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Abstract We investigate a generalized (3 + 1)-dimensional nonlinear wave
equation, which can be used to depict many nonlinear phenomena in liquid
containing gas bubbles. By employing the Hirota bilinear method, we derive its
bilinear formalism and soliton solutions succinctly. Meanwhile, the first-order
lump wave solution and second-order lump wave solution are well presented
based on the corresponding two-soliton solution and four-soliton solution.
Furthermore, two types of hybrid solutions are systematically established by
using the long wave limit method. Finally, the graphical analyses of the
obtained solutions are represented in order to better understand their dynamical
behaviors.
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1 Introduction

It is well known that the research of studying integrable properties and
constructing exact solutions for the nonlinear evolution equations (NLEEs) is
one of the most meaningful work in mathematical physics field [20]. In the past
few decades, finding exact solutions of NLEEs is also hot topic for research
workers all the time. Moreover, all kinds of methods, including the inverse
scattering transformation method [1], Lie group method [4], Darboux
transformation [34], Bäcklund transformation [43], Hirota bilinear method [23],
have been successively proposed. Recently, lump solutions attract particular
attention of many mathematicians and physicists. It was originally found in
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1977 by Manakov et al. [33]. The lump wave, as a special localized wave,
is a rational solution in all space directions. In view of the Hirota bilinear
method and symbolic computation [3,8,12,13,16–18,21,41,45–49,53,57,63], a sea
of studies about lump solutions have been done [5–7,10,11,15,22,24,28–32,
35–38,55,56,58,60–62,64–68]. Inspired by the above studies, we further consider
the lump wave solutions and semi-rational solutions.

Very recently, many researchers have considered the work of propagation
of waves in bubbly liquids. Moreover, the bubble-liquid mixture equations
have been constructed in the field of the liquid with gas bubbles to depict the
propagation of weakly nonlinear waves [25,26]. In this paper, we are going to
investigate a generalized (3+1)-dimensional nonlinear wave equation as follows:

(ut + h1uux + h2uxxx + h3ux)x + h4uyy + h5uzz = 0, (1)

where u = u(x, y, z, t) is a differentiable function with space coordinates x, y, z
and time coordinate t, and hi (i = 1, 2, 3, 4, 5) are all arbitrary constants. This
equation can be used to describe some nonlinear physical phenomena in liquid
containing gas bubble. Its Bäcklund transformation, infinite conservation laws,
N -soliton solutions, and periodic wave solutions were reported in detail in [54].
In addition, Eq. (1) can be reduced to the (3 + 1)-dimensional generalized
Kadomtsev-Petviashvili equation when h3 = 0. It is worth pointing that its
rogue wave, bright-dark soliton, and traveling wave solutions were also derived
in [39].

To the best of our knowledge, some results have been reported for the
generalized (3 + 1)-dimensional nonlinear wave equation [9], but there has been
no discussion with regard to lump solutions and semi-rational solutions. The
main purpose of this paper is to study high order lump solutions and semi-
rational solutions by using the long wave limit method [2,42,44] with the aid of
the corresponding soliton solutions.

The structure of this paper is given as follows. In Section 2, we construct the
bilinear formalism of Eq. (1) under the appropriate transformation by virtue of
Bell polynomial. In Section 3, based on soliton solutions of Eq. (1), its first-
order lump wave solution and second-order lump wave solution are presented
in detail. In Section 4, we further derive two types of hybrid solutions, which are
the hybrid between first-order lump solution and single-soliton and the
hybrid between second-order lump solution and single-soliton. Finally, short
conclusions and discussion of this paper are represented in the last section.

2 Bilinear formalism

In this section, our goal is to construct the bilinear representation of equation
(1). We first introduce the following hypothesis:

u = c(t)qxx, (2)
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where q is a real function with respect to variables x, y, z, and t, and c(t) is a
function to be determined later. Then, substituting the above expression (2)
into Eq. (1) and integrating the obtained equation with respect to x twice, one
can get

E(q) = qxt + h2(q4x + 3q2xx) + h3qxx + h4qyy + h5qzz = σ,

where σ is a constant of integration with the help of c(t) = 6h2/h1. By means
of the previous results in [14,19,27,40,50–52,59], taking σ = 0, one has

E(q) = Pxt + h2P4x + h3Pxx + h4Pyy + h5Pzz = 0.

Then the bilinear formalism of Eq. (1) is given by

F (Dx, Dy, Dz, Dt) := (DxDt + h2D
4
x + h3D

2
x + h4D

2
y + h5D

2
z)f · f = 0, (3)

under the variable transformation

q = 2 log f ⇐⇒ u = c(t)qxx =
12h2
h1

(log f)xx.

It is noted that the aforementioned expression (3) is equivalent to the form

(fxtf − fxft) + h2(f4xf − 4fxf3x + 3f2xx) + h3(fxxf − f2x)

+h4(fyyf − f2y ) + h5(fzzf − f2z ) = 0.

3 Lump wave solutions

In what follows, we will systematically construct the lump wave solutions of
Eq. (1) by taking a long wave limit for the corresponding soliton solutions.
By employing the Hirota bilinear method, the soliton solutions of Eq. (1) are
ascertained. The solution of Eq. (3) can be written as

f = fN =
∑
µ=0,1

exp

( ∑
16i<j6N

µiµjAij +

N∑
i=1

µiηi

)
, (4)

with
ηi = ki[x+ piy + qiz − (h2k

2
i + h3 + h4p

2
i + h5q

2
i )t] + η0i ,

exp(Aij) =
3h2(ki − kj)2 − h4(pi − pj)2 − h5(qi − qj)2

3h2(ki + kj)2 − h4(pi − pj)2 − h5(qi − qj)2
, (5)

where ki, pi, qi, and η0i are all free parameters. The notation
∑

µ=0,1 denotes a

summation that takes over all possible combinations µi = 0, 1 (i = 1, 2, . . . , N).
For instance, we give the first three solutions in (4) as below:

f1 = 1 + exp(η1),
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f2 = 1 + exp(η1) + exp(η2) + exp(η1 + η2 +A12),

f3 = 1 + exp(η1) + exp(η2) + exp(η3)

+ exp(η1 + η2 +A12) + exp(η1 + η3 +A13) + exp(η2 + η3 +A23)

+ exp(η1 + η2 + η3 +A12 +A13 +A23).

Remark 1 Equation (1) admits the N -soliton solution (4) for the case N > 2
if and only if the following condition holds:∑
σ1,σ2,σ3=±1

F (σ1e1+σ2e2+σ3e3)F (σ1e1−σ2e2)F (σ2e2−σ3e3)F (σ1e1−σ3e3) = 0,

i.e.,
h22h4h5k

4
1k

4
2k

4
3(−p1q3 + p2q3 + p1q2 − p3q2 + p3q1 − p2q1)2 = 0. (6)

In order to seek lump wave solutions of Eq. (1), we take

exp(η0i ) = −1, 1 6 i 6 N,

and let a limit ki → 0 in (4). We have the following theorem.

Theorem 3.1 Equation (1) has the high order lump wave solutions in the
following form:

u =
12h2
h1

(log fN )xx,

with

fN =
N∏
i=1

θi +
1

2

N∑
i,j

Bij
∏

16l6N, l 6=i,j
θl +

1

2!22

N∑
i,j,s,r

BijBsr
∏

16l6N, l 6=i,j,s,r
θl

+ · · ·+ 1

M !2M

N∑
i,j,...,m,n

M︷ ︸︸ ︷
BijBvl · · ·Bmn

∏
16p6N, p6=i,j,v,l,...,m,n

θp + · · · , (7)

and
θi = x+ piy + qiz − (h3 + h4p

2
i + h5q

2
i )t, (8)

Bij =
12

h4(pi − pj)2 + h5(qi − qj)2
, (9)

where
∑N

i,j,...,m,n represents the summation roundly feasible combinations of
i, j, . . . ,m, n, which are chosen from 1, 2, . . . , N and they are all distinct. A
class of nonsingular lump solutions can be derived, if we choose the parameters

pn+i = p∗i , qn+i = q∗i , i = 1, 2, . . . , n,

for N = 2n under the condition Bij > 0.

Remark 2 Equation (1) admits the N -lump solution (7) for the case N > 1
if and only if condition (6) holds.
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3.1 First-order lump-wave solutions

In this part, we will calculate the first-order lump wave solutions of Eq. (1) from
the corresponding two-soliton solutions, that is, n = 1, N = 2. Here, equation
(7) can be rewritten as

f2 = θ1θ2 +B12,

with
θi = x+ piy + qiz − (h3 + h4p

2
i + h5q

2
i )t, i = 1, 2,

B12 =
12

h4(p1 − p2)2 + h5(q1 − q2)2
.

By taking
p2 = p∗1, q2 = q∗1,

we have a nonsingular solution

f2 = θ1θ
∗
1 −

12

h4(p1 − p∗1)2 + h5(q1 − q∗1)2
> 0. (10)

Putting
p1 = a+ bi, q1 = d+ gi,

and substituting (10) into

u =
12h2
h1

(log f2)xx,

we get the first-order lump wave solutions of Eq. (1), given by

u =
12h2
h1

∂2

∂x2
log
[
(x′ + ay′ + dz′)2 + (by′ + gz′)2 +

3

h4b2 + h5g2

]
=

24h2
h1

−(x′ + ay′ + dz′)2 + (by′ + gz′)2 + 3
h4b2+h5g2

[(x′ + ay′ + dz′)2 + (by′ + gz′)2 + 3
h4b2+h5g2

]2
, (11)

with
x′ = x+ [h4(a

2 + b2) + h5(d
2 + g2)− h3]t,

y′ = y − 2h4at,

z′ = z − 2h5dt.

The rational solution (11) is a permanent lump solution, decaying as
O(1/x2, 1/y2, 1/z2) for |x|, |y|, |z| → ∞ and moving with the velocity

vx = h3 − h4(a2 + b2)− h5(d2 + g2), vy = 2h4a, vz = 2h5d.

As shown in Figs. 1 and 2, in order to observe the characteristics of solution
(11) clearly, its evolution plots are drawn by choosing suitable parameters.
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Fig. 1 Evolution plots of first-order lump wave solution (11) by taking z = 1, h2 = −1/2,

h1 = h3 = h4 = h5 = a = b = d = g = 1 at time (a) t = −10, (b) t = 0, (c) t = 10

Fig. 2 Evolution plots of first-order lump wave solution (11) by taking z = x, h2 = −1/2,

h1 = h3 = h4 = h5 = a = b = d = g = 1 at time (a) t = −10, (b) t = 0, (c) t = 10

3.2 Second-order lump-wave solutions

In this subsection, in order to get second-order lump wave solutions of Eq. (1),
we rewrite equation (7) by taking n = 2, N = 4. Due to the expression f4 is
very complicated, for simplicity, we choose

q1 = q2 = q3 = q4 = q, (12)

q is a real constant. Then f4 can be written as

f4 = θ1θ2θ3θ4 +B12θ3θ4 +B13θ2θ4 +B14θ2θ3 +B23θ1θ4

+B24θ1θ3 +B34θ1θ2 +B12B34 +B13B24 +B14B23, (13)

with
θi = x+ piy + qz − (h3 + h4p

2
i + h5q

2)t, i = 1, 2, 3, 4,

Bij =
12

h4(pi − pj)2
, 1 6 i < j 6 4.

Setting
p3 = p∗1 = pR − ipI , p4 = p∗2 = λR − iλI , (14)
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Re pi > 0, i = 1, 2,

and substituting (13) into the transformation

u =
12h2
h1

(log f4)xx,

we can obtain the second-order lump wave solutions of Eq. (1). It is worth
pointing that f4 is a positive function consisted of biquadratic and quadratic
perfect square functions. Similarly, we also display evolution plots with time of
the second-order lump solution for understanding dynamical behavior better in
Figs. 3 and 4.

Fig. 3 Evolution plots of second-order lump wave solution by taking z = 1, h1 = 2,
h2 = −1/2, h4 = −2, λR = 1/10, q = h3 = h5 = pR = pI = 1, λI = 1/2

at time (a) t = −10, (b) t = 0, (c) t = 10

Fig. 4 Evolution plots of second-order lump wave solution by taking z = x, h1 = 2,
h2 = −1/2, h4 = −2, λR = 1/10, q = h3 = h5 = pR = pI = 1, λI = 1/2

at time (a) t = −10, (b) t = 0, (c) t = 10
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4 Semi-rational solutions

Now, we are in a position to search the semi-rational solutions for Eq. (1).
Here, by taking a long wave limit of the partial exponential functions in (4),
a combination of polynomial and exponential functions can be derived, which
also be called as semi-rational solutions or hybrid solutions. To illustrate the
solution clearly, we will focus on the following two types of hybrid solutions.

4.1 Hybrid solutions of first-order lump wave and single-soliton wave

Primarily, we think about the case of N = 3 under condition (6). Let

N = 3, η01 = η02 = iπ,

and take k1, k2 → 0 in Eq. (4). One obtains

f = (θ1θ2 +B12) + (θ1θ2 +B12 +B13θ1 +B23θ1 +B12B23)e
η3 ,

with

Bs3 = − 12h2k3
3h2k23 − h4(ps − p3)2 − h5(qs − q3)2

, s = 1, 2,

where θ1, θ2 are from (8), B12 is given by (9), and η3 is defined by (5). Then
set

p2 = p∗1 = a− bi, q2 = q∗1 = d− gi.

Indeed, the corresponding hybrid solutions u composed of first-order lump wave
and single-soliton wave can be obtained.

To understand dynamical behaviors better, we give the three-dimensional
plots of hybrid solutions consisted of first-order lump wave and single-soliton
wave in different time by choosing appropriate parameters. As shown in Fig. 5,
we can find that the lump moves and passes the soliton and in the interaction
domain of the two waveforms the amplitude increases considerably.

Fig. 5 Evolution plots in (x, y)-plane of hybrid solutions consisted of first-order lump wave

and single-soliton wave by taking z = 0, h1 = −1, h2 = −1/2, h3 = −9/5, h5 = −11/5, h4 =

a = b = d = g = p3 = q3 = 1, k3 = −8/5, η03 = 0 at time (a) t = −10, (b) t = 0, (c) t = 10
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4.2 Hybrid solutions of second-order lump wave and single-soliton wave

Here, we consider the situation of N = 5 to derive hybrid of second-order lump
wave and single-soliton wave under condition (6). Put

N = 5, η01 = η02 = η03 = η04 = iπ,

and take k1, k2, k3, k4 → 0 in Eq. (4). One gets

f = (θ1θ2θ3θ4 +B12θ3θ4 +B13θ2θ4 +B14θ2θ3 +B23θ1θ4 +B24θ1θ3 +B34θ1θ2

+B12B34 +B13B24 +B14B23) + eη5 [θ1θ2θ3θ4 +B45θ1θ2θ3 +B35θ1θ2θ4

+B25θ1θ3θ4 +B15θ2θ3θ4 + (B35B45 +B34)θ1θ2 + (B25B45 +B24)θ1θ3

+ (B25B35 +B23)θ1θ4 + (B15B45 +B14)θ2θ3 + (B15B35 +B13)θ2θ4

+ (B15B25 +B12)θ3θ4 + (B25B35B45 +B23B45 +B25B34 +B24B35)θ1

+ (B15B35B45 +B14B35 +B13B45 +B15B34)θ2 + (B15B25B45 +B14B25

+B15B24 +B12B45)θ3 + (B15B25B35 +B15B23 +B13B25 +B12B35)θ4

+B12B34 +B13B24 +B14B23 +B12B35B45 +B13B25B45 +B14B25B35

+B15B24B35 +B15B25B34 +B15B23B45 +B15B25B35B45], (15)

with

Bs5 = − 12h2k5
3h2k25 − h4(ps − p5)2

, s = 1, 2, 3, 4,

where θi, Bij are, respectively, from (8) and (9), and η5 is given by (5). It is
necessary to point out that we use (12) for simplicity in above results. Then,
set p3 and p4 as in (14) with pR, pI , λR, λI , and q are all real constants. The
corresponding hybrid solutions u defined by (4) with (15) are represented.

In what follows, the evolution plots of hybrid of second-order lump wave
and single-soliton wave are respectively revealed at different time t = −20, t =
0, t = 20 by taking suitable parameters.

Fig. 6 Evolution plots in (x, y)-plane of hybrid solutions consisted of second-order lump
wave and single-soliton wave by taking z = 0, h1 = −1, h3 = −9/5, h2 = h4 = −1/2,

h5 = −11/5, pR = pI = λI = 1, λR = 1/2, k5 = −4/5, p5 = 9/5, q = η05 = 0

at time (a) t = −20, (b) t = 0, (c) t = 20
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5 Conclusions and discussion

In this work, we have researched the generalized (3 + 1)-dimensional nonlinear
wave equation in liquid with gas bubbles. Its bilinear form and soliton solutions
have been constructed by employing Hirota’s bilinear approach. Moreover, the
lump wave solutions and the semi-rational solutions have also been obtained
legitimately by employing the long wave limit method. Most importantly, the
figures of first-order lump wave, second-order lump wave, and two types of
hybrid solutions have been presented in Figs. 1–6 in order to better understand
their behavior characteristics. In view of the obtained graphs, the propagation
properties of the resulting solutions can be well represented for the (3 + 1)-
dimensional nonlinear wave equation in a bubbly liquid.

The paper shows an effective and powerful method to seek exact solutions
of NLEEs, which is worthy of further exploration to other models in
mathematical physics and engineering. Finally, we hope that our results
provided in this paper are helpful to comprehend the lump solutions and hybrid
solutions for more models.
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