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1 Introduction and main results

In this paper, we consider the following Navier-Stokes-Landau-Lifshitz-Maxwell
system:

ur+ (u-V)u+ VP —vAu=—-AV - (Vdo Vd) — (E+u x H), (1.1)
di + (u-V)d = y(—=d x (d x Ad) +d x Ad), (1.2)
V-u=0, (1.3)
0E

E—VXH——JE—I—U, (1.4)
QA+ Gy gy, (1.5)

ot
V.E=0, (1.6)
V- (H+pd) =0, (1.7)
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with initial and boundary conditions

u(x,0) =up(z), V-up=0, d(z,0)=dy(x), =€, (1.8)
u(z,t) = di(z,t) =0, (x,t) € 0Q x (0,7T), (1.9)

in Q x (0,T), for a bounded smooth domain € in R? or in R?, T € (0,00).
(1.1) and (1.3) are the well-known density independent Navier-Stokes equations,
while (1.2) is the Landau-Lifshitz when v = 0. Here, u(z,t): Q x (0,7) — R"
represents the velocity field of the flow, d(x,t): Qx (0,7) — S™, the unit sphere
in R""! (n = 1,2), is a unit vector that represents the macroscopic molecular
orientation of the liquid crystal material. P(x,t): Q x (0,+00) — R represents
the pressure function, and v, A, and  are positive constants that represent
viscosity, the competition between kinetic energy and potential energy, and
the microscopic elastic relaxation time for the molecular orientation field,
respectively. In this paper, we note

—(d|Vd* + d x Ad) = f(d). (1.10)

In system (1.1)—(1.5), the unusual term V - (Vd ® Vd) denotes the n x n
matrix whose (i,j)-th entry is given by d, - dy; for 1 <i,j < n, ‘x’ denotes
the vector outer product, ¢ > 0 denotes the constant conductivity, and the
constant § can be viewed as the magnetic permeability of free space.

For system (1.1)—(1.3), Kim [10] proved the following regularity criterion:

2 3
u € L¥(0,t; LP®(R%), 4+ ==1,3<p< o0 (1.11)
s D

Fan et al. [7] extended (1.11) to the multiplier space

¢ T 2
X im MO 1) = {11615, = sup AL < o).

When the term d x Ad is omitted, (1.1) and (1.2) become
u+u-Vu+ VP —vAu = -V - (Vd e Vd), (1.12)

di +u-Vd=~(Ad + d|Vd|?), (1.13)

respectively, and system (1.12)-(1.13)-(1.3) is a simplified version of the
FEricksen-Leslie model, which reduces to the Ossen-Frank model in the static
case, for the hydrodynamics of nematic liquid crystals developed during the
period 1958-1968 [2,3,12].

It is a macroscopic continuum description of the time evolution of the
materials under the influence of both the flow field u(x,t) and the macroscopic
description of the microscopic orientation configurations d(z,t) of rod-like
liquid crystals. Roughly speaking, system (1.12)-(1.13)-(1.3) is a coupling
between the non-homogeneous Navier-Stokes equation and the transported flow
of harmonic maps. It is probably the simplest mathematical model one can
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derive, without destroying the basic nonlinear structure, from the original
equations in the continuum theory of nematic liquid crystals proposed by
Ericksen [4,5] and Leslie [13]. Lin [14] and Lin and Liu [16,17] initiated the
mathematical analysis of system (1.12)-(1.13)-(1.3).

More precisely, Lin and Liu [17] considered the Leslie system of variable
length, i.e., the Dirichlet energy

1
= d*d
5 | VdPaz

d: Q — §n1

for

is replaced by the Ginzburg-Landau energy
1o, (L=1d?)?
/Q(2 VP + 5 )d:c

d: Q — R",

for

and proved the existence of global classical and weak solutions in dimensions
two or three. In [16], they proved the partial regularity theorem for suitable
weak solutions, similar to the classical theorem by Caffarelli-Kohn-Nirenberg
[1] for the Navier-Stokes equation. However, as pointed out in [16,17], both
their estimates and arguments depend on ¢, and it is a challenging problem to
study the convergence as ¢ tends to zero.

The Ericksen-Leslie theory has successfully predicted several effects and
analyzed many others rather well; see, for example, the survey article [6] by
Leslie. Most analytical work, however, has been carried out under rather special
assumptions concerning either the type of flow or the form of the solutions.
There are also other reasons that this system merits attention.

The coupling of this new Navier-Stokes-Landau-Lifshitz-Maxwell system
can be derived from the full Maxwell system as follows:

0B oD

— =-AXxEFE, — E= H 1.14
where E and H are the electric and magnetic fields, respectively, o > 0 is the
conductivity, D and B are the electric and magnetic displacements defined by

D=¢FE, B-= ,uo(H—i- d),

respectively, where ¢y is the permittivity of free space, pg is the magnetic
permeability of free space, u is the velocity field of the flow, and E is the
electric polarization. Substituting these definitions into (1.14), we may couple
u, E, H, and d by system (1.1)—(1.7), for the more information about (1.14),
we refer to [9].
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In the past few years, progress has been made on the analysis of model (1.1)—
(1.7) by overcoming the supercritical nonlinearity |Vd|2d. The existence of weak
solutions was established in [15]. To our best knowledge, however, there are no
results available on weak solutions of the multi-dimensional problem (1.1)—(1.7)
with supercritical nonlinearity. Since (1.1)—(1.7) is strongly coupled, it is not
easy to obtain the weak solution by use of the theory of semigroups as Schein
n [18]. We are going to use Galerkin method here. We are interested in global
weak or smooth solutions to problem (1.1)—(1.9) in the domain Qx (0,7") = Q7.

This paper is organized as follows. In Section 2, we use the standard method
to obtain the existence of weak solution for problem (1.1)—(1.9) in the domain
QO x(0,T) = Qr, where Q C R? or R, In Section 3, we obtain the global smooth
solution by establish a prior estimates and induction technique.

C is a generic constant and may assume different values in different
formulates.

For the sake of simplicity, we denote

[ llzey =11 llpy =2

Denote H™(Q2), m = 1,2,. .., the Sobolev space of complex-valued functions
with the norm

1/2
[ </ S D dx) ,

|al<m

and denote
H () = closure of C§°(€,R") in the norm ( , |Vu|?dz)'/2,
H~Y(Q) = the dual of H}(Q), V = C(Q,R") N {u: V-u =0},
J = closure of V in L?(92,R"), K = closure of V in H*(Q,R").

Definition 1.1 A vector (u(z,t),d(z,t), E(x,t), H(z,t)) € (L>=(0,T; L*(Q)),
L>=(0,T; HY(Q)), L=(0,T; L*(Q)), L>=(0,T; L*(R))) is called a weak solution
to problem (1.1)—(1.9), if for any vector-valued test function ¥(z,t) € C*(Q7)
such that U(z,T) = 0, the following equalities hold:

— // u - Wedadt + / Vu - VW¥daxdt
Qr Qr
+// u-Vu-\Idedt—F/ VP - Udxdt
T Qr

= / wo¥(x,0)dr — )\// (Vd e Vd) - VIdzdt
Q T

—/ FE - Udxdt — // (u x H) - Udzdt, (1.15)
Qr T
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— // d - W;dxdt + / Vu - VUdxdt + // u-Vd-VYdzdt
T Qr QT

_ 7//T(d x (d x Ad) +d x Ad) - Udadt, (1.16)

/ EV.e%tdzdt — o / / e’ F - Udzdt
QT T

+// e”t(Vx\If)-Hda:dt+/E0-\IJ(az,0)d:E+/u-e”t\Idezo, (1.17)
QT Q Q

// (H + pd)¥idxdt — // (V x V). Edzdt + / (Ho + Bdp) - ¥(x,0)dx
T T Q
—0, (1.18)
Theorem 1.1  Assume (ug, do, Eo, Ho) € (L?(Q), HY(Q), L*(), L%(Q)). Then
problem (1.1)—(1.9) admits at least one global initial-valued solution (u(z,t),
d(z,t), E(x,t), H(z,t)) such that
u € L0, T; HY(2)) N L*°(0,T; L*(Q2)) N C(0,T; H-(Q)),
d € L*(0,T; H*(R)) N L>®(0,T; H'(Q)) n CO1/6) (0, T; L2(Q)),

E € L>(0,T; L*(Q)) N C(0,T; HY(Q)),

H € L*™(0,T; L*(Q)) N C(0,T; H1(Q)).
Theorem 1.2 Let m > 2, and assume (ug,do, Fo, Hy) € (HY(Q), H*(Q),

H™Y(Q), H"Y(Q)). Then there ewists a unique smooth solution (u(x,t),
d(z,t), E(x,t), H(xz,t)) of problem (1.1)—(1.9) such that

(u,d) € (L0, T; H™ ()%, (B, H) € (L*(0, T H" ()%,

either

dimQ =2
or

dim ) = 3,
and

v = vy(uo, do, Eo, Hp).

For various notations and definitions of function spaces in the statement of
the above theorem and throughout the paper, we refer to [11,20].

2 Weak solution to (1.1)—(1.9)

The sizes of the viscosity constants v, A, and + do not play important roles
in our proof of Theorem 1.1, i.e., the global existence of weak solutions of the
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Cauchy boundary-value problem (1.1)—(1.9). Since v, A\, and v are not crucial
in this section, we assume that v = A = v = 1 for simplicity.

Lemma 2.1 (Gagliardo-Nirenberg inequality) Assume
ue L), DMuel'(), QCR" 1<qr<oo, 0<j<m.

Let p and « satisfy

1 1 1 ]
,:l_%a(,_ﬂ)_}_(l_a)fj igagl
P n r n q m
Then '
|D7ull, < C(p,m, j,q, )| D™ul|¢ lull;~, (2.1)

where C(p,m, j,q,r) is a positive constant.

Lemma 2.2 (Gronwall’s inequality, [8]) Let ¢ be a constant, and let b(t) and
u(t) be nonnegative continuous functions in the interval [0,T], satisfying

¢
u(t) < c+ / b(r)u(r)dr, te[0,T].
0
Then u(t) satisfies the estimate
t
u(t) < cexp </ b(T)dT), t €10,7). (2.2)
0

Lemma 2.3 [19] Assume that X C E CY are Banach spaces and X —— E.
Then the following imbeddings are compact:

L9(0,T; X) N { ?;: e L'(0, T; Y)} ey LU0, T;E), 1<q<oo, (2.3)
Oy
L%(0,T; X) N { a— e L'(0,T; Y)} s O(0,T;E), 1<r<oo. (2.4)
Lemma 2.4 If Q is a smooth, bounded domain in R™ and u|sq = 0, then we
have
lull < 2Vull3 [ul3,  [luli < CIVal3[VZull3, n=2, (2.5)
lulli < 41Vl [lull2,  [[Vul§ < Cllul% [VPull2, n=3. (2.6)

2.1 Global weak solutions to (1.1)—(1.9)

First, we get the system of the ordinary differential equations (ODEs) (2.7)-
(2.11) admits at least one continuously differentiable global solution. Second,
we use the Galerkin method to obtain the existence of weak solution to problem

(1.1)-(1.9).

Let wy,(x), n =1,2,..., be the unit eigenfunctions satisfying the equation

Aw, + Awy, =0, wy(x) =0, x €09,
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and let A\, n = 1,2,..., be the corresponding eigenvalues different from each
other.
Denote the approximate solution of the problem with the following forms:

o (2, ) = ij;l Qo (Dws(2),  dyn(,1) = zﬁ Bom ()ws (),

Pp(z,t) = Z Com (t)ws(z),
s=1

Em(2,t) =Y Yem(t)we(@),  Hpm(2,t) =Y dam(t)ws(x),
s=1

s=1
where g (t), Bsm (t), Ysm (t), 0sm (t) (t € RT, s =1,2,...,m, m =1,2,...) are

n-dimensional vector-valued functions satisfying the following system of ODEs:

/ Umpws (x)dz = / [(—tm - Vup + Ay, + VP, — V- (Vd,y, © Vd,y,)
Q Q

— Ep)ws(x) — (up X Hy)ws(z)]de, (2.7)

/ (dmt + Uy - Vdp )ws(z)dx
Q

- / (—dyn % (A X Adoy) + dyn % Adly)ws ()2, (2.8)
Q
/ Enws(z)dx = /(V X Hp, + Uy — 0By )ws(z)de, (2.9)
Q Q
/(Hmt + Bdmt)ws(z)de = — / (V X Ep)ws(x)de, (2.10)
Q Q
/ VP, ws(x)dz =0, (2.11)
Q
and the initial conditions
/Qum(a:,O)ws(x)d:c = /QUQ(m)wS(x)da:, (2.12)
/ dm (2, 0)ws(x)dz = / do(z)ws(x)dz, (2.13)
Q Q
Ep(z,0)ws(x)dr = / Eo(z)ws(z)dz, (2.14)
Q Q
/ Hp,(z,0)ws(x)dzr = / Hy(z)ws(z)dz. (2.15)
Q Q

It follows from the standard theory on nonlinear ODEs that the problem
(2.7)—(2.15) admits unique local solution. The following estimates can ensure
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the existence and uniqueness of the solution of (2.7)—(2.15) and also obtain the
global solution to problem (1.1)—(1.9).

Lemma 2.5 Assume (Um0, dmo, Emo, Hmo) € (L2(Q), HY(Q), L?(2), L*(Q2)).
Then for the solutions of the initial-value problem (2.7)-(2.15), we have the
following estimates:

sup (I3 + [z + 1| Em 13 + [ Hml13) <

\\

|wm |l 2 (0,m;m1 ()) + I dmll L2001, 52(02)) < C,

where C' is independent of m.

Proof Testing (2.9) by s, and (2.10) by dgp, summing up the result for
s=1,2,...,m, and integrating by parts, we have

1d

- — (\Emy2+yHm\2)dx+a/ ]Em\zdac—i—ﬁ/dthmdx—/umEmdac.

Q
(2.16)
Testing (2.9) by asm + Ysm, summing up the result for s = 1,2,...,m, and
integrating by parts, we deduce that

2dt/’E |d“”+/“m mtdx—/Q(E + U ) (=0 By, + Uy )da
+/(V X Hp)(Em + um)dz.  (2.17)
Q

Adding (2.16) and (2.17), then testing the result by «g, we have

1d
- (ZQO\Em|2 + 2a0|Hm|2)dx + 2Ba0/ dmtHpmdx
+a0/ umEmtdx—i-aao/ |Em\2da:
Q Q
= ao/ umEmdm—i—ao/(V X Hpp)umde
Q Q

+ap /Q(Em + Up) (=0 Ep, + up,)dz. (2.18)

Multiplying (2.7) by agm(t) and summing up the products for s = 1,2,...,m,
we deduce that

2 2
th/ | d:v~|—/ V|2 da

= /(um-V)d -Ad d:z—/Emumdx (2.19)
Q
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Testing (2.8) by —AmfBsm, summing up the products for s = 1,2,...

integrating by parts, and adding the above equality, we have

1d
2dt

= / (dm - Adp)?dx — / Epup,da
Q Q

</ \Adm|2|dm|2dx—/Emumdx.
Q Q

(|um|2—|—|Vdm| )dx+/(]Vum\2+|Adm|2]dm|2)dx

Combining (2.20) with (2.18), we get

1d
—— (|um|2+|Vdm]2+2ozo|Em\2+2a0|Hm]2)dac+/ |Vt |2d
+2Ba0/ dthmdx—Fao/ Emtumdx+0ao/ |Em|2dx
Q Q Q
<QO/(um—aEm)(Em—l—um)da:—i-ao/(V X Hp)updz
Q Q

+ (ap — 1)/ Enumdr.
Q

(2.20)

(2.21)

In order to deal with the term fQ Ayt Hypdz, we multiply (2.10) by (28a0— ) Bsm

and sum up the product for s = 1,2,...,m to obtain

(25040 - B)/Qdemtdx"i‘ B 2BO;O dt/ ‘dm| dx

+(2Ba9 — B) / (V X Ep)dnpdx = 0.

Q

Using (2.17), adding (2.21) and (2.22), we obtain

(Jtim|? + |Vdm|* + 2ag + 1)|Em|? + (200 + 1)|Hyp|?)da

S~

1d
2 dt
d 2
+(2Ba0 — B)— | dmHpdr + | |Vuy|'dx
+ ao/ Epumdx + (oo + U)/ |E|?da
Q Q

< g / (U, — 0Ep) (Em + um)dz + o / (V x Hp)upmdz
Q Q

_ (2Bag — B) /Q (V % Ey)dydz

B(2Bag — B) d 2
—2dt/ﬂydm| dI-i‘(OéO_Z)/QEmUmdx'

(2.22)

(2.23)
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Similarly, to deal with the term fQ U Eppda, we multiply (2.9) by apasy, and
sum up the product for s =1,2,...,m to obtain

ao/ Eiumdr — ao/ |um|2dx + aoa/ Epundr — ag / (V x Hp) - updx
Q Q Q Q
=0.

(2.24)

Take (2.24) into the inequality (2.23) and denote

1d

R T ([t |? + [Vdm|* + (200 + 1)|En|? + (200 + 1)|Hyp|?)d
Q

d
+ao/ |um|2dx+(25ao—6)/ demdx—i-/ \Vum\Qda:
B(2Bag — /
Ty ) dml e

< ag /Q(um —0Ey)(Ey + up)dx + (28ag — 5) /Q(V X Ep)dy,dx

— aao/ |Ep|?dz 4 (ago 4+ o — 2)/ Eup,dz
Q Q

=L+ Iy + I35+ 1. (2.25)

We estimate each term of the right-hand side of (2.25):

o Qo
L < o | tm — UEmH% + o5 | Em + um”%u

2Bap — B
IQ § T (Hv X dm”% + HEmH%)a

g0 + o — 2
So,

(67s)
L+1L+ 1< 7llum oEm||2+ O Ep + um |3

2Bap — B 0400+040
+( + )||Em||2
2 2
apo + ag — 2 25&0
t— [umll3 + =——— HV X I3
2 — 5
< 2fa0 — B IV X dy 2 + Q0 + 90 —

5 0720022 a3
ago + 3ag — 2+ 2a002 +2Bag — 3 2
+ : | Buall3-
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Taking the above inequalities into inequality (2.25), we get

1d
(Jttm|? + |Vdm | 4 200| Em | 4 200 Hpp|?)da

2dt Jq

+ (2Bap — /B)% /Q dpm Hppdx + /Q |Vt |2da + ﬁ(QBO;O —b) (i/g \d,, |22
< ago +§a0 -2 ”um”% n apo + 3ag — 2 + gaoaz + 2Bay — B HEmH%

+ W IV % da3- (2.26)

Integrating inequality (2.26) with the variant ¢, we deduce that

1
5 (HumHg + HVde% =+ 2aO”EmH% + 2aOHHmH§)

B(2Bap — B)

L

1 t
- 5 (2800 = B)(Idnl§ + 1Hal) + [ [Vulat +
-2 [t 2Bap — B [*
< 207202 [ e+ 2= 9
0 0

aoa+3a0—2+2a002+2ﬂa0—ﬁ t
t | 1B
0

2

From the above inequality, we get

2 24 8—28ap 1 1
| Ncape 1
540 0+202+372 2(8—-1)

8 >1, max{
Take
Cy = %min{2,4a0, B+ 2a9 — 2Bag, (B — 1)(2Ba0 — B)},

1
Cy = 5 max{ago + Sag — 2, apo + 3ap — 2 + 201002 4 2Bag — B, 2Bag — B},

SO

t
2 2 2
< Cz/o (lumllz + 1 Emllz + IV % dil|3)d2.
By Gronwall’s inequality, we have
sup ([[uml[3 + l|dml|F + 1 Enl3 + [ Hnl3) < C,
0<t<T
where C' is independent of m. O

Lemma 2.6 Under the conditions of Lemma 2.5, for the solution (un,,dn,
En., Hy,) of system (2.7)~(2.15), there exists C > 0 independent of m such that

t
/ (ttme 22 + Il + [ Bt |22 + | Homel %)t < C.
0
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Proof TFor the function ¢ € HZ(f2), ¢ can be represented by

¢ = om +$m7 Om = Znsws(x>v gm = Z n5w5($)7 (2'27)
s=1

s=m+1

where, for s > m + 1, we have

/ dmiws(z)dz = 0.
Q

First, we consider Q € R?. By Lemma 2.5 and the Ladyzhenskaya inequality
[11], there holds that

‘ /Q dmt¢($)dx‘
- ‘ /Q dmtqﬁm(x)da;’

— ’ /(—um V4 Ady + dip |V |? + dp ¥ Adm)qﬁm(x)dx‘
0
< lémlloo / tgn - Vi da + / s - A |d + |l / |V 2
Q Q Q

+/ IV, X Vdm\¢m(x)dm+/ |y X V|V G ()
Q Q

< (lumll2 [V dmll2 + lldmlz + ldmll2 IV dml2) (I ém oo + | $mll2)
+ (IVdmll3 + dmll2 [V dm l2) (1¢mlloo + llém]l2)

< (lumll2 Vdmll2 + lldmll2 + Clldmll2 [Vdmll2 | Adm2
+ 1 Admllz [dmll2) [ 22

< CllAdll2 (6]l m2;

‘/Qumt(;ﬁ(x)dx’ = ‘/Qumtd)m(x)dx‘
< C(/ [t - Vg, - ¢m|de +/ |Vt - Vo, |de
Q Q
+ [ 19 (Ve © V) ol + [ (Bl

+/Q|(um X Hm)¢m|dx)

< C(IV a2 [V dmlz + o [tz [l
1Bl Nmlla + iz [ Ho 2 6o
+ V2 [ Adl2 6 ),
SO
| [ wass(e)da] < OOVl + 1A )l
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| /QEmtﬁf’@)dx\ = | /Q Epniom(2)da]

= | = [ limitom + 0B — (3 x H)

Q
Bl 6mls + 1 Emla [0l + oz o)
Nl (I3 + 1Ak )

NN

’/QHmtfb(x)dx‘ = ]/QHmtaﬁm(x)dx < C|lémll 2,

where the constant C' is independent of m.
When ©Q € R3, by Lemma 2.4, the above estimates also hold. Finally,
integrate the above estimates with respect to t, the lemma is proved. O

Lemma 2.7 Under the estimates of Lemma 2.5 for the solution (up,, dp, Ep,,
Hy,) of system (2.7)—(2.15), there exists C > 0 independent of m such that

[din (- t1) = dim (-, t2)[|2 < Clt1 — ta| /6,
UmvEmaHm € C(O,T; H_I(Q))'

Proof By the Sobolev interpolation of negative order, we have
1/3 2/3
[dm (-, t1) = dm (-, t2)ll2 < Clldm (-, t1) = dim (- t2) [ 772 ldm (-5 61) = dim (- t2) [ 3

(2> 1/3
<o [
11 H=2

to 1/6
<c( / ||dmtuif_zdt> o — t]1/0

ty
< Clty — to] /.

On the other hand, it follows from Lemma 2.3 and
L*(Q) — H1(Q) — H%(Q),

Hy, € L0, T; L2(Q)) N {w: aaif e L0, T; H_Q(Q))},

we have

H,, € C([0,T]; H(Q)).
Similarly, we have
En € C(0,T; HH(R)), um € C(0,T]; H (). O

In fact, it follows from (2.21) and (2.22) that the solution (ty,, dp,, Em, Hm)
of system (2.7)—(2.15) does not blow up at finite from ODE problem, we have
the following lemma.
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Lemma 2.8 Under the conditions of Lemma 2.5, the initial problem of the
system of the ODFEs (2.7)—(2.15) admits at least one continuously differentiable

global solution (@spm (t), Bepm () Vem(t), dsm(t))-

2.2 Existence of weak solution for problem (1.1)—(1.9)

First of all, as in Definition 1.1, we may define the weak solution of problem
(1.1)=(1.9). In the proof of Theorem 1.1, we must use the following lemma
which is well known.

Lemma 2.9 If u, — u strongly in L*(Qr) and v, — v weakly in L*(Qr),
then u,v, — uv weakly in LY(Qr) and in the sense of distribution.

Now, we prove the existence of weak solution for problem (1.1)-(1.9) and
finish the proof of Theorem 1.1.

Proof of Theorem 1.1 The uniform estimates for the approximate solution
(um (z,t), dp (2, t), By (2, t), Hyp(2,t)) in the previous subsection yields that
there is a subsequence of (up,(z,t),dm(x,t), Eyn(x,t), Hy(x,t)) such that

Um (2, t) = u(z,t) weakly * in L*(0,T;J), (2.28)
U (2, 1) = u(z,t) weakly * in L*(0,T; K), (2.29)
dm(z,t) — d(z,t) weakly * in L>(0,T; H(Q)), (2.30)
dm(z,t) — d(x,t) strongly in L*(0,T; H'(Q)), (2.31)
dm(x,t) = d(z,t) weakly * in L?(0,T; H*(Q)), (2.32)
H,,(z,t) — H(z,t) weakly * in L®(0,T;L*()), (2.33)
Ep(z,t) = E(z,t) weakly x in L*°(0,T; L*(Q2)). (2.34)

For any vector-value test function ¥(z,t) € C1(Qr), ¥(x,T) = 0. We define
an approximate sequence

U(t) = 3 ma(t)wy (@),
s=1

where

ns(t)z/ﬂ\ll(:v,t)ws(:c)dx.

Then
U, (z,t) = U(z,t) in CY(Qr) and in LP(Qr), Vp > 1. (2.35)

Making the scalar product of n(t) in (2.7), (2.8), (2.10) and e%'n,(t) in
(2.9), summing up the result for s = 1,2,...,m and integrating by parts we
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have

// um\I/mtdxdt+/um(-,O)\I’m(-,O)dm
T Q

= // (U, - VU, — Aty + VP +V - (Vdy, © Vdy,) + Ep) Y, dadt
T
(U, X Hp) Yy, dxdt
// (- Vi)W — Aty Uy + Y - (Vi @ V) Uy + VPV,
T

E, + (upm X Hp))¥,,]dzdt, (2.36)
// dm\IJmtdxdt—l—/ A (+,0) U, (+, 0)dz
Qr Q

/ Em\IJmte"tdxdt—F// U, U et dzdt
Qr T

. e“tdx . . T = .
+//T(V><\Ifm) Heotd dt+/QEm(,0)\IJm(,0)d 0, (2.38)

(2.37)

//Q (Hp + Bdim) VY ppdadt + / (Hm(+,0) + Bdm(-,0)) U (-, 0)dz

Q

_// (V % Up) - Epdadt = 0. (2.39)

Now, we are in the position to prove that (u(z,t),d(x,t), E(z,t), H(x,t)) is
a weak solution of (1.1)—(1.9). To this aim, one should set m — oo in (2.36)—
(2.39). From (2.28)—(2.35) and Lemma 2.9, it suffices to deal with the nonlinear
terms in (2.36)—(2.39). By (2.28) and (2.29), we have

/ / (Vi - VU, — V- VO )dadt
T

T
= / / (Vuy, — Vu) - V¥, dzdt + Vu - (V¥,,, — V¥)dzdt
Q

T T
< / IVl | Vit — Vot + / IVulls ||V, — VU||pdlt
0 0

— 0, m — oo,

// (U, - Vi, — u - Vu)dzdt
T

// -V, +u - (Vuy, — Vu)|dzdt
T
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— 0, m — oo,

// (U, X Hyy —u x H)®dxdt
// [(Hop % (t — 1))® + (1t % (Hoy — H))®]dadt

m — OQ.

By Lemma 2.9, we only need to prove
V- (Vdyp ®Vdy,) = V- (Vdo Vd) weakly in L(Qr).
In fact, by (2.31) and (2.32), for any ¥ € C'(Qr),

‘// (Vdm © Vdy) =V - (Vd © Vd)) - Ydadt

< // (V|Vdy,|* — V|Vd|?) - U|dzdt
T

+// ((Ady, - Vi, — Ad - Vd) - U|dadt
T

T T
< / /\(\Vdmyz—ywy?)-v\mdxdwr/ /Vdm-(Adm—Ad)\I/\dxdt
0 JQ 0 JQ
T
+/ /|Ad-(Vdm—Vd)\Il]dxdt
0 JQ
T
< V¥ Lo @r) IIVclm—VclIIL2<QT>+/0 IVdmll2 [[Ady — Ad|2 || ¥|[ocdt
T
+ [ 18dla [V = V] 9]
0

= I"+ 1" + I3".

(2.31) implies that 17", I3* — 0 as m — oo, and the fact that Vd,, is uniformly
bounded in L?(Qr) and (2.32) yield that Ii* — 0 as m — oo. We will prove

dm X Ady, — d x Ad  weakly in L?(Qr).

By virtue of (2.31) and (2.32), we have
// (o % Adyy — d x Ad)W|dzdt
T

// ) X Adyy +d % (Ady — Ad)]W|ddt
T

T
< ¥loo lldm = dll L2(@q) [[Adm|[ 201 +/0 ldll2 |Adm — Ad|2 [|[¥]|ocdt

—0, m — oo. (2.40)
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To prove the existence of the generalized solution, it remains to prove

//Q (dm X Adpy) - (dy X ¥y )dadt — //Q (d x Ad) - (d x ¥)dzdt.

In fact,

// (dpm X Adyy) - (dp, X Uy )dadt — // (dx Ad) - (d x ¥)dzdt
_ // (dy % Adyy — d x Ad) - (d x ¥)dadt

+// dm X Adpy, - (dpy, X Uy, — d x U)dzdt
T
= J" 4+ J3".

It follows from (2.40) that J" — 0, and moreover,
1/2
J3" < ldm X Adwll 2200 (// |dp X Wy — d X \I/]2da:dt>
Qr

1/2
gC([/h%x@m—@+wm—®xM%m0

T
— 0

Finally, from the above arguments, one may take m — oo in (2.36)—(2.39) to
obtain that (u,d, E, H) is a global weak solution of (1.1)—(1.9), which completes
the proof of Theorem 1.1. ]

3 Global smooth solution for problem (1.1)—(1.9)

By applying the Banach compression mapping theorem and induction
technique, we can obtain the smooth solution for problem (1.1)—(1.9), then we
get Theorem 1.2. In order to prove that there exists a global smooth solution
for problem (1.1)-(1.9), one needs to establish a priori estimate.

In this section, we first consider the case n = 2.

Remark 3.1 We consider a classical solution (u,d, F, H) of problem (1.1)-
(1.9). In fact,
dl=1 if |do| = 1. (3.1)

Multiplying (1.2) by d, we obtain
Old|* +u - V|d|* = 0,

i.e.,

o(ld* = 1) +u-V(d?-1)=0. (3.2)
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Multiplying (3.2) by |d|?> — 1 and then integrating by parts over € to deduce

d

d 2 2d =
dt (| | ) x =0,
we immediately verify (31)

Due to Remark 3.1, equation (1.2) equals to
di + (u-V)d = y(|Vd|?d + Ad + d x Ad). (3.3)

(1.3)-(1.7).
HY(Q), H'(Q)). Then
t)) of problem (1.1)-

In the following, we will consider problem (1.1), (3.3), and

Lemma 3.1 Assume (ug,do, Eo, Hy) € (HY(Q), H*(Q),
there exists a smooth solution (u(x,t),d(x,t), E(x,t), H(x
(1.9) satisfying

?

sup (|Aull3 +[|Ad|3 + [VE(3 + [VH3) < C (3-4)

<t<

when dim 2 = 2.
Proof Testing (1.2) by A(Ad+ H), by Young and Sobolev inequality we have

2dt/ \Adex+/dt Ade+/ |VAd|*da

:/Vu-Vd-VAddx—l-/
Q

u- VQd-VAdder/ Vu-Vd-VHdz
Q Q

—/Vd-|Vd|2-VAdda:—/d-V|Vd|2-VAddm—/Vd-Vd|2-Vde
Q Q Q

—/d-V|Vd|2-Vde+/Ad-Ade—/(deAd)-VAddx
Q Q Q

—/(de Ad)-VHda:—/(dx VAd)-VHda:+/u-V2d-Vde
Q Q Q
< C@Q(IVullz [Vdlloo VA2 + [lull4 [Adll4 [|[VAd|l2 + [[Vulla [[Vdll4 [VH]2

+llulla[|Ad]a [VHlz + | Vdl|oo VAP [l2 [V Adl|2 + ||dl|4 [V V|4 [|VAd]2
+IVdlloo [[VAPll2 IV H 2 + |l [VIVAP 4 [V HI|2 + [ Vdl|4 | Ad]la [V Ad]|2
+ldlloo [VAd|l2 [VH |2 + [|Vdlls [Adl4 [VH][2)

<ellVAd|E + C(IVHI3 + | A3 + | Ad|IT + [[Aullz + || Aul). (3.5)

Here, we have used
Qs [vAd|y [Vd|3 |V Ad]|2

<C
3/2
< o@)vadp?(vd|?
< C(Q)(e|VAd|E + [V},

IVdlloc V(|2 [IVAd]2

IVdli < C@)IIVdl; [Ad]); < C(Q)]Ad],



Navier-Stokes-Landau-Lifshitz-Maxwell equations 1151

ldlloe [Vl | Adll4 [VAd]l2 < CQ)(IVA]T | Ad]S + e[ VAd]3)

Q)| Adll + e[| VAd|[3).

//\ //\

Taking the same procedure to (1.1), we obtain

/\Au|2dx+/ \VAu]de—i-/ut AEdx
2dt o

<e(IVAd|3 + [ VAulf3)
+C(IVH|3 + [VE(Z + [|Ad]3 + [|Aul3 + | Aul3), (3.6)

here, we can choose £ = 1/8.
Making the scalar product of AE with (1.4) and AH with (1.5), respectively,
and then integrating the resulting equation with respective to x € €2, we obtain

/ [%fAE (V x H) - AE + 0EAE

| OH +pd) |

= H — uAE + (V x E)AH} do =0,

i.e.,

—/ (IVE]* +|VH|? )da:—i—/uAde—i—B/thde—a/ |VE*dx
Q
—0. (3.7)

Differentiating (1.1) with respect to t, and then making the scalar product
with respect to u;, we obtain

Ut + Ut + [(’LLt . V)U + (u . V)ut]ut + V.Pt Ut — A’U,t * Ut
= —[V . (Vd ® Vd)}t UL — E’tut — (U X Ht)ut. (38)

Integrating (3.8) over 2, and combining the Sobolev imbedding theorem, we
deduce

th/ \utIde—i—/ Ve da
< /]Vd| |th||Vutd$—|—/|u-Vut-ut|dm
Q Q

+ /Q |(ut - V)u - ug|da + /Q(]Etut] + |(u x Hy)ug|)dx

< IVdlla [IVdella [Vuellz + [Julla [Juella [[Vue]l2
+ [Juella [Vull2 [uella + [ Eell2 lutll2 + |ulloo [[well2 | Hell2
e([IVullz + IVAd|3) + C(Q) (luellz + Vel + (| Aull3
+IVH|5 + |VE|3 + [|Vde|l3 + lluel|d + [|Ad])3).
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Take ¢ = 1/8, whence

—— d d
th/ﬂlut\ x—i—/Q]Vut\ T

1
<3 (IVuell3 + IV Ad|3) + C@)([[uell3 + Vel + [|Aul3
HIVHIS + IVEIS + Vi + [lue |3+ [|Ad]3)- (3.9)
Applying 0, to (1.2), multiplying by Ad;, and integrating by parts, we have

1d
—— ds|*d Ad,|*d
550 | 1VaPde+ [ |adfas

</ (s - V)d - Ady + (u- V)dy - Ady|da
Q

+/ I[de| V| + d(|Vd|?),] -Adt|d:v+/ (dy x Ad) - Ady|dz
Q Q

< el 1Vl [|Adell2 + l[ulla [ Vdella || Adellz + lldelloo [ VaIF | Ade|2
+ lldlloo 1Vall4 [[Vde|ls | Adell2 + [Idella | Ad]l | Ady ]2
S C(IVael3 + IAd]F + [Veel|5 + || Aul3)

1
+ g (Vw3 + 1Ad3 + IV AdI[3). (3.10)

Whence (3.5)-(3.7), (3.9), and (3.10) imply (3.4) and

ug € L®(0,T; L*()) N L*(0,T; HY(Q)),
) ) ) (3.11)
Vd, € L®(0,T; L*(Q)) N L*(0,T; H(Q)).

Lemma 3.2
ug € L0, T; HY(Q)) N L?(0,T; H*(Q2)).

Proof Applying 0, to (1.1), multiplying by Aw;, and integrating by parts, we
g

et
d 2 2
— | [Vu|“dz + [ |Au|*dx

< /[|ut V- Aug| + |u - Vug - Aug| + |Vdy - Ad - Auy
Q

+ |E; - Aug| + |Vd - Ady - Aug| + ||Vd|? - d - Auyl
+ [|Vd|? - dy - Aug| + |(u x Hy) - Augl]da
< [Vulla fluella [[Augllz + [[ulloo [[Vuell2 | Auellz + [Vl oo [[Ad]]2 || Aue |2
+ | Vdllos [|Adel2 [|Augl|2 + [[Vdel|4 ([ V4 [|dlloo | Aul|2
+ V|13 Idelloo 1Aull2 + | Etll2 [| Aull2 + [ulloo || Hell2 | Al

1
< Clluellz + 1Vuell3 + [[Vell3 + [|Ae][5 + | B3 + || Hell3) + 3 || A3,
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and then, together with Lemma 3.1, we have

d
/ |Vut\2da:+/ |AugPda

1
Clluellz + [Vuellz + 1V ll2 + [|Ade][3) + 3 1 Aull3. (3.12)

By Gronwall’s inequality, (3.11), and (3.12), we deduce
Vuy € L®(0,T; L*(Q)) N L*(0,T; H(Q)). O

Lemma 3.3 Assume (ug, do, Eo, Hy) € (H'(Q), H*(Q), H™Y(Q), H"1(Q))
(m > 3). Then there exists a unique smooth solution (u(z,t),d(z,t), E(z,t),
H(xz,t)) of problem (1.1)-(1.9) satisfying

sup ([[ulfm + ldlFm + 1B G-y + [H[[Fpm-1) < C. (3.13)

tx

Proof FExistence part. We will prove the result by the induction for m. From
Theorem 1.1 and Lemma 3.1, the estimate holds for m =1, 2.
Now, we assume that the estimate holds for m = M > 3 ie.,

Sup (lallFrar + Nllzpar + 1B Gas + [ H [ Fparr) < C. (3.14)

\\

We will prove that (3.14) holds for m = M + 1.
Making the scalar product of AM(Ad + H) with (1.2) and integrating the
resulting equation with respect to = € 2, we have

2dt ||DM+1d||2+/DMd -DMHdx — /DMAd| dz
/DMu Vd-DMHdx + (- M/ -DM*lq. DM Hdy
+/DMu-Vd-DMAddx+/u-DM“d-DMAddx
Q Q
—/DMAd-DMHdm
Q
:/DMd-\VdQ-DMAdder/d-DM(\VdQ)‘DMAddx
Q Q
+/DMd~\Vd\Q-DMdeJr/d~DM]Vd]2-DMHdm
Q Q
+ / (DMd x Ad) - DM (Ad)dz + / (DMd x Ad) - DM Hdz
Q

Q
+/(DM+2d x d) - DM Hdzx. (3.15)
Q
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By Sobolev’s inequality and Young’s inequality, we get
1d

51 ||DM+1d||§+||DM+2d||§+/DMdt-DMde
Q

1
< g IDMH2dl5 + CIDY |5 + DYl + | DY HI). (3.16)

Similarly, Making the scalar product of AM (Au+ E) with (1.1) and integrating
the resulting equation with respect to x € 2, we have

| DML + || DM 23 + / DMy, - DM Edx
Q

N

d
dt
< O(IDM 3 + | DM a3 + | DY EIS + | DM HI3)

1
+ 5 (IDY 2l + | DY), (3.17)

Making the scalar product of AME with (1.4) and AMH with (1.5),

respectively, and then integrating the resulting equation with respective to
x € (), we obtain

/ [%AME—(VXH)-AME—HTE-AME
Q

| O(H + 8d)

o AMH £ (VX E)-AMH —uAME|dz =0,

i.e.,

d
5 (IDMEB -+ DM HIE) - [ DM DV Eda
Q

N | =

+,6’/ DMdt-DMHdaH—a/ |IDME|2dz = 0. (3.18)
Q Q

Next, we will estimate the terms [, DMu;dz and [, DMd,dz.

Taking 9; of (1.1), multiplying by AMu,, and integrating the resulting over
Q, we get

;jt/ﬂ\DMuthx—}— /Q | DMLy, |2 de
<D ull2 [[Vulla 1D uella + lluella [ DY ullz [|ID™ e |4
+ Va2 [ DM ulla | DM urlls + [ DY g2 [l o ([ DM e |2
+ DY dyl2 | Adlla | DY urlla + [ Veella | DY H2d]2 [| DY 4
+ DY || [|Adyll2 | DM urlla + [Vl oo DM |2 | DY |2
+ | Adlla [|DYF del|2 (1D wella + 1D d 4 [V edellz [|dloo 1D uela
+ | Vdlloo | DY F |z | DM ez + | DM VP2 | delloo | DM w2
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+ [ Vell2 D™ ez | DM dlloo [IVdlloo + [V [loo | DM uell2 [|DY |2
+ DY Bl | DMyl + [1DY (u > H)ell2 [ DM e
< C(IDMuell3 + DM de|l3 + IDM B3 + |IDY H |3 + | DY ull3)

1
+ 5 (IDY )3 + [ DY di3).

So,

th/ | DMy |2dx+/ | DMLy 2da

1
CUDM urll3 + 1 Adell3 + [V l[2) + g 1D |5 + DY dr][3).

Taking the similar procedure to (1.2), we get

DMq,|2d DM+1q,12d
Iy
< C(IDMdy||3 + |IDMw|3) + 3 HDM“dtH%

Whence, together with Gronwall’s inequality and (3.16)—(3.18), we deduce

[ DMuyla + |DMdyllo < C, M 22
supg<rer(ullFyares + N30 + | EN5 0 + (|1 H|Fa0) < C.

Uniqueness part. Next, we will give the proof of the uniqueness of the

solution. Suppose that (u,d, E, H) and (u,d, E, ﬁ) are two solutions of (1.1)—
(1.9) as obtained in Lemma 3.1, and let

W =u-7, d*=d—d, E*=FE—-FE, H'=H-T.

Then we have the following energy estimates of (u*,d*):

1 u*2 * 12 T
/Q<| 2 4 |V ?)da(T)

2
1
< Q/Q(yu*\2 IV P2) / / Va2 + |Ad*2)dadt
T _
- / / (VT + AGVA U + TV AL — (@) — £(3)Ad")dzdt
T
_ / / (B*u* + (@ x HWu* + (u* x H)u*)dwdt. (3.19)

On the other hand, we deduce

Ef -V x H* = —¢E* +u*, (3.20)
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HF + Bdf +V x E* =0. (3.21)
Testing (3.20) and (3.21) with E* and H*, respectively, we have

T
/Q (B2 + [HP)da(T) = /Q (B + |HP)dz(0) - o /0 /Q B dadt

T T
—B/ /d;‘H*dxdt—i—/ /u*E*dazdt. (3.22)
0o Jo 0 Jo

By using Lemma 2.4 and the zero boundary condition, we have

/u*Vuu*d:c:/u*Vuudx
Q Q

= / w*Vu'udz
Q

V™ |l2 [l [[2]]4
el V|3 + Cllu*[l3,
where ¢ is an arbitrary small number, and C' is a constant. We also note that

u is the good solution as in Lemma 3.1, so that |4 is bounded for all ¢.
The same argument also works for the other terms:

NN

/ AdVd ' dr < [V | [u]l4 | Ad]
Q

< OV 2 [[u”ll2 + el Ad”[|2 [ V™2
< OV |3 + u*l13) + e(IAd"]3 + [IVu*]3),

/ aVd* Ad*dz < A ||z [alla [Vd 4 < e Ad|3 + C|[ V|,
Q

/Q(f(d) — f(@)Ad dz < [|Ad"|l2 | £(d) — f(d)l|> < | Ad (3 + C[ V|3,

/Q drH* da < || ]2 || H* 2

< (Il vdllz + [@Vd*|lz + [Ad”|l2 + [ f(d) = f(d)ll2) | H 2
< O(ull3 + [H*13 + [IVa*[3) +ell Ad”]3, (3.23)
/Q(u x H*)u*dz < [[@lloo [|H |2 [lu*[|2 < COLH™ 3 + [[u]]3), (3.24)

where f(d) is defined as in (1.10). Whence (3.19) and (3.22)—(3.24) yield that

1 * k * *
3 (' 1V |+ | a7
1
<5 [ 9P B+ | )da(0)
Q

T
+c/ /(|u*|2+|Vd*|2+|E*\2+|H*|2)dxdt.
0 Q
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Since
u*(0) = d*(0) = E*(0) = H*(0) = 0,

Gronwall’s inequlity yields
uw'=d"=FE"=H"=0. g

When the dimension of € is 3, we see that the size of v plays a rather crucial
role while the other viscosity constants A, v do not as long as A, v are positive
constants. This fact can be seen from the following calculations. Thus, we
shall, for simplicity, assume that A = = 1.

Denote

A%w=1/0AuF+wAﬂ2+¢VEF+wVHFxm,
Q

2(4) — ul? 2dr.  D2(t) — ul? 2\da.
B@—AWI+WMd,D® AMI+M&M

N

Lemma 3.4 Assume (ug,do, Eo, Hy) € (H*(Q), H?(Q), HY(Q), H'(2)) (2
R3). Then there exists a unique smooth solution (u(x,t),d(x,t), E(x,t), H(x,t)
of problem (1.1)~(1.9) such that

~—

(u,d) € (L=(0,T; H*(Q)))?, (E,H) € (L®(0,T; H(Q)))?, (3.25)

when
v = 1p(A, 7, w0, do, Eo, Ho).

Proof First, we prove that
A2(t) € L*(0,T).
Multiplying (1.1) and (1.2) with u and Ad + |Vd|?d, respectively,

Ld

- (Jul?> + |Vd*)dz = — / (IVu® + |Ad + |Vd|?d|)? + E - u)dz,

ie.,

T T
sup /(yu\2+|w\2)dx+2/ (Wu\|§+yAdey?dy?)dH/ /Eudxdt
Q 0 0 JQ

0<t<T

< /(|u0\2 +|Vdo[2)da (3.26)
Q

By using Theorem 1.1, (3.26), and the elliptic estimates, for Vt € [0,T — 1],
there is a t; € [t,t + 1] such that

B%(t;) < 2M, (3.27)
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where
M = |Jug||3 + || Vdol|3 + TCo,

with
Co = ||E|3 + [|ull3.

Then by the similar procedure, we deduce
D*(t1) < OM + [|VE|[3(t1) + [VH|3(t1)- (3.28)

By (3.7) and (3.27), for the above t; we chosen, there holds that
/Q(|VE!2 +[VH[*)dz(t1) < C(B*(0) + | VEol[3 + | VHol3)- (3.29)

Therefore,
A2(ty) < 2M, (3.30)

where
M' = |luglls + [[Vdoll3 + CoT + |V Eol|3 + ||V Holl3-

We calculate

1dA?
> = (A0, w) + (Ad, Ad))ds
Q
+/ utAEda:—B/ th~Vde—a/ \VE|*dx
Q Q Q

= —(|VAu|3 + [|[VAd|3) +/[uVuA(Au) + A(Au)VdAd
Q
+ Ad(Ad — uVd) + Ad(—AuVd — uVAd — 2Vu - V3d)|dx

—/ E - A(Au)dz — / (ux H) - A(Au)dz

Q Q

+/ utAEd:n—ﬁ/ th~Vde—a/ |VE|*da. (3.31)
Q Q Q

Now, we can work with the right-hand side of (3.31) term by term, for simplicity,
we just give some terms that may be difficulties for the calculation:

/ uVul(Auv)dz < [[Vulf [VAull2 + [fulls | Aulla [V Aull
Q

1/2 3/2 1/4 7/4
< O(|Vully? [|Aul3? |V Aulls + [|Aully* |V Aully )
< C(IVul3 VAUl + [ Aul2 |V Au] + [[VAu]3),

/ uVulABde < [|Aul3 | VE|S + |Aul3 + [V E|I3 |V Aull3,
Q

/ AuAEdz < C(|VAul3 + |VE|2),
Q
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=[x 1) A@upds < COVH + Al [V Aul} + |V Aul),
Q
| (wx mABa < COVHIE + |8l IVEIE + IVEIB)

/ u-Vd- AAddz
Q
:—/Vu-Vd-VAddx—/u-V2d-VAdda;
Q Q
< C(|Vulloe [Vdll2 VA + [[ulls | Adl]> [V Ad]2)
1 1 1
< (5 IVAdIE + = VAUl + vi|Aul} + -~ A%(1) [V Ad|3)

A%(t)

1 +C
< O(5 IVl + === | VAd|3 +vA%(1))

/ \Vd*dAAddz = — / V|Vd|*dV Addz — / |Vd|*VdV Addz.
Q Q Q

Using Lemma 2.4, we deduce
[ (VIVa)avadds < d]o [Vdla|Ad)s [V A
Q
2 2 1 2

< C@ (VIV} [ad]} + 3 VAd]3)
1 1 2/3

< @ (VlIAdl; + - VA + - [[d1522 1V*d]5)
1

< @ (Iadli +  [VAd)3).

Taking the above inequality into (3.31), we get

1dA? 5 1 9
2 < = _
S <—(v-oa? = )V

- (c - AQ“)V”J) IVAd|2 + (C + CA2) A2, (3.32)

By setting A? = A% 4+ 1, we have

1 dA2
= <

< Aulf3
= 723

2_2{2
(=)

- (c - ‘W) IVAd|2 + (A% + 0 A2). (3.33)

14

Next, we shall assume that v is so large that

v > 2C[AY0) + 1 + 4M'). (3.34)
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Then, initially, there is some T > 0 such that

2 A2 12
v AC>O7 o Ame

>0, Vtel0,Tp. (3.35)
1% 1%

We assume that T} is the largest such Ty. Then we claim T, = T.
To see this, we first show

T, > min{1,T}.

Indeed, by (3.32), (3.34), and (3.35), we have

~, ~, t ~, ~ ~,

A%(t) < A2(O)+20/ (A2(t)+ A% (t))dt < A%(0)+20(M'+M"?), Yt e [0,T].
0

For T > 1, to see T = T, we use (3.30). In fact, there is a t, € [Ty — 1, T}]
such that _
A2(t,) < 4M,

and then inequality (3.35) is valid at ¢, in the strict sense by our choice of v. We
repeat the above reasoning with ¢ replaced by t — ¢, to conclude a contradiction
ifT < T.

Then, from the above computation, we have (3.25) under the condition of
(3.34).

The uniqueness can be proved exactly as in the 2D case. O

Lemma 3.5 Assume (ug,do, Eo, Hy) € (H'(Q), H*(Q), H™Y(Q), H™1(Q2))
(m > 3). Then there exists a unique smooth solution (u(z,t),d(z,t), E(x,t),
H(xz,t)) of problem (1.1)—(1.9) satisfying

sup ([ullpm + ldllEm + 1B 3m— + [ H 7)< C (3.36)

Xbx

when
v = vy(uo, do, Eo, Ho).

Proof This lemma can be proved by the induction for m, the procedure is
similar to Lemmas 3.3 and 3.4, we omit it for simplicity. g

So Theorem 1.2 is proved.
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