] considered the
second moment of aK(n) for a general extension K/Q of degree d. They proved
that ∑

n6x

a2K(n)� x logd−1 x.

Later, Chandrasekharan and Good [2] studied the l-th integral power sum of
aK(n), and gave an asymptotic formula for the sum∑

n6x

alK(n), l = 2, 3, . . . .

Lü and Wang [18] improved the result of Chandrasekharan and Good.
Fomenko [4] considered a non-normal cubic extension K3/Q, which is given

by an irreducible polynomial h(x) = x3 + ax2 + bx + c of discriminant D. If
D < 0, he proved that∑

n6x

a2K3
(n) = c1x log x+ c2x+O(x

9
11

+ε)

and ∑
n6x

a3K3
(n) = xP (log x) +O(x

73
79

+ε),

where c1 and c2 are constants, and P (t) is a polynomial in t of degree 4. Later,
Lü [17] improved the results of Fomenko, and obtained the exponents 23/31 and
235/259 in place of 9/11 and 73/79, respectively. Recently, Yang [23] derived
an asymptotic formula for the sum∑

n2
1+n

2
26x

aK3(n21 + n22).

In this paper, we will be interested in the estimation of the higher moment
of the arithmetic function aK3(n) over sum of two squares,∑

n2
1+n

2
26x

alK3
(n21 + n22), 2 6 l 6 8.

Our main result is the following theorem.
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Theorem 1.1 Let K3 be a non-normal cubic extension over Q, which is given
by an irreducible polynomial h(x) = x3 + ax2 + bx + c of discriminant D. If
D < 0, then, for arbitrarily small positive constant ε, we have∑

n2
1+n

2
26x

alK3
(n21 + n22) = xPl(log x) +O(xϑl+ε),

where Pl(t) are polynomials with degree ηl, and

ϑ2 =
51

59
, ϑ3 =

70

73
, ϑ4 =

71

72
, ϑ5 =

217

218
,

ϑ6 =
1987

1990
, ϑ7 =

6047

6050
, ϑ8 =

18356

18359
.

Here,

η2 = 1, η3 = 4, η4 = 12, η5 = 33, η6 = 88, η7 = 232, η8 = 609.

2 Preliminaries

In this section, we begin with the representation of sum of two squares. Define

4r(n) = ]{(n1, n2) ∈ Z2, n21 + n22 = n}.

We know that (cf. [8, (1.51)])

r(n) =
∑
d|n

χ4(d),

where χ4(d) is the non-trivial Dirichlet character modulo 4. For the sake of
simplicity, we denote

χ := χ4.

By the completely multiplicative property, we get

r(p) =
∑
d|p

χ(d) = 1 + χ(p).

Let K3 be a non-normal cubic extension over Q, which is given by an
irreducible polynomial h(x) = x3 + ax2 + bx + c of discriminant D. If D < 0,
we learn from [4, (1)] that

ζK3(s) = ζ(s)L(s, f), (2)

where f is a holomorphic cusp form of weight 1 with respect to the congruence
group Γ0(|D|), and

f(z) =
∞∑
n=1

λf (n)e(nz).
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Here, λf (n) denotes the n-th Fourier coefficient of the holomorphic form f.
By using (2), the Euler product of Riemann zeta function ζ(s), and the

Dirichlet L-function, one has

aK3(n) =
∑
d|n

λf (d).

In particular, one has
aK3(p) = 1 + λf (p).

It is clear that∑
n2
1+n

2
26x

alK3
(n21 + n22) =

∑
n6x

alK3
(n)

∑
m=n2

1+n
2
2

1 = 4
∑
n6x

alK3
(n)r(n).

The L-function defined for Re s > 1 by

LK3,l(s) =
∞∑
n=1

alK3
(n)r(n)

ns
(3)

has an analytic continuation to the whole complex plane.
In the following, we will give a decomposition of LK3,l(s).

Lemma 2.1 Let K3 be a non-normal cubic extension over Q. Suppose that
LK3,l(s) is defined as in (3). Then we have

LK3,l(s) = MK3,l(s)Ul(s), l = 2, 3, . . . , 8,

where

MK3,2(s) = ζ2(s)L2(s, f)L(s, sym2f)L2(s, χ)L2(s, f × χ)L(s, sym2f × χ),

MK3,3(s) = ζ4(s)L5(s, f)L3(s, sym2f)L(s, sym3f)L4(s, χ)

× L5(s, f × χ)L3(s, sym2f × χ)L(s, sym3f × χ),

MK3,4(s) = ζ9(s)L12(s, f)L9(s, sym2f)L4(s, sym3f)L(s, sym4f)

× L9(s, χ)L12(s, f × χ)L9(s, sym2f × χ)

× L4(s, sym3f × χ)L(s, sym4f × χ),

MK3,5(s) = ζ21(s)L30(s, f)L25(s, sym2f)L13(s, sym3f)L5(s, sym4f)

× L(s, sym4f × f)L21(s, χ)L30(s, f × χ)L25(s, sym2f × χ)

× L13(s, sym3f × χ)L5(s, sym4f × χ)L(s, sym4f × f × χ),

MK3,6(s) = ζ51(s)L76(s, f)L68(s, sym2f)L38(s, sym3f)L19(s, sym4f)

× L6(s, sym4f × f)L(s, sym4f × sym2f)L51(s, χ)L76(s, f × χ)

× L68(s, sym2f × χ)L38(s, sym3f × χ)L19(s, sym4f × χ)

× L6(s, sym4f × f × χ)L(s, sym4f × sym2f × χ),
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MK3,7(s) = ζ127(s)L195(s, f)L182(s, sym2f)L106(s, sym3f)L63(s, sym4f)

× L26(s, sym4f × f)L7(s, sym4f × sym2f)L(s, sym4f × sym3f)

× L127(s, χ)L195(s, f × χ)L182(s, sym2f × χ)L106(s, sym3f × χ)

× L63(s, sym4f × χ)L26(s, sym4f × f × χ)

× L7(s, sym4f × sym2f × χ)L(s, sym4f × sym3f × χ),

MK3,8(s) = ζ322(s)L504(s, f)L483(s, sym2f)L288(s, sym3f)L195(s, sym4f)

× L96(s, sym4f × f)L34(s, sym4f × sym2f)L8(s, sym4f × sym3f)

× L(s, sym4f × sym4f)L322(s, χ)L504(s, f × χ)L483(s, sym2f × χ)

× L288(s, sym3f × χ)L195(s, sym4f × χ)L96(s, sym4f × f × χ)

× L34(s, sym4f × sym2f × χ)L8(s, sym4f × sym3f × χ)

× L(s, sym4f × sym4f × χ).

Here, χ is the non-trivial Dirichlet character modulo 4, Ul(s) is a Dirichlet
series which converges absolutely in the half plane Re s > 1/2, and Ul(1+it) 6= 0.

Proof We will take l = 8 for an example, and give a detailed proof. Other
cases can be obtained by the similar approaches.

For Re s > 1, the Rankin-Selberg L-function attached to symMf and symNf
are defined by

L(s, symMf × symNf) =
∏
p

∏
06i6M

∏
06j6N

(1− αM−ip βipα
N−j
p βjpp

−s)−1

=:
∑
n>1

λsymMf×symNf (n)

ns
,

where
αp + βp = λf (p), αpβp = 1.

For l = 8, we obtain

a8K3
(p)r(p) = (1 + αp + βp)

8(1 + χ(p))

= {(αp + βp)
8 + 8(αp + βp)

7 + 28(αp + βp)
6

+ 56(αp + βp)
5 + 70(αp + βp)

4 + 56(αp + βp)
3

+ 28(αp + βp)
2 + 8(αp + βp) + 1}(1 + χ(p)).

It is clear that
(αp + βp)

2 = λsym2f (p) + 1,

(αp + βp)
3 = λsym3f (p) + 2λf (p),

(αp + βp)
4 = λsym4f (p) + 3λsym2f (p) + 2,

(αp + βp)
5 = λsym4f×f (p) + 3λsym3f (p) + 5λf (p),
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(αp + βp)
6 = λsym4f×sym2f (p) + 4λsym4f (p) + 8λsym2f (p) + 5,

(αp + βp)
7 = λsym4f×sym3f (p) + 5λsym4f×f (p) + 8λsym3f (p) + 13λf (p),

(αp + βp)
8 = λsym4f×sym4f (p) + 6λsym4f×sym2f (p)

+ 13λsym4f (p) + 21λsym2f (p) + 13.

Hence, we obtain

a8K3
(p)r(p) = (λsym4f×sym4f (p) + 8λsym4f×sym3f (p) + 34λsym4f×sym2f (p)

+ 96λsym4f×f (p) + 195λsym4f (p) + 288λsym3f (p)

+ 483λsym2f (p) + 504λf (p) + 322)(1 + χ(p)).

Thus, for Re s > 1, we can write

ζ322(s)L504(s, f)L483(s, sym2f)L288(s, sym3f)L195(s, sym4f)

× L96(s, sym4f × f)L34(s, sym4f × sym2f)L8(s, sym4f × sym3f)

× L(s, sym4f × sym4f)L322(s, χ)L504(s, f × χ)L483(s, sym2f × χ)

× L288(s, sym3f × χ)L195(s, sym4f × χ)L96(s, sym4f × f × χ)

× L34(s, sym4f × sym2f × χ)L8(s, sym4f × sym3f × χ)

× L(s, sym4f × sym4f × χ)

as an Euler product of the form∏
p

(
1 +

A(p)

ps
+
A(p2)

p2s
+ · · ·

)
,

where
A(p) = a8K3

(p)r(p).

Then, we derive that

LK3,8(s) = ζ322(s)L504(s, f)L483(s, sym2f)L288(s, sym3f)L195(s, sym4f)

× L96(s, sym4f × f)L34(s, sym4f × sym2f)L8(s, sym4f × sym3f)

× L(s, sym4f × sym4f)L322(s, χ)L504(s, f × χ)L483(s, sym2f × χ)

× L288(s, sym3f × χ)L195(s, sym4f × χ)L96(s, sym4f × f × χ)

× L34(s, sym4f × sym2f × χ)L8(s, sym4f × sym3f × χ)

× L(s, sym4f × sym4f × χ)

×
∏
p

(
1 +

a8K3
(p2)r(p2)−A(p2)

p2s
+ · · ·

)
=: MK3,8(s)U8(s),

where U8(s) is a Dirichlet series which converges absolutely in the half plane
Re s > 1/2, and U8(1 + it) 6= 0. �



Higher moment of coefficients of Dedekind zeta function 63

Remark 2.2 The famous work of Gelbart and Jacquet [5], Kim [12], and
Kim and Shahidi [13,14] showed that L(s, symMf) (1 6 M 6 4) is a general
L-function, which has an analytic continuation as an entire function in the
whole complex plane C and satisfies a certain functional equation of Riemann
zeta-type of degree M + 1. Due to the work of Jacquet and Shalika [9,10],
Shahidi [20,21], and Rudnick and Sarnak [19], the Rankin-Selberg L-function
L(s, symMf × symNf) has an analytic continuation as an entire function in
the whole complex plane C (1 6 M,N 6 4, M 6= N and except possibly for
simple poles at s = 0, 1 for M = N) and satisfies a certain functional equation
of Riemann zeta-type of degree (M + 1)(N + 1).

Next, we shall recall some lemmas, which play an important role in the
proof of our results.

Lemma 2.3 For any ε > 0, we have

ζ(σ + it)�ε (1 + |t|)max{(1−σ)/3,0}+ε

uniformly for 1/2 6 σ 6 1 + ε and |t| > 1.

Proof See [22, Theorem II 3.6]. �

The current best result is due to [1, Theorem 5], which states that

ζ(σ + it)�ε (1 + |t|)max{13(1−σ)/42,0}+ε (4)

uniformly for 1/2 6 σ 6 1 + ε and |t| > 1. For the average bounds, we have the
well-known estimates∫ T

1

∣∣∣ζ(1

2
+ it

)∣∣∣Adt� T 1+ε, A = 2, 4. (5)

Combining the Phragmen-Lindelöf principle for a strip [8, Theorem 5.53]
with the estimate given by Heath-Brown [7, (1.1)], we can derive a similar
sub-convexity bound for Dirichlet L-function:

L(σ + it, χ)�ε (1 + |t|)
1−σ
3

+ε (6)

uniformly for 1/2 6 σ 6 1 and |t| > 1, where χ is a Dirichlet character χ
modulo q, and q is an integer.

We learn from [6, Corollary] that

L
(1

2
+ it, f

)
� (1 + |t|)

1
3
+ε, t ∈ R.

Similarly, we have the following result.

Lemma 2.4 Let f be a primitive holomorphic cusp form with respect to the
congruence group Γ0(|D|). Then, for any ε > 0, we have

L(σ + it, f)�ε (1 + |t|)
2(1−σ)

3
+ε
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uniformly for 1/2 6 σ 6 1 and |t| > 1.

For the symmetric square L-function L(s, sym2f), we have the following
sub-convexity bound.

Lemma 2.5 For any ε > 0, we have

L(σ + it, sym2f)� (1 + |t|)max{11(1−σ)/8,0}+ε

uniformly for 1/2 6 σ 6 1 + ε and |t| > 1.

Proof See [16, Corollary 1.2]. �

For the general L-function, we have the following convexity bound.

Lemma 2.6 Let L(s, g) be a Dirichlet series with the Euler product of degree
m > 2, which means that

L(s, g) =
∞∑
n=1

Lg(n)

ns
=
∏
p

m∏
j=1

(
1− αg(p, j)

ps

)−1
,

where αg(p, j), j = 1, 2, . . . ,m, are the local parameters of L(s, g) at prime p
and Lg(n) � nε. Assume that this series and its Euler product are absolutely
convergent for Re s > 1. Assume also that it admits a meromorphic continuation
to the whole complex plane C and satisfies a functional equation of Riemann
type. Then for 0 6 σ 6 1, we have

L(σ + it, g)�ε (1 + |t|)
m(1−σ)

2
+ε.

Proof See [8, Theorem 5.41]. �

It should be remarked that in Lemma 2.6, we consider only the t-aspect in
the analytic conductor introduced by Iwaniec and Kowalski [8, Theorem 5.41].
By means of Remark 2.2 and Lemma 2.6, for the Rankin-Selberg L-function
L(s, symMf × symNf) and any ε > 0, we have

L(s, symMf × symNf)�ε (1 + |t|)
(M+1)(N+1)(1−σ)

2
+ε,

where 1 6M,N 6 4.
For the general L-function, we have the following average sub-convexity

bounds.

Lemma 2.7 For any ε > 0, we have∫ T

1

∣∣∣L(1

2
+ it, f

)∣∣∣2dt ∼ CT log T,

∫ T

1

∣∣∣L(1

2
+ it, f

)∣∣∣6dt� T 2+ε,

uniformly for T > 1.

Proof See [6, Theorem] and [11, (0.9)]. �
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3 Proof of Theorem 1.1

In this section, we will take l = 2 for an example, and give a detailed proof.
The cases of 3 6 l 6 8 can be obtained by the similar approaches. By using
sharper bounds and mean values of ζ(s) and L(s, f), we can obtain better
results. However, it will be improved a little. Thus, for the sake of simplicity,
we would rather use the bound of Riemann zeta function in Lemma 2.3 than
refer to (4).

Assume that K3 is a cubic non-normal extension over Q. By the Perron
formula and (1), we get

∑
n6x

a2K3
(n)r(n) =

1

2πi

∫ 1+ε+iT

1+ε−iT
LK3,2(s)

xs

s
ds+O

(x1+ε
T

)
.

Then we move the integration to the parallel segment with Re s = 1
2 + ε =: b.

By the Cauchy residue theorem, we have

∑
n6x

a2K3
(n)r(n) =

1

2πi

∫ 1+ε+iT

1+ε−iT
LK3,2(s)

xs

s
ds+O

(x1+ε
T

)
=

1

2πi

{∫ b+iT

b−iT
+

∫ b−iT

1+ε−iT
+

∫ 1+ε+iT

b+iT

}
LK3,2(s)

xs

s
ds

+ Res
s=1

{
LK3,2(s)

xs

s

}
+O

(x1+ε
T

)
=: I2,1 + I2,2 + xP2(log x) +O

(x1+ε
T

)
,

where

I2,1 =
1

2πi

∫ b+iT

b−iT
LK3,2(s)

xs

s
ds,

I2,2 =
1

2πi

{∫ b−iT

1+ε−iT
+

∫ 1+ε+iT

b+iT

}
LK3,2(s)

xs

s
ds,

and P2 is a polynomial of degree η2. We see from complex analysis that η2 + 1
equals to the order of the pole s = 1 of LK3,2(s). By Lemma 2.1 and Remark
2.2, we know that only ζ(s) has a pole at s = 1 in the factorization of LK3,2(s).
So we have η2 = 1.

For I2,1, from Lemma 2.1, we have

I2,1 � x
1
2
+ε + x

1
2
+ε

∫ T

1
|MK3,2(b+ it)|t−1dt.
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By Cauchy’s inequality, we get

I2,1 � x
1
2
+ε max

T16T

{
1

T1
|(L2(s, χ)L2(s, f × χ)

× L(s, sym2f)L(s, sym2f × χ))s=b+iT1 |

×
(∫ T1

T1/2
|ζ(b+ it)|4dt

)1/2(∫ T1

T1/2
|L(b+ it, f)|4dt

)1/2}
+ x

1
2
+ε.

By Lemma 2.7 and Cauchy’s inequality, we obtain∫ T1

T1/2
|L(b+ it, f)|4dt�

(∫ T1

T1/2
|L(b+ it, f)|2dt

)1/2(∫ T1

T1/2
|L(b+ it, f)|6dt

)1/2

� T
3
2
+ε.

Then, from Lemmas 2.4–2.6, (5), and (6), we get

I2,1 � x
1
2
+ε + x

1
2
+εT

1
3
+ 2

3
+ 3

4
+ 11

16
+ 1

2
+ 3

4
−1 � x

1
2
+εT

43
16 .

For I2,2, we derive that

I2,2 �
∫ 1+ε

b
xσ|MK3,2(σ + iT )|T−1dσ

� max{xσT
55
8
(1−σ)−1+ε}

� x
1
2
+εT 39/16 +

x1+ε

T
.

Thus, we obtain∑
n6x

a2K3
(n)r(n) = xP2(log x) +O

(
x

1
2
+εT 43/16 +

x1+ε

T

)
.

On taking T = x8/59, we obtain∑
n6x

a2K3
(n)r(n) = xP2(log x) +O(x

51
59

+ε).

Remark 3.1 In the case l = 2, only ζ(s) contributes orders of s = 1 in the
factorization of LK3,l(s). However, for larger l, we know from [4] that in this case
L(s, sym3f) also has a simple pole at s = 1 though in most cases it is entire. So
for l > 3, ηl + 1 equals to the sum of the degree of ζ(s) and L(s, sym3f) instead
of the degree of ζ(s) itself. This explains the values of ηl in Theorem 1.1.

Remark 3.2 For the sake of simplicity, we only use the individual convexity
or sub-convexity bounds of Riemann zeta function and the general L-function
to derive nontrivial bounds in the cases of 3 6 l 6 8.
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