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Abstract We introduce a class of structured tensors, called generalized row
strictly diagonally dominant tensors, and discuss some relationships between
it and several classes of structured tensors, including nonnegative tensors, B-
tensors, and strictly copositive tensors. In particular, we give estimations on
upper and lower bounds of solutions to the tensor complementarity problem
(TCP) when the involved tensor is a generalized row strictly diagonally
dominant tensor with all positive diagonal entries. The main advantage of
the results obtained in this paper is that both bounds we obtained depend only
on the tensor and constant vector involved in the TCP; and hence, they are
very easy to calculate.
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1 Introduction

In recent years, the tensor complementarity problem (TCP), which firstly
appeared in [21], has been a hot topic in the optimization field. It has been
shown that a multi-person noncooperative game can be reformulated as a TCP,
and the one-to-one correspondence between the solutions of these two problems
has been established [14]. Up to now, a large number of theoretical results for
the TCP have been obtained in the literature, including nonemptiness and/or
compactness of the solution set [4,6,8,9,15,27–29], existence of a unique solution
[2,5,18,26,27,30], error bound theory [13,16,35], strict feasibility of the problem
[10,26], convexity of the solution set [3], stability of solutions and continuity
of solution maps [1,12], and so on. Moreover, several numerical methods for
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solving the TCP have also been proposed in the literature, see [7,11,14,17,31,32,
34] for details.

When the solution set of a TCP is bounded, a natural question is that how
to estimate upper and lower bounds of solutions to the TCP. Song and Yu [25]
considered such a problem for the TCP with a strictly semi-positive tensor,
and they gave estimations of upper and lower bounds of solutions to this class
of TCPs with the help of norms of two operators. Generally, however, it is
difficult to calculate these two norms of operators. Recently, Song and Qi [23]
investigated these two norms of operators, and gave checkable upper bounds of
them in terms of the tensor involved in the TCP; and hence, a checkable lower
bound of solutions to the TCP with a strictly semi-positive tensor was obtained.
More recently, Song and Mei [20] considered the TCP with a B-tensor, and they
gave estimations of lower bounds of solutions to the problem, which is easy to
calculate.

Motivated by the papers mentioned above, we investigate in this paper a
class of structured tensors, called generalized row strictly diagonally dominant
tensors with all positive diagonal entries, which is a subclass of strictly semi-
positive tensors and an extension of B-tensors. We discuss some relationships
between it and several classes of known structured tensors used in the literature.
In particular, we give estimations of upper and lower bounds of solutions to the
TCP when the involved tensor is a generalized row strictly diagonally dominant
tensor with all positive diagonal entries. Both upper and lower bounds we
obtained are easy checkable since they depend only on the tensor and constant
vector involved in the TCP.

The rest of this paper is organized as follows. In Section 2, we recall some
basic symbols, concepts, and results. In Section 3, we first introduce a class of
structured tensors and discuss some relationships between it and several known
structured tensors; and then, we investigate bounds of solutions to the TCP
with the introduced tensor. Conclusions are given in the last section.

2 Preliminaries

An m-th order n-dimensional real tensor A = (ai1i2···im) is a multi-array of real
entries ai1i2···im ∈ R, where ij ∈ [n] := {1, 2, . . . , n} for j ∈ [m] := {1, 2, . . . ,m};
and if all its entries are nonnegative, then we call it a nonnegative tensor.
We denote the set of all m-th order n-dimensional real tensors by R[m,n]. For
any A = (ai1i2···im) ∈ R[m,n], every ai1i2···im is said to be a diagonal entry
when i1 = i2 = · · · = im; and an off-diagonal entry otherwise. For any A =
(ai1i2···im) ∈ R[m,n] and x = (x1, x2, . . . , xn)> ∈ Rn, A xm−1 ∈ Rn is defined by

(A xm−1)i :=

n∑
i2,i3,...,im=1

aii2i3···imxi2xi3 · · ·xim , ∀ i ∈ [n].

For any given tensor A = (ai1i2···im) ∈ R[m,n] and for any i ∈ [n], if there is no
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aii2i3···im > 0 for all (i2, i3, . . . , im) 6= (i, i, . . . , i), then we define ri(A )+ := 0,
and if there is no aii2i3···im < 0 for all (i2, i3, . . . , im) 6= (i, i, . . . , i), then we
define ri(A )− := 0; otherwise, we define

ri(A )+ :=
∑

aii2i3···im>0, (i2,i3,...,im)6=(i,i,...,i)

aii2i3···im (1)

and
ri(A )− :=

∑
aii2i3···im<0, (i2,i3,...,im)6=(i,i,...,i)

|aii2i3···im |. (2)

Given a tensor A ∈ R[m,n] and a vector q ∈ Rn, the tensor complementarity
problem, denoted by TCP(A , q), is to find a vector x ∈ Rn such that

x > 0, A xm−1 + q > 0, x>(A xm−1 + q) = 0.

Definition 1 [24] A tensor A ∈ R[m,n] is said to be strictly semi-positive if
and only if for each x > 0 and x 6= 0, there exists an index k ∈ [n] such that

xk > 0, (A xm−1)k > 0.

Theorem 1 [22] A tensor A ∈ R[m,n] is strictly semi-positive if and only if
the TCP(A , q) has a unique solution for every q > 0.

Definition 2 [21] A tensor A = (ai1i2···im) ∈ R[m,n] is called a B-tensor if
and only if

n∑
i2,i3,...,im=1

aii2i3···im > 0, ∀ i ∈ [n],

and

1

nm−1

( n∑
i2,i3,...,im=1

aii2i3···im

)
> aij2j3···jm , ∀ (j2, j3, . . . , jm) 6= (i, i, . . . , i).

Theorem 2 [21] If A = (ai1i2···im) ∈ R[m,n] is a B-tensor, then for each
i ∈ [n],

(a) aii···i >
∑

aii2i3···im<0 |aii2i3···im |;
(b) aii···i > |aij2j3···jm | for all (j2, j3, . . . , jm) 6= (i, i, . . . , i) with j2, j3, . . . , jm

∈ [n].

Definition 3 A tensor A = (ai1i2···im) ∈ R[m,n] is called to be row strictly
diagonally dominant if and only if

|aii···i| >
∑

(i2,i3,...,im)6=(i,i,...,i)

|aii2i3···im |, ∀ i ∈ [n].

If A additionally satisfies that aii···i > 0 for all i ∈ [n], then we call A a row
strictly diagonally dominant tensor with all positive diagonal entries.
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When m = 2, a row strictly diagonally dominant tensor reduces to a row
strictly diagonally dominant matrix. The row strictly diagonally dominant
tensor was discussed in [6] and the row strictly diagonally dominant tensor
with all positive diagonal entries was discussed in [21].

Definition 4 [19] Let A ∈ R[m,n]. A is said to be

(a) copositive if x>A xm−1 > 0 for any x ∈ Rn
+;

(b) strictly copositive if x>A xm−1 > 0 for any x ∈ Rn
+\{0}.

3 Main results

3.1 A class of structured tensors

In this subsection, we introduce a class of structured tensors, and discuss some
relationships between it and several classes of known structured tensors.

Definition 5 A tensor A = (ai1i2···im) ∈ R[m,n] is said to be generalized row
strictly diagonally dominant if and only if for all i ∈ [n],

|aii···i| − ri(A )− > 0,

where ri(A )− is defined by (2). If A additionally satisfies aii···i > 0 for all
i ∈ [n], then we call A a generalized row strictly diagonally dominant tensor
with all positive diagonal entries.

From Definition 5, we have the following proposition easily.

Proposition 1 Let A ∈ R[m,n]. Then the following results hold.

(a) If A is a nonnegative tensor with all positive diagonal entries, then it is
a generalized row strictly diagonally dominant tensor with all positive diagonal
entries.

(b) If A is a B-tensor, then it is a generalized row strictly diagonally
dominant tensor with all positive diagonal entries.

(c) If A is a row strictly diagonally dominant tensor (with all positive
diagonal entries), then it is a generalized row strictly diagonally dominant tensor
(with all positive diagonal entries).

Generally, the inverses of three conclusions in Proposition 1 are not true,
which can be seen by the following example.

Example 1 Let A = (aijk) ∈ R[3,3], where

a111 = a222 = a333 = 2, a122 = 3, a211 = −1,

and other entries are zero.

It is obvious that A given in Example 1 is a generalized row strictly
diagonally dominant tensor with all positive diagonal entries, but not a non-
negative tensor with all positive diagonal entries. Moreover, A is not a row



Estimations on bounds of solutions to tensor complementarity problems 665

strictly diagonally dominant tensor with all positive diagonal entries because
|a111| = a111 < a122; and A is not a B-tensor because

1

32

( 3∑
j,k=1

a1jk

)
=

1

9
(a111 + a122) =

5

9
< 3 = a122.

Recall that A ∈ R[m,n] is called a Z-tensor if and only if all its off-diagonal
entries are non-positive [33]. Based on properties of Z-tensors, we have the
following results.

Proposition 2 Let A = (ai1i2···im) ∈ R[m,n] be a Z-tensor. Then the following
statements are equivalent:

(a) A is a B-tensor;

(b) for each i ∈ [n],
∑n

i2,i3,...,im=1 aii2i3···im > 0;

(c) A is row strictly diagonally dominant with all positive diagonal entries;

(d) A is generalized row strictly diagonally dominant with all positive
diagonal entries.

Proof Since ‘(a) ⇔ (b) ⇔ (c)’ were proved in [21], and ‘(c) ⇒ (d)’ holds
directly from Proposition 1 (c), it is sufficient to show ‘(d) ⇒ (b)’. In fact, if
A ∈ R[m,n] is a generalized row strictly diagonally dominant tensor with all
positive diagonal entries, then it follows from Definition 5 that aii···i > ri(A )−
for each i ∈ [n], that is,

∑n
i2,i3,...,im=1 aii2i3···im > 0 for each i ∈ [n], which means

that ‘(d)⇒ (b)’ holds. �

Proposition 3 Let A = (ai1i2···im) ∈ R[m,n] be a generalized row strictly
diagonally dominant tensor satisfying aii···i >

∑n
j=1 rj(A )− for each i ∈ [n].

Then A is strictly copositive.

Proof Suppose that x ∈ Rn
+\{0} and ‖x‖∞ = xk > 0 with k ∈ [n]. Then we

have

x>A xm−1 =

n∑
i1,i2,...,im=1

ai1i2···imxi1xi2 · · ·xim

= xmk

n∑
i1,i2,...,im=1

ai1i2···im
xi1xi2 · · ·xim

xmk

> xmk

( n∑
i=1

aii···i
xmi
xmk

+
∑

aj1j2···jm<0

aj1j2···jm
xj1xj2 · · ·xjm

xmk

)

> xmk

(
akk···k −

n∑
j=1

rj(A )−

)
> 0,

which implies that A is a strictly copositive tensor. �
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Theorem 3 Let A = (ai1i2···im) ∈ R[m,n] be a generalized row strictly
diagonally dominant tensor with all positive diagonal entries. Then A is strictly
semi-positive.

Proof For any x > 0 and x 6= 0, we assume xk = ‖x‖∞ > 0. Then we have

(A xm−1)k =
n∑

i2,i3,...,im=1

aki2i3···imxi2xi3 · · ·xim

= xm−1
k

n∑
i2,i3,...,im=1

aki2i3···im
xi2xi3 · · ·xim

xm−1
k

= ‖x‖m−1
∞

(
akk···k +

∑
(i2,i3,...,im)6=(k,k,...,k)

aki2i3···im
xi2xi3 · · ·xim
‖x‖m−1

∞

)

> ‖x‖m−1
∞

(
akk···k −

∑
aki2i3···im<0

|aki2i3···im |
)

= ‖x‖m−1
∞

(
akk···k − rk(A )−

)
> 0,

which implies that A is strictly semi-positive. �

The following example shows that a strictly semi-positive tensor may not
be generalized row strictly diagonally dominant.

Example 2 Let A ∈ R[3,2], where

a111 = a222 = a211 = 1, a122 = −2,

and other entries are zero.

Clearly, the tensor A in Example 2 is not generalized row strictly diagonally
dominant. However, for any x = (σ, τ)> ∈ R2

+\{0}, it follows that

(A x2)1 = σ2 − 2τ2, (A x2)2 = σ2 + τ2,

which implies that A is strictly semi-positive.
Since the solution set of the TCP with a strictly semi-positive tensor is

nonempty and compact [23,24], it follows from Theorem 3 that the TCP has a
nonempty and compact solution set when the involved tensor is a generalized
row strictly diagonally dominant tensor with all positive diagonal entries. In
the following subsection, we discuss the bounds of solutions of such a TCP.

3.2 Estimations of bounds of solutions to TCP

Suppose that A is a generalized row strictly diagonally dominant tensor with
all positive diagonal entries. Then it follows from Theorems 3 and 1 that 0 ∈ Rn

is the unique solution of the TCP(A , q) when q ∈ Rn
+. Thus, we consider the
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TCP(A , q) with q ∈ Rn\Rn
+, i.e., there exists k ∈ [n] such that qk < 0. In the

following, we denote

Ω(q) := {i ∈ [n] : qi < 0}, ∀ q ∈ Rn\Rn
+. (3)

Lemma 1 Let A ∈ R[m,n] be a generalized row strictly diagonally dominant
tensor with all positive diagonal entries, q ∈ Rn\ Rn

+ be any given vector, and
Ω(q) be defined by (3). If x ∈ Rn is a solution of the TCP(A , q) with ‖x‖∞ = xk,
then k ∈ Ω(q) and

(A xm−1)k + qk = 0.

Proof Suppose k /∈ Ω(q). Then qk > 0. Since 0 is not a solution of the
TCP(A , q) when q /∈ Rn

+, it follows that xk = ‖x‖∞ > 0. Thus, we have

(A xm−1 + q)k

‖x‖m−1
∞

=
(A xm−1)k

‖x‖m−1
∞

+
qk

‖x‖m−1
∞

>
(A xm−1)k

‖x‖m−1
∞

=
n∑

i2,i3,...,im=1

aki2i3···im
xi2xi3 · · ·xim
‖x‖m−1

∞

= akk···k
xm−1
k

xm−1
k

+
∑

(i2,i3,...,im)6=(k,k,...,k)

aki2i3···im
xi2xi3 · · ·xim
‖x‖m−1

∞

> akk···k −
∑

aki2···im<0, (i2,i3,...,im)6=(i,i,...,i)

|aki2···im |

= akk···k − rk(A )−

> 0.

Then we have
xk(A xm−1 + q)k > 0,

which contradicts the fact that x solves the TCP(A , q). Thus, it holds that k ∈
Ω(q). Moreover, we have (A xm−1)k + qk = 0 because xk > 0 and xk(A xm−1 +
q)k = 0. �

Based on Lemma 1, we further give the bounds of solutions to the TCP(A , q)
as follows.

Theorem 4 Let A = (ai1i2···im) ∈ R[m,n] be a generalized row strictly
diagonally dominant tensor with all positive diagonal entries, and q ∈ Rn\Rn

+

be any given vector. If x ∈ Rn is a solution of the TCP(A , q), then it holds
that

min
i∈Ω(q)

−qi
aii···i + ri(A )+

6 ‖x‖m−1
∞ 6 max

i∈Ω(q)

−qi
aii···i − ri(A )−

, (4)

where ri(A )+, ri(A )−, and Ω(q) are defined by (1), (2), and (3), respectively.
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Proof From Lemma 1, there exists k ∈ Ω(q) such that xk = ‖x‖∞ > 0 and
(A xm−1)k + qk = 0. Thus, we have

0 <
−qk
‖x‖m−1

∞

=
(
A
( x

‖x‖∞

)m−1)
k

=
n∑

i2,i3,...,im=1

aki2i3···im
xi2xi3 · · ·xim
‖x‖m−1

∞

=
∑

aki2i3···im<0

aki2i3···im
xi2xi3 · · ·xim
‖x‖m−1

∞
+

∑
akj2j3···jm>0

akj2j3···jm
xj2xj3 · · ·xjm
‖x‖m−1

∞

6
∑

akj2j3···jm>0

akj2j3···jm

= akk···k + rk(A )+. (5)

Moreover, we have

−qk
‖x‖m−1

∞
=
(
A
( x

‖x‖∞

)m−1)
k

=
n∑

i2,i3,...,im=1

aki2i3···im
xi2xi3 · · ·xim
‖x‖m−1

∞

= akk···k
xm−1
k

‖x‖m−1
∞

+
∑

aki2i3···im<0

aki2i3···im
xi2xi3 · · ·xim
‖x‖m−1

∞

+
∑

akj2j3···jm>0, (j2,j3,...,jm)6=(k,k,...,k)

akj2j3···jm
xj2xj3 · · ·xjm
‖x‖m−1

∞

> akk···k +
∑

aki2i3···im<0

aki2i3···im
xi2xi3 · · ·xim
‖x‖m−1

∞

> akk···k −
∑

aki2i3···im<0

|aki2i3···im |

= akk···k − rk(A )−

> 0. (6)

Thus, it follows from (5) and (6) that

−qk
akk···k + rk(A )+

6 ‖x‖m−1
∞ 6

−qk
akk···k − rk(A )−

.

This implies that (4) holds. �

It is easy to see from (1) and (2) that both ri(A )+ and ri(A )− depend
only on the entries of A ; and hence, they are easy to calculate. Thus, when
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A ∈ R[m,n] is a generalized row strictly diagonally dominant tensor with all
positive diagonal entries, both upper and lower bounds given in Theorem 4 are
easy to calculate. Obviously, the smaller the number of elements in the set
Ω(q), the easier these two bounds to calculate. Particularly, if the set Ω(q)
contains only one element, then we have the following result.

Corollary 1 Let A ∈ R[m,n] be a generalized row strictly diagonally dominant
tensor with all positive diagonal entries, q ∈ Rn\Rn

+ be a vector, and x ∈ Rn be
a solution of the TCP(A , q). If Ω(q) = {k} for some k ∈ [n], then it holds that

−qk
akk···k + rk(A )+

6 ‖x‖m−1
∞ 6

−qk
akk···k − rk(A )−

.

Moreover, both bounds obtained in Theorem 4 are tight for some TCPs.
For example, when Ω(q) = {k} for some k ∈ [n] and rk(A )+ = rk(A )− = 0,
both upper bound and lower bound in Corollary 1 are −qk/akk···k. The following
example shows that such a TCP exists.

Example 3 Let q = (1,−1)> and A = (aijk) ∈ R[3,2], where a111 = a122 =
a222 = 1, and other entries are zero.

Let A ∈ R[3,2] and q ∈ R2 be given by Example 3. Consider the
corresponding TCP(A , q), i.e., find a vector x ∈ R2 such that

x > 0,

{
x2

1 + x2
2 + 1 > 0,

x2
2 − 1 > 0,

, x1(x2
1 + x2

2 + 1) + x2(x2
2 − 1) = 0. (7)

We can verify that x∗ = (0, 1)> is the unique solution of the TCP (7) with
‖x∗‖m−1

∞ = 1. Moreover, it is easy to see that both upper bound and lower
bound in Corollary 1 are 1 for the TCP (7).

4 Conclusions

In this paper, we investigated the relationships between the generalized row
strictly diagonally dominant tensor and several known tensors studied in the
literature. In particular, we obtained the checkable upper and lower bounds
of solutions to the TCP when the involved tensor is a generalized row strictly
diagonally dominant tensor with all positive diagonal entries. Moreover, the
bounds we obtained are tight for some TCPs.

When the tensor involved in the TCP is a generalized row strictly diagonally
dominant tensor with all positive diagonal entries, it is possible from Lemma
1 that a solution of the TCP can be found by solving a system of lower
dimensional tensor equations. It is worth investigating how to design a
numerical method to find a solution of the TCP in this way, since such a
method can reduce the calculation cost.
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