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Abstract Let E be a proper class of triangles in a triangulated category C ,
and let (A ,B,C ) be a recollement of triangulated categories. Based on
Beligiannis’s work, we prove that A and C have enough E -projective objects
whenever B does. Moreover, in this paper, we give the bounds for the E -global
dimension of B in a recollement (A ,B,C ) by controlling the behavior of the
E -global dimensions of the triangulated categories A and C . In particular, we
show that the finiteness of the E -global dimensions of triangulated categories
is invariant with respect to the recollements of triangulated categories.
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1 Introduction

The triangulated categories were introduced by Verdier [25]. The theory of the
triangulated categories is becoming increasingly an important tool for
studying many branches of mathematics such as algebraic geometry, stable
homotopy theory, and representation theory. Paralleling the homological
algebra in an exact category in the sense of Quillen, Beligiannis [7] introduced
and investigated a homological theory in the triangulated categories. Let C
be a triangulated category with triangles ∆. By specifying a class of triangles
E ⊆ ∆, called a proper class of triangles, Beligiannis introduced the definitions
of the E -projective objects, E -projective and E -global dimension, etc. Similar to
homological theory in the module categories, the E -global dimension was used
to measure how far away a triangulated category is from being a semi-simple
category. Later, this theory has been paid more attentions and developed much
further. For details, we refer to [3,4,23].

Recollements of the triangulated categories were introduced by Beilinson
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et al. [6]. They are widely used in algebraic geometry and representation
theory, see [1,14,15]. The recollements of abelian categories appeared in the
construction of perverse sheaves by MacPherson and Vilonen [16]. Let
(A ,B,C ) be a recollement of triangulated categories. Roughly speaking, we
can view a recollement as a short exact sequence of triangulated categories,

0→ A
i→ B

e→ C → 0,

that is, the triangle functor i is fully faithful and e induces a triangle equivalence

B/Im(i) ∼= C .

By decomposing the middle term B into smaller and possibly concise outer
terms, it is convenient for us to investigate some homological properties, such
as the homological smoothness, the Gorensteinness, see [10,11,22]. Moreover,
the language of recollements provides us useful reduction techniques to calculate
homological invariants or deal with some homological conjectures, for example,
K-theory, Hochschild homology and cohomology, the finitistic dimension
conjecture, the Cartan determinant conjecture, and so on, see [2,8–10,12,22].

As is well known, the properties of recollements also offer an efficacious
method in the calculation of the bounds of homological dimensions. Along
recollements, Qin [21] gave the bounds of the self-injective dimensions and the
φ-dimensions of algebras inductively. Using the language of recollements of
abelian categories, Psaroudakis [20] provided the bounds of a series of
homological dimensions, such as the global dimensions, the representation
dimensions, Finitistic dimensions, and the dimensions of the bounded derived
categories of algebras.

In contrast with the global dimensions of rings, there are no more results
on the behavior of E -global dimensions of the triangulated categories under the
recollements. Therefore, in this note, we aim to establish a relation between
the E -global dimension and the recollement and give the bounds of E -global
dimensions of the triangulated categories.

Now, we present our main result of this paper. For the notations in the
following result, we refer to Sections 2 and 3.

Theorem A Let Rtr = (A ,B,C , q, i, p, l, e, r) be an XB-invariant recolle-
ment such that XC = e(XB) and XA = q(XB). Assume that the triangle

le(X)→ X → iq(X)→ Σle(X) (1.1)

is split for any X ∈P(E (XB)). Then

E (XA )-gl.dim A <∞, E (XC )-gl.dim C <∞,

if and only if

E (XB)-gl.dim B <∞.
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Moreover,
max{E (XA )-gl.dim A ,E (XC )-gl.dim C }
6 E (XB)-gl.dim B

6 E (XA )-gl.dim A + E (XC )-gl.dim C + 1.

This article is organized as follows. In Section 2, we will recall the relevant
notations and notions about the homological theory in the triangulated
categories. Note that there are no suitable proper classes of triangles defined
in the outer terms A and C although the middle term B of a recollement has
proper class of triangles. For this purpose, using the subcategory XB of B,
we construct two suitable subcategories XA and XC in A and C in Section
3, respectively, such that all of them have enough E -projective objects, see
Proposition 2 below. The main results are proved in Section 4. In Section 5,
we apply our main result to the derived categories and list some examples.

Some unexplained notations and terminologies can be referred to [3,4,7,20,
23].

2 Preliminaries

Throughout this paper, C =(C ,Σ,∆) always denotes a triangulated category,
where C is an additive category, Σ: C → C is an automorphism of C called a
suspension functor, and ∆ is a class of diagrams in C of the form

A→ B → C → ΣA,

called a (distinguished) triangle, satisfying axioms (Tr1)–(Tr4), see [25, Chapitre
II, Définition 1.1] or [18, Chapter 1]. (Tr4) is also said to be the octahedral
axiom.

Proposition 1 ([7, Section 2], [17]) If the triple C = (C ,Σ,∆) satisfies all the
axioms of a triangulated category except possibly of (Tr4), then the octahedral
axiom is equivalent to each of the following.

(i) Base Change. For any triangle A
f→ B

g→ C
h→ ΣA ∈ ∆ and any

morphism ε : E → C, there exists a commutative diagram

0 //

��

M

α
��

M

δ
��

// 0

��
A

f ′ // G

β
��

g′ // E

ε
��

h′ // ΣA

A
f //

��

B

γ

��

g // C

ξ
��

h // ΣA

��
0 // ΣM ΣM // 0

(2.1)

in which all horizontal and vertical are triangles in ∆.
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(ii) Cobase Change. For any triangle A
f→ B

g→ C
h→ ΣA ∈ ∆ and any

morphism α : A→ D, there exists a commutative diagram

0

��

// N

ζ

��

N

δ
��

// 0

��
Σ−1(C)

−Σ−1(h)// A

α

��

f // B

β

��

g // C

Σ−1(C)
−Σ−1(h′)//

��

D

η

��

f ′ // F

ϑ
��

g′ // C

��
0 // ΣN ΣN // 0

(2.2)

in which all horizontal and vertical are triangles in ∆.

Definition 1 [7, Section 2] Let C be a triangulated category. Suppose that
a class E of triangles is contained in ∆.

(1) E is closed under base change if for any triangle A
f→ B

g→ C
h→ ΣA ∈ E

and any morphism ε : E → C as in diagram (2.1), the triangle A
f ′→ G

g′→ E
h′→

ΣA ∈ E .

(2) E is closed under cobase change if for any triangle A
f→ B

g→ C
h→

ΣA ∈ E and any morphism α : A → D as in diagram (2.2), the triangle D
f ′→

F
g′→ C

h′→ ΣD ∈ E .

(3) E is closed under suspension if for any triangle A
f→ B

g→ C
h→ ΣA ∈ E

and any i ∈ Z, the triangle ΣiA
(−1)iΣif→ ΣiB

(−1)iΣig→ ΣiC
(−1)iΣih→ Σi+1A ∈ E .

(4) E is saturated if in diagram (2.1), the third vertical and the second

horizontal triangles are in E , then the triangle A
f→ B

g→ C
h→ ΣA ∈ E .

A triangle T : A
f→ B

g→ C
h→ ΣA is said to be split if h = 0. Moreover, if

T is split, then B ∼= A⊕ C. The subclass of ∆ consisting of the split triangles
will be denoted by ∆0.

Definition 2 [7, Section 2] A class E ⊆ ∆ is called a proper class of triangles
if the following conditions hold:

(1) E is closed under isomorphisms, finite coproducts, and ∆0 ⊆ E ⊆ ∆;

(2) E is closed under suspensions and is saturated;

(3) E is closed under base change and cobase change.

Example 1 [7, Example 2.3 (4)] If X ⊆ C is a class of objects satisfying
ΣX = X , then there is a proper class E (X ) of triangles in C , as follows.

A triangle A → B → C → ΣA lies in E (X ) if and only if the induced
sequence

0→ HomC (X,A)→ HomC (X,B)→ HomC (X,C)→ 0
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is exact in A b for any X ∈X .

Definition 3 [7, Definition 4.1] Let C be a triangulated category, and let E
be a proper class of triangles in C . An object P ∈ C is called E -projective, if
for any triangle A→ B → C → ΣA ∈ E , the induced sequence

0→ HomC (P,A)→ HomC (P,B)→ HomC (P,C)→ 0

is exact in A b.

By the definition, we may conclude that the full subcategory P(E )
consisting of all E -projective objects in C is full, additive, closed under
isomorphisms and direct summands, and Σ-stable (i.e., ΣP(E ) = P(E )).
Recall from [7] that the triangulated category C has enough E -projective
objects if for any object A in C , there exists a triangle K → P → A→ ΣK ∈ E
with P ∈P(E ). Assume that C has enough E -projective objects. Then, from
[7, Lemma 4.2], a triangle D → E → F → ΣD ∈ E if and only if the induced
sequence

0→ HomC (P,D)→ HomC (P,E)→ HomC (P, F )→ 0

is exact in A b for any P ∈P(E ).
Recall that an E -exact complex X• → A with A ∈ C is a sequence

· · · → Xn+1 dn+1

→ Xn → · · ·X1 → X0 d0→ A→ 0

in C , such that for any n > 0, there are triangles Kn+1 gn→ Xn fn→ Kn hn→
ΣKn+1 ∈ E and the differential dn = gn−1fn, where K0 = A and d0 = f0. If
every component Xn of X• is an E -projective object in C , then the E -exact
complex X• → A is said to be an E -projective resolution of A. We call the
object K1 in the E -projective resolution of A a first E -syzygy of A. An n-th
E -syzygy of A is defined by induction.

Definition 4 [7] Let C be a triangulated category, and let E be a proper
class of triangles in C . The E -projective dimension E -pdA of an object A ∈ C
is defined inductively as follows.

(1) If A ∈P(E ), then E -pdA = 0.

(2) Assume that E -pdA > 0. E -pdA 6 n if there exists a triangle K →
P → A→ ΣK ∈ E with P ∈P(E ) and E -pdK 6 n− 1.

(3) E -pdA = n if E -pdA 6 n and E -pdA � n − 1. E -pdA = ∞ if
E -pdA 6= n for all n > 0.

(4) The E -global dimension E -gl.dim C of C is E -gl.dim C = sup{E -pdA |
A ∈ C }.

It is well known that E -pdA 6 n if and only if there is a finite E -projective
resolution

0→ Pn → Pn−1 → · · · → P 1 → P 0 → A→ 0,
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where P i is an E -projective object for i = 0, 1, . . . , n. More results about the
E -projective objects and E -global dimension of C may be referred to [7].

In general, it is not easy to find a proper class E of triangles in a triangulated
category C such that C has enough E -projective objects. Thanks to Beligiannis,
we list one of these examples which will be used frequently in what follows.

Example 2 [7, Lemma 8.1] Let C be a triangulated category which admits
infinite coproducts, and let X be a full subcategory of C which is closed under
suspensions and contains only a set of isomorphism classes of objects. Then X
induces a proper class E of triangles in C , see Example 1 and C has enough
E -projective objects.

Now, we recall the definition of recollement of triangulated categories.

Definition 5 [6] Let A , B, and C be triangulated categories. B is said to
be a recollement of A and C if there are six triangle functors as in the diagram

A
i // B

q

{{

p

cc
e // C

r

cc

l

{{

such that

(1) (q, i), (i, p), and (l, e), (e, r) are adjoint pairs;

(2) i, l, and r are fully faithful functors;

(3) ei = 0 (and thus, also ql = 0 and pr = 0);

(4) for each X ∈ B, there are triangles

le(X)→ X → iq(X)→ Σle(X)

and
ip(X)→ X → re(X)→ Σip(X)

in B, where the arrows to and from X are the counit and the unit morphisms,
respectively.

In this paper, we always assume that all the triangulated categories are not
trivial and admit coproducts unless stated otherwise. The recollement in Defi-
nition 5 is denoted simply by (A ,B,C ). In what follows, all modules are right
modules. We denote by ModR the category of right R-modules, where R is a
ring with unit.

3 E -Projective objects in recollments

In this section, we aim to give the definition of the invariant recollement of
triangulated categories and study the E -projective objects in a recollement. We
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fix some notations as follows. Let (A ,B,C ) be a recollement of triangulated
categories, and let XB always be a full, additive subcategory of B and closed
under isomorphisms, direct summands. For triangle functors q : B → A and
i : A → B, there is a full, additive subcategory of A as follows:

XA = {q(X) | iq(X) ∈XB, X ∈XB}.

Similarly, we obtain a full, additive subcategory of C :

XC = {e(X) | le(X) ∈XB, X ∈XB},

associated with the functors l : C → B and e : B → C .

Definition 6 Let Rtr = (A ,B,C ) be a recollement of triangulated
categories. Assume that XB 6= 0 is a full, additive subcategory of B.
Rtr is said to be a left XB-invariant recollement if the subcategory XA 6= 0.
Rtr is said to be a right XB-invariant recollement if the subcategory XC 6= 0.
Rtr is XB-invariant if it is both left and right XB-invariant.

Remark 1 If the subcategory XA 6= 0 (or, XC 6= 0), it means that there is
an object X ∈ B such that iq(X) (or, le(X)) still falls into B. So, we call it
‘invariant’.

Example 3 Let Rtr = (A ,B,C ) be a recollement of triangulated categories.
If one takes XB = Im(i), then, clearly, XA = A and XC = 0, since Im(i) =
Ker(e) and i is a fully faithful functor. Thus, Rtr is left XB-invariant. If one
takes XB = Im(l), then, clearly, XA = 0 and XC = C , since Im(l) = Ker(q)
and l is a fully faithful functor. In this case, Rtr is right XB-invariant.

Recall from [19, Definition 4.3.1] that a triangulated category D is generated
by a class Q of objects in D , that is, an object M of D is zero whenever
HomD(ΣnQ,M) = 0 for every object Q of Q and every n ∈ Z. Note that it
coincides with the definition as in [24, Definition 5.2]. In this case, the objects
of Q are said to be generators. P is a compact object in D if the functor
HomD(P, -) commutes with coprduct in D . For example, the algebra A is a
compact generator in the derived category D(ModA).

Example 4 Let

Rtr = (Db(ModA), Db(ModB), Db(ModC))

be a recollement of bounded derived categories with respect to Artin algebras
A, B, and C. Let XB = Kb(P(B)) be the homotopy category of bounded
complexes of projective modules. For any P • ∈ Kb(P(B)), we have e(P •) ∈
Kb(P(C)), q(P •) ∈ Kb(P(A)) by [5, Lemma 1.2.1] or [26, Lemma 3.1].
Moreover, since (l, e) and (q, i) are adjoint pairs, we obtain that le(P •) and
iq(P •) are in Kb(P(B)). Note that B ∈ Kb(P(B)), q(B), and e(B) are
compact generators in Db(ModB), Db(ModA), and Db(ModC), respectively.
Hence, XA 6= 0 and XC 6= 0. It follows that Rtr is Kb(P(B))-invariant.
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Recall that a skeletally small category is one in which the collection of
isomorphism classes of objects is a set. Now, we assume that XB is a full
skeletally small, additive subcategory of triangulated category B and closed
under isomorphisms, direct summands, and Σ-stable. It is not difficult to verify
that XA and XC are also skeletally small, closed under isomorphisms, and
Σ-stable. Moreover, if XC = e(XB) and XA = q(XB), then XA and XC are
closed under direct summands. In fact, these conditions can be realized, see
Proposition 6 or Example 7 below, and are important to the proof of our main
result in Section 4.

Example 5 [7,13] Let R be a ring with unit, and let D(ModR) be the
unbounded derived category of ModR. Then Kb(projR) (the homotopy
category of bounded complexes over finitely generated projective R-modules)
and Pb

CE
(modR) (all bounded Cartan-Eilenberg projective complexes which

are homotopy equivalent to complexes having finitely generated projective
components and zero differentials) are full skeletally small, additive sub-
categories of triangulated category D(ModR) and closed under isomorphisms,
direct summands, and Σ-stable.

Let C be a triangulated category, and let E be a proper class of triangles

in C . If the triangle A
f→ B

g→ C
h→ ΣA ∈ E , then the morphism h : C → ΣA

is called an E -phantom map. We denote by PhE (C ) the class of E -phantom
map.

Let X be a class of objects of a triangulated category C satisfying ΣX =
X . Then there is a proper class E (X ) of triangles, which is described as in
Example 1.

Recall that the Jacobson radical J (C ) of an additive category C is the
ideal in C defined by

J (C )(A,B) = {f : A→ B | ∀ g : B → A, morphism idA − gf is invertible}.

Definition 7 [7] A proper class of triangles E in C projectively generates C ,
if PhE (C ) ⊆J (C ) and C has enough E -projectives.

Now, we can describe the projective objects in the triangulated categories
in the recollement.

Proposition 2 Let Rtr = (A ,B,C ) be an XB-invariant recollement such
that XC = e(XB) and XA = q(XB). Then

(1) B has enough E (XB)-projective objects and P(E (XB)) = Add XB;

(2) A has enough E (XA )-projective objects and P(E (XA )) = Add XA ;

(3) C has enough E (XC )-projective objects and P(E (XC )) = Add XC .

Moreover, if XB generates B, then E (XA ), E (XB), and E (XC ) projectively
generate A , B, and C , respectively.

Proof Statements (1)–(3) follow from [7, Lemma 8.1]. By [7, Lemma 8.2], it
remains to show that E (XA ) generates A and E (XC ) generates C . Indeed,
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assume that A ∈ A such that HomA (X,A) = 0 for any X ∈ XA . Since (q, i)
is an adjoint pair, we have

HomB(Y, i(A)) ∼= HomA (q(Y ), A), ∀Y ∈XB.

By the assumption on XB and XA = q(XB), it yields that i(A) = 0 and so,
A = 0 since i is a fully faithful functor. Now, assume that C ∈ C such that
HomC (X,C) = 0 for any X ∈XC . Since (e, r) is an adjoint pair, we have

HomB(Y, r(C)) ∼= HomC (e(Y ), C), ∀Y ∈XB.

Hence, it implies that r(C) = 0 and so, C = 0 because r is a fully faithful
functor. The results come from [7, Lemma 8.2(2)]. �

Remark 2 Indeed, under the above conditions, all of the triangulated
categories A ,B, and C have enough E -injective objects by [7, Theorem 8.6].

Lemma 1 Let Rtr = (A ,B,C ) be a recollement. Then the following results
hold:

(1) if Rtr is left XB-invariant such that XA = q(XB), then the functor i
sends all triangles in E (XA ) to E (XB);

(2) if Rtr is right XB-invariant such that XC = e(XB), then the functor
e sends all triangles in E (XB) to E (XC ).

Proof (1) For any triangle A→ B → C → ΣA in E (XA ), it suffices to show
that for any X ∈XB, the induced sequence

0→ HomB(X, i(A))→ HomB(X, i(B))→ HomB(X, i(C))→ 0

is exact. Since XA = q(XB), the induced sequence

0→ HomB(q(X), A)→ HomB(q(X), B)→ HomB(q(X), C)→ 0

is exact. The result comes from the fact that (q, i) is an adjoint pair.

(2) The proof is similar to (1). �

Proposition 3 Let Rtr = (A ,B,C ) be a recollement. Then the following
results hold:

(1) if Rtr is a left XB-invariant recollement such that XA = q(XB), then

i(P •) : · · · → i(Pn+1)→ i(Pn)→ · · · → i(P 1)→ i(P 0)→ i(A)→ 0

is an E (XB)-projective resolution of i(A) in B, where

P • : · · · → Pn+1 → Pn → · · · → P 1 → P 0 → A→ 0

is an E (XA )-projective resolution of A in A ;

(2) if Rtr is a right XB-invariant recollement such that XC = e(XB), then

e(Q•) : · · · → e(Qn+1)→ e(Qn)→ · · · → e(Q1)→ e(Q0)→ e(B)→ 0
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is an E (XB)-projective resolution of e(B) in C , where

Q• : · · · → Qn+1 → Qn → · · · → Q1 → Q0 → B → 0

is an E (XB)-projective resolution of B in B.

Proof Since (i, p) and (e, r) are adjoint pairs, i and e preserve coproducts.
Thus, for any P∈P(E (XA )) = Add XA and Q ∈P(E (XB)) = Add XB, we
have i(P ) ∈ P(E (XB)) and e(Q) ∈ P(E (XC )). By Lemma 1, we have the
results. �

Corollary 1 Let Rtr = (A ,B,C ) be a left XB-invariant recollement such
that XA = q(XB). If E (XA )-gl.dim A <∞, then

E (XB)-pd(iq(M)) 6 E (XA )-gl.dim A , ∀M ∈ B.

Proof Assume that E (XA )-gl.dim A = n. It is clearly holds for E (XB)-
projective objects. For any non-E (XB)-projective object M ∈ B, we claim
that

E (XB)-pd(iq(M)) 6 n. (3.1)

Note that q(M) ∈ A . We have a finite E (XA )-projective resolution

0→ Pn → Pn−1 → · · · → P1 → P0 → q(M)→ 0

with each Pi ∈ P(E (XA )). By Proposition 3 (1), we have a finite E (XA )-
projective resolution

0→ i(Pn)→ i(Pn−1)→ · · · → i(P1)→ i(P0)→ iq(M)→ 0

with each i(Pi) ∈P(E (XB)). Therefore, (3.1) holds. �

4 Proof of main result

Keep the definitions of XC and XA in Section 3. In this section, we give the
proof of the main result (Theorem A), which is a combination of Theorems 1 and
2 below. Assume that XB 6= 0 is a full skeletally small, additive subcategory of
the triangulated category B and closed under isomorphisms, direct summands,
and Σ-stable. It is well known that Schanuel’s Lemma plays an important role
in the theory of homological dimension in the categories of modules. In order
to discuss the homological dimension in the triangulated categories, we need
the relative version of Schanuel’s Lemma.

Lemma 2 Let n > 0, and let

0→ Pn+1 → Pn → · · · → P1 → P0 →M → 0

and
0→ Gn+1 → Gn → · · · → G1 → G0 →M → 0
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be E -exact complexes with Pi, Gi ∈P(E ) for 0 6 i 6 n. Then

Pn+1 ⊕Gn ⊕ Pn−1 ⊕ · · · ∼= Gn+1 ⊕ Pn ⊕Gn−1 ⊕ · · · .

Proof By induction on n. For n = 0, by the definition of E -exact complexes,
the triangles P1 → P0 → A→ ΣP1 and G1 → G0 → A→ ΣG1 are in E . Since
P0, G0 ∈P(E ), we have

G1 ⊕ P0
∼= P1 ⊕G0

by [7, Proposition 4.4]. Now, we assume that n > 0. Since the triangles K2 →
P1⊕G0 → K1⊕G0 → ΣK2 and L2 → G1⊕P0 → L1⊕P0 → ΣL2 are in E , we
have the E -exact complexes

0→ Pn+1 → Pn → · · · → P1 ⊕G0 → K1 ⊕G0 → 0

and
0→ Gn+1 → Gn → · · · → G2 → G1 ⊕ P0 → L1 ⊕ P0 → 0,

where L2, L1 and K2, K1 are E -syzygies of A. Observing that K1⊕G0
∼= L1⊕P0

by the above discussion, we obtain the result by induction hypothesis. �

Theorem 1 Let Rtr = (A ,B,C ) be an XB-invariant recollement. Assume
XC = e(XB) and XA = q(XB). If E (XB)-gl.dim B <∞, then

E (XA )-gl.dim A <∞, E (XC )-gl.dim C <∞.

Moreover,

max{E (XA )-gl.dim A ,E (XC )-gl.dim C } 6 E (XB)-gl.dim B.

Proof Assume E (XB)-gl.dim B = n. For each object A ∈ A , we have i(A) ∈
B and thus, there exists a finite E (XB)-projective resolution

0→ Pn → Pn−1 → · · · → P1 → P0 → i(A)→ 0.

On the other hand, since A has enough E (XA )-projective objects, there
exists an E (XA )-exact complex

0→ Kn → Qn−1 → · · · → Q1 → Q0 → A→ 0

with Qi ∈P(E (XA )). By Lemma 1 (1), we have an E (XB)-exact complex

0→ i(Kn)→ i(Qn−1)→ · · · → i(Q1)→ i(Q0)→ i(A)→ 0

with each i(Qj) ∈P(E (XB)). From Lemma 2, we learn that

i(Kn)⊕ Pn−1 ⊕ i(Qn−2)⊕ · · · ∼= Pn ⊕ i(Qn−1)⊕ Pn−2 ⊕ · · · ∈P(E (XB)).

Thus, i(Kn) ∈ P(E (XB)) and so Kn
∼= qi(Kn) ∈ P(E (XA )). Therefore,

E (XA )-pdA 6 n and so, E (XA )-gl.dim A 6 n.
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For any C ∈ A , since l(C) ∈ B, there is a finite E (XB)-projective
resolution

0→ Qn → Qn−1 → · · · → Q1 → Q0 → l(C)→ 0,

where Qi ∈ P(E (XB)). By Proposition 3 (2), E (XC )-pdC 6 n and hence,
E (XC )-gl.dim C 6 n. �

If we weaken the conditions in Theorem 1, then there are two results as
follows.

Proposition 4 Let Rtr = (A ,B,C ) be a left XB-invariant recollement. If
E (XB)-gl.dim B <∞, then the following statements are equivalent:

(1) E (XA )-gl.dim A 6 E (XB)-gl.dim B.

(2) E (XA )-pd(q(X)) 6 E (XB)-gl.dim B for any object X ∈ B.

Proof (1)⇒ (2) It is obvious.

(2) ⇒ (1) Assume that E (XB)-gl.dim B = n. For any A ∈ A , we have
i(A) ∈ B. Note that (q,i) is an adjoint pair and the functor i is fully faith. It
follows from assumption (2) that E (XA )-pdA 6 n and so E (XA )-gl.dim A 6
n. �

Proposition 5 Let Rtr = (A ,B,C ) be a right XB-invariant recollement. If
E (XB)-gl.dim B <∞, then the following statements are equivalent:

(1) E (XC )-gl.dim C 6 E (XB)-gl.dim B.

(2) E (XC )-pd(e(X)) 6 E (XB)-gl.dim B for any object X ∈ B.

Proof (1)⇒ (2) It is obvious.

(2) ⇒ (1) Assume that E (XB)-gl.dim B = n. For any C ∈ C , we have
l(C) ∈ B. Note that (l,e) is an adjoint pair and the functor l is fully faith. It
follows from assumption (2) that E (XC )-pdC 6 n and so E (XC )-gl.dim C 6 n.

�
Before considering the upper bound, we need the following concepts.
By definition, a triangle A→ B → C → ΣA in a triangulated category C is

said to be HomC (X , -)-exact for a class of objects X of C provided that there
is a short exact sequence

0→ HomC (X,A)→ HomC (X,B)→ HomC (X,C)→ 0

for any X ∈X . For example, all triangles in E are HomC (P(E ), -)-exact.

Lemma 3 Let X be a class of objects in C , and let A→ B → C → ΣA be a
triangle. Then the following results hold:

(1) if ΣX ⊆ X , then the triangle is HomC (X , -)-exact if and only if the
induced map

HomC (X,B)→ HomC (X,C)

is an epimorphism for each X ∈X ;
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(2) if Σ−1X ⊆ X , then the triangle is HomC (X , -)-exact if and only if
the induced map

HomC (X,A)→ HomC (X,B)

is a monomorphism for each X ∈X .

Proof (1) The necessity is clear. We only need to show the sufficiency. For
each X ∈X , applying the functor HomC (X, -) to the triangle A→ B → C →
ΣA, we have a long exact sequence

· · · → HomC (X,Σ−1B)→ HomC (X,Σ−1C)

→ HomC (X,A)→ HomC (X,B)→ · · · .

By the assumption, it suffices to show that the induced map

HomC (X,A)→ HomC (X,B)

is a monomorphism, or equivalently, the induced map

HomC (X,Σ−1B)→ HomC (X,Σ−1C)

is an epimorphism. Note that ΣX ⊆X and hence, the induced map

HomC (ΣX,B)→ HomC (ΣX,C)

is an epimorphism. Since Σ is an automorphism of C , the result follows.

(2) The proof is a dual of (1). �

Now, we are in position to show the converse of Theorem 1.

Theorem 2 Let Rtr = (A ,B,C ) be an XB-invariant recollement such that
XC = e(XB) and XA = q(XB). Assume that the triangle

le(X)→ X → iq(X)→ Σle(X)

is split for any X ∈P(E (XB)). If

E (XA )-gl.dim A <∞, E (XC )-gl.dim C <∞,

then

E (XB)-gl.dim B 6 E (XA )-gl.dim A + E (XC )-gl.dim C + 1.

Proof Assume

E (XA )-gl.dim A = m, E (XC )-gl.dim C = n.

For any non-E (XB)-projective object M ∈ B, we have a finite E (XC )-
projective resolution of e(M) :

0→ Qn → Qn−1 → · · · → Q1 → Q0 → e(M)→ 0.
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On the other hand, there is an E (XB)-exact complex

0→ Kn → Pn−1 → · · · → P1 → P0 →M → 0,

where Pi ∈ P(E (XB)), since B has enough E (XB)-projective objects by
Proposition 2. Thus, applying the functor e to the projective resolution of
le(M), we obtain an E (XC )-exact complex

0→ e(Kn)→ e(Pn−1)→ · · · → e(P1)→ e(P0)→ e(M)→ 0,

where e(Pi) ∈P(E (XC )). By Lemma 2, it follows that

e(Kn)⊕Qn−1 ⊕ e(Pn−2)⊕ · · · ∼= Qn ⊕ e(Pn−1)⊕Qn−2 ⊕ · · · ∈P(E (XC )).

Thus, e(Kn) ∈P(E (XC )) and so, le(Kn) ∈P(E (XB)).
Next, we claim that E (XB)-pd(Kn) 6 m+ 1. Since B has enough E (XB)-

projective objects, we have a triangle Kn+1 → Pn+1 → Kn → ΣKn+1 in E (XB)
with Pn+1 ∈P(E (XB)). The discussion on the projective dimension of Kn can
be divided into two cases.

Case 1 If e(Kn+1) = 0, then Kn+1 lies in Ker e = Im i. Thus, there is an
object Y ∈ A such that i(Y ) = Kn+1. Since E (XA )-gl.dim A = m, there is a
finite E (XA )-projective resolution of Y :

0→ Q′m → Q′m−1 → · · · → Q′1 → Q′0 → Y → 0.

Then, there is a finite E (XB)-projective resolution of Kn+1 :

0→ i(Q′m)→ i(Q′m−1)→ · · · → i(Q′1)→ i(Q′0)→ Kn+1 → 0.

Hence, we know that E (XB)-pdKn+1 6 m. It is easy to see that E (XB)-pdKn

6 m+ 1.

Case 2 Otherwise, we obtain a split triangle e(Kn+1)→ e(Pn+1)→ e(Kn)→
Σe(Kn+1) in E (XC ) with e(Pn+1) ∈P(E (XC )). Hence, the triangle

le(Kn+1)→ le(Pn+1)→ le(Kn)→ Σle(Kn+1)

is spilt in B and le(Kn+1) lies in P(E (XB)). Then we have the following
commutative diagram:

le(Kn+1)

��

// Kn+1
//

��

iq(Kn+1)

��

// Σle(Kn+1)

��
le(Pn+1)

��

// Pn+1
//

��

iq(Pn+1)

��

// Σle(Pn+1)

��
le(Kn) //

��

Kn
//

��

iq(Kn)

��

// Σle(Kn)

��
Σle(Kn+1) // ΣKn+1

// Σiq(Kn+1) // Σ2le(Kn+1)
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Assume that P lies in P(E (XB)). Applying the functor HomB(P, -) to the
above diagram, we obtain the following commutative diagram:

0

��

0

��

...

��
· · · // HomB(P, le(Kn+1))

��

// HomB(P,Kn+1) //

��

HomB(P, iq(Kn+1))

��

// · · ·

0 // HomB(P, le(Pn+1))

��

// HomB(P, Pn+1) //

��

HomB(P, iq(Pn+1))

��

// 0

· · · // HomB(P, le(Kn)) //

��

HomB(P,Kn) //

��

HomB(P, iq(Kn))

��

// · · ·

0 0
...

where the first, second verticals and the second horizontal are short exact
sequences. Thus, we infer that the morphism

HomB(P, le(Kn+1))→ HomB(P,Kn+1)

is a monomorphism. By Lemma 3, the triangle

le(Kn+1)→ Kn+1 → iq(Kn+1)→ Σle(Kn+1)

lies in E (XB). Note that q(Kn+1) lies in A and E (XA )-gl.dim A = m. Hence,
we infer that E (XB)-pd iq(Kn+1) 6 m and so, E (XB)-pdKn+1 6 m. It follows
that E (XB)-pdKn 6 m+ 1.

Therefore, we know that E (XB)-pdM 6 n+m+1 and so, E (XB)-gl.dim B
6 n+m+ 1. �

Now, we can prove our main result.

Proof of Theorem A It follows from Theorems 1 and 2. �

Let Rtr = (A ,B,C ) be a recollement. If XC and XA are full skeletally
small, closed under isomorphisms, direct summands, and Σ-stable, additive
subcategories of A and C , respectively, then one can construct a full skeletally
small additive subcategory XB of B, where

XB = add{l(XC ), i(XA )}.

In this case, Rtr = (A ,B,C ) is an XB-invariant recollement such that XA =
q(XB) and XC = e(XB). Moreover, it is easy to see that the triangle le(X)→
X → iq(X) → Σle(X) is split, for any X ∈ P(E (XB)). Thus, we have the
following consequence.

Corollary 2 Keep the notations Rtr = (A ,B,C ), XA , XB, and XC as
above. Then the finiteness of the E -global dimensions of triangulated categories
is invariant with respect to the recollement Rtr.
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5 Applications to derived categories

In this section, we aim to realize Theorem A on the derived categories of
algebras. Let k be a field, and let A be a finite-dimensional k-algebra. For
convenience, we denote by D(A) the unbounded derived category of ModA.

Next, we apply our main result into unbounded derived categories of
algebras.

Proposition 6 Let k be a field. Assume that A =
[
B 0
M C

]
is a triangular

matrix algebra, where A, B are finite-dimensional k-algebras and M a finitely
generated C-B-bimodule. Then there are three proper classes of triangles EA,
EB, and EC in D(A), D(B), and D(C), respectively. Moreover,

max{EB-gl.dimD(B),EC-gl.dimD(C)}
6 EA-gl.dimD(A)

6 EB-gl.dimD(B) + EC-gl.dimD(C) + 1.

Proof Let e =
[

0 0
0 1C

]
be an orthogonal idempotent. Then, by [2, Example

3.4], there is a recollement

D(B)
i∗ // D(A)

i∗

xx

i!

ff
j! // D(C)

j∗

ff

j!

xx

The triangle functors i∗, i∗, j!, and j! can be listed as follows:

i∗ = −⊗L
A BB, j! = −⊗L

C eAA,

i∗ = −⊗L
B BA, j! = −⊗L

A AeC .

Assume that complexes

X =
⊕
i∈Z

i∗(B)[−i] =
⊕
i∈Z

B[−i],

Y =
⊕
i∈Z

j!(C)[−i] =
⊕
i∈Z

eA[−i],

Z =
⊕
i∈Z

(B ⊕ eA)[−i].

Let

XA = addZ, XB = addX, XC = addY.
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Clearly, they are skeletally small, closed under isomorphisms, direct summands,
and Σ-stable additive full subcategories of D(A), D(B), and D(C), respectively.
In this case, we infer that

XB = i∗(XA), XC = j!(XA).

Moreover, by Proposition 2 and our construction, any object P ∈P(E (XB)) is
a sum of i∗i

∗(P ) and j!j
!(P ). Hence, triangle (1.1) in Theorem A is split. Now,

it is easy to see that the recollement (D(B), D(A), D(C)) is an XA-invariant
recollement and satisfies the conditions of Theorem A. By Example 1, we can
obtain three proper classes of triangles EA, EB, and EC in D(A), D(B), and
D(C), respectively. The rest of the results comes from Theorem A. �

Definition 8 [7] Let C be a triangulated category with a proper class of
triangles E such that C has enough E -projective objects. The triangulated
category C is said to be a hereditary category with respect to E provided that
E -gl.dim C 6 1.

Example 6 Let k be a field, and let E be a proper class of triangles in the
derived category D(k). It is well known that

D(k) ∼=
∏
i∈Z

Mod k.

Then it is easy to check that all objects of the derived category D(k) are E -
projective objects. Hence, by [7, Theorem 4.25], we know that E -gl.dimD(k) =
0. That is, the derived category D(k) is an E -hereditary category.

Corollary 3 Let k be a field. Assume that A =
[
k 0
M k

]
is a triangular matrix

algebra, where M is a finite-dimensional vector space. Then there is a proper
class E of triangles in D(A) such that D(A) is an E -hereditary category.

Proof One can directly get the result from Proposition 6 and Example 6. �

Example 7 Let k be a field. Assume that Λ is the path algebra over k given
by the quiver

◦
2

α // ◦
1

Then Λ can be viewed as a triangular matrix algebra
[
k 0
k k

]
. Then, from

Corollary 3, we know that the derived category D(Λ) is an E -hereditary
category.

Example 8 Let k be a field, and let Λ be the k-algebra given by the quiver

◦
3

α // ◦
2

β // ◦
1
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with the relation αβ = 0. Then Λ is isomorphic to a triangular matrix algebra[
k 0 0
k k 0
0 k k

]
. Let e =

[
0 0 0
0 0 0
0 0 1

]
be an idempotent of the triangular matrix algebra.

Then

Λ/ΛeΛ ∼=
[
k 0
k k

]
, eΛe ∼= k.

By Proposition 6, there are three proper classes of triangles EΛ, EΛ/ΛeΛ, and
EeΛe in D(Λ), D(Λ/ΛeΛ), and D(eΛe), respectively. In addition, we know that

EΛ-gl.dimD(Λ) 6 EΛ/ΛeΛ-gl.dimD(Λ/ΛeΛ) + EeΛe-gl.dimD(eΛe) + 1.

From Examples 6 and 7, we have EΛ-gl.dimD(Λ) 6 2.

Remark 3 Finally, we should remark that by the results provided in this
paper, it is difficult to obtain that the derived categories of all finite-dimensional
hereditary algebras are E -hereditary categories. However, it is a question
worthy of consideration.
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