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Abstract Third order three-dimensional symmetric and traceless tensors play
an important role in physics and tensor representation theory. A minimal
integrity basis of a third order three-dimensional symmetric and traceless
tensor has four invariants with degrees two, four, six, and ten, respectively.
In this paper, we show that any minimal integrity basis of a third order three-
dimensional symmetric and traceless tensor is also an irreducible function basis
of that tensor, and there is no syzygy relation among the four invariants of that
basis, i.e., these four invariants are algebraically independent.
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1 Introduction

Third order three-dimensional symmetric and traceless tensors play an
important role in physics and tensor representation theory. In the study of
liquid crystal, they are used to characterize condensed phases exhibited by
bent-core molecules [3,5,13]. In tensor representation theory, a tensor space
is called O(3)-stable if any orthogonal transformation converts that space to
itself. The space of symmetric and traceless tensors of some order is
O(3)-stable and does not contain any proper O(3)-stable subspace. Hence,
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the space of third order three-dimensional symmetric and traceless tensors is a
fundamental tensor space.

Smith and Bao [16] presented a minimal integrity basis of a third order
symmetric and traceless tensor. The Smith-Bao minimal integrity basis has
four invariants with degrees two, four, six, and ten, respectively. It is known
that the number of invariants with the same degree in a minimal integrity basis
of some tensors is always fixed [10]. Thus, any minimal integrity basis of a third
order symmetric and traceless tensor has four invariants with degrees two, four,
six, and ten, respectively.

In addition, there are important third order tensors in three-dimensional
physical spaces such as third order symmetric and traceless tensors, third order
symmetric tensors, the Hall tensor, and the piezoelectric tensor. Olive and
Auffray [9] constructed a minimal integrity basis with thirteen isotropic
invariants for a third order symmetric tensor. Chen et al. [4] showed that eleven
isotropic invariants among the Olive-Auffray minimal integrity basis of a third
order symmetric tensor form an irreducible function basis of that tensor. A ten
invariant minimal integrity basis, which is also an irreducible function basis of
the Hall tensor, was presented by Liu et al. [7]. For the piezoelectric tensor,
Olive [8] gave 495 hemitropic invariants and claimed that these hemitropic
invariants form an hemitropic integrity basis. Moreover, Olive [8] showed a set
of 30878 isotropic invariants which form an integrity basis of isotropic invariants
of the piezoelectric tensor. Some further efforts are needed to find a function
basis of the piezoelectric tensor with the cardinality smaller than the cardinality
of the integrity basis given in [8].

In this paper, we focus on third order three-dimensional symmetric and
traceless tensors and show that any minimal integrity basis of a third order
three-dimensional symmetric and traceless tensor is also an irreducible function
basis of that tensor, and there is no polynomial syzygy relation among the four
invariants of that basis, i.e., these four invariants are algebraically independent
[15].

In the next section, some preliminaries are given.
In Section 3, we show that the cardinality of a function basis of the invariants

for a finite dimensional real vector space by a compact group is bounded below
by the intuitive difference of the dimensions of the vector space and the group.
Applying this result to the space of third order three-dimensional symmetric
and traceless tensors, we conclude that each minimal integrity basis of a third
order three-dimensional symmetric and traceless tensor is also an irreducible
function basis of that tensor.

Then, in Section 4, we further show that there is no syzygy relation among
the four invariants of any minimal integrity basis of a third order three-
dimensional symmetric and traceless tensor. In other words, these four
invariants are algebraically independent [15].

The results of this paper enrich the knowledge about minimal integrity bases
and irreducible function bases of third order three-dimensional tensors.
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Nomenclature Some useful notations are listed here.

D a third order three-dimensional symmetric and traceless tensor with
components Dijk.

T(m,n) the space of real tensors of order m and dimension n.

S(m,n) the subspace of symmetric tensors.

St(m,n) the subspace of symmetric and traceless tensors.

O(n) the orthogonal group of dimension n.

SO(n) the special orthogonal group of dimension n.

GL(n,R) the general linear group of real matrices.(
m
n

)
= m!

n! (m−n)! the binomial coefficient for m > n > 0.

2 Preliminaries

In this section, we present necessary notions and results from tensor invariant
theory and summarize the results about minimal integrity bases of a third order
three-dimensional symmetric and traceless tensor.

2.1 Tensor invariants

Let m,n > 1 be given integers. The space of real tensors A of order m and
dimension n is formed by all tensors (hypermatrices) with entries ai1···im ∈ R,
the field of real numbers, for all ij ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. It is denoted
as T(m,n). Let GL(n,R) ⊂ Rn×n be the general linear group of real matrices.
Let G ⊆ GL(n,R) be a subgroup. We then have a natural group representation
G→ GL(T(m,n),R), the real general linear group of the linear space T(m,n),
via

(g ·T )j1···jm :=
n∑
i1

· · ·
n∑

im=1

gj1i1 · · · gjmimti1···im .

A linear subspace V of T(m,n) is G-stable if g · v ∈ V for all g ∈ G and v ∈ V.
Of particular interests in this article are the compact subgroups O(n) (the

orthogonal group) and SO(n) (the special orthogonal group), both of which are
Lie groups [6].

In T(m,n), the subspace of symmetric tensors S(m,n) is GL(n,R)-stable,
and thus G-stable for every subgroup G. Likewise, inside S(m,n), the subspace
of symmetric and traceless tensors St(m,n) is O(n)-stable, thus SO(n)-stable.
Recall that a symmetric tensor T ∈ S(m,n) is traceless if

n∑
i=1

tiii3···im = 0, ∀ i3, . . . , im ∈ {1, . . . , n}.

A well-known fact is that the dimension of S(m,n) as a linear space is
(
n+m−1
n−1

)
,

and that of St(m,n) is
(
n+m−1
n−1

)
−
(
n+m−3
n−1

)
.
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Associated to a linear subspace V ⊆ T(m,n) is an algebra R[V ], generated
by the dual basis of V. Once a basis of V is fixed, an element f ∈ R[V ] can be
viewed as a polynomial in terms of the coefficients of v ∈ V in that basis. Let
G ⊆ GL(n,R) be a subgroup and V be G-stable. Then, we can induce a group
action of G on R[V ] via

(g · f)(v) = f(g−1 · v), ∀ g ∈ G, ∀ v ∈ V.

With this group action, some elements of R[V ] are fixed points for the whole
G, i.e.,

g · f = f, ∀ g ∈ G,
which form a subring R[V ]G of R[V ] [11,19]. Elements of R[V ]G are invariants
of V under the action of G. It is well known that R[V ]G is finitely generated.
A generator set is called an integrity basis. In an integrity basis, if none of the
generators is a polynomial of the others, it is a minimal integrity basis. Given a
subspace V and a group G, minimal integrity bases may not be unique, but their
cardinalities are the same as well as the lists of degrees of the generators [17].
Invariants in R[V ]G are polynomials, always referred as algebraic invariants.

Likewise, one can consider function invariants [11]. A function f : V → R
is an invariant if

f(v) = f(g · v), ∀ g ∈ G.
The set of function invariants of V is denoted as I (V ). If there is a set of
generators such that each function invariant can be expressed as a function of
the generators, it is called a function basis. Similarly, if none of the generators
is a function of the others in a function basis, it is called an irreducible function
basis.

2.2 Minimal integrity bases of a third order three-dimensional symmetric and
traceless tensor

Use D to denote a third order three-dimensional symmetric and traceless tensor.
In this subsection, Subsection 3.3, and Section 4, we only consider the three-
dimensional real space, and use the summation convention, i.e., in a product,
if an index is repeated twice, then it is summed up from 1 to 3 for that index.

Smith and Bao [16] presented a minimal integrity basis for D as {I2, I4, I6,
I10}, with

I2 := DijkDijk, I4 := DijkDij`DpqkDpq`,

I6 := v2i , I10 := Dijkvivjvk,

where vp := DijkDij`Dk`p.
The number of invariants with the same degree in a minimal integrity basis

of some tensors is always fixed [10]. Hence, any minimal integrity basis of D
has four invariants with degrees two, four, six, and ten, respectively. We denote
the four invariants of a general minimal integrity basis of D by J2, J4, J6, and
J10, respectively.
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3 Irreducible function bases of a third order symmetric and traceless tensor

In this section, we show that the cardinality of a function basis of the invariants
for a finite dimensional real vector space by a compact group is lower bounded
by the intuitive difference of the dimensions of the vector space and the group.
Then we apply this result to the space of third order three-dimensional
symmetric and traceless tensors, showing that each minimal integrity basis
of a third order three-dimensional symmetric and traceless tensor is also an
irreducible function basis of that tensor.

3.1 Quotient manifold by Lie groups

A real vector space V of finite dimension has a natural manifold structure. Any
given equivalence relation ∼ on V defines a quotient structure with elements
being the equivalence classes

V/ ∼:= {[v] | v ∈ V }, [v] := {u ∈ V | v ∼ u}.

The set V/ ∼ is the quotient of V by ∼, and V is the total space of V/ ∼ . The
quotient V/ ∼ is a quotient manifold if the natural projection π : V → V/ ∼
is a submersion. V/ ∼ admits at most one manifold structure making it being
a quotient manifold [1, Proposition 3.4.1]. It may happen that V/ ∼ has a
manifold structure but fails to be a quotient manifold. Whenever V/ ∼ is
indeed a quotient manifold, we call the equivalence relation ∼ regular.

Let G be any compact Lie group and V a finite dimensional real linear space.
Suppose that V is a representation of G, i.e., there is a group homomorphism
G→ GL(V,R). Then, there is a natural equivalence relation given by G as

v ∼ u if and only if g · v = u for some g ∈ G.

The quotient under this equivalence is sometimes denoted as V/G, which is the
set of orbits of the group action of G on V. Suppose in the following that the
group action is continuous. Then, with the compactness of G, it can be shown
that V/G is a quotient smooth manifold, since the graph set

{(v, u) | [v] = [u]} ⊂ V × V

is closed [1, Proposition 3.4.2].
Note that the fibre of the natural projection π is the equivalence class

π−1(π(v)) = [v] for each v ∈ V. If [v] is not a discrete set of points for some
v ∈ V, then the dimension of V/ ∼ is strictly smaller than the dimension of V
[1, Proposition 3.4.4].

In the following, we consider subspaces of the linear space of tensors of order
m and dimension n, i.e., V ⊆ T(m,n).

Lemma 1 Let V ⊆ T(m,n) be a linear space containing St(m,n) and G =
O(n) or SO(n). Then, we have dim(V/G) < dim(V ), and

dim(V/G) > dimV − dim(G). (1)
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Proof By [1, Proposition 3.4.4], if there is one point v ∈ V such that [v] is not
a set of discrete points, then

dim(V/G) < dim(V ), dim(V/G) = dimV − dim([v]),

where [v] is regarded as an embedded submanifold of V.
Note that [v] is the orbit of G acting on the element v. Thus, the dimension

of [v] cannot exceed the dimension of G. Consequently, the dimension bound
(1) follows if we can find a point v ∈ V such that [v] is not a discrete set of
points.

First of all, we show that [v] cannot be a discrete set of points for the group
G = SO(n) for some v ∈ V.

It is easy to see that the stabilizers Gv = G cannot hold throughout v ∈ V.
Thus, there exists an orbit [v] with more than one element. Suppose that [v]
is a discrete set of more than two points. For any given two discrete points
v1, v2 ∈ [v], there exist g1, g2 ∈ G such that

vi = gi · v, i = 1, 2,

by the definition of [v]. Since SO(n) is a connected manifold, there is a smooth
curve g(t) starting from g(0) = g1 ending at g(1) = g2. By the definition,

g(t) · v ∈ [v], ∀ t ∈ [0, 1].

Since the group action is smooth, we see that v1 and v2 is thus connected,
contradicting the discreteness.

Since SO(n) is one half connected component of O(n), the result for O(n)
follows immediately. �

3.2 Cardinality of function basis

The next result is [18, Theorem 11.112], see also the classical book [19].

Lemma 2 (Separability) Let G be a compact group, and let V be a real vector
space representing G. Then the orbits of G acting on V are separated by the
invariants R[V ]G.

The conclusion may fail in the complex case.
The concepts of function invariants and functional independence of

invariants can be found in classical textbooks, see, for example, [11, p. 73].
The analysis for integrity and minimal integrity bases of V for some G is

more sophisticated and approachable than function basis. Nevertheless, an
exciting fact that an integrity basis is also a function basis holds in most
interesting cases. We will present this result in the following theorem.

Theorem 1 (Function Basis) Let G be a compact group, and let V be a finite
dimensional real linear vector space representing G. Then, any integrity basis
of R[V ]G is a function basis.

Proof It is well known that the ring of polynomial invariants R[V ]G is finitely
generated, whose minimal set of generators is an integrity basis.
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The orbits of G on V are separable, i.e., p(u) = p(v) for all p ∈ R[V ]G if
and only if u = g · v for some g ∈ G by Lemma 2. Let P := {p1, . . . , pr} be an
integrity basis. We have a map

P : V → P(V ),

v 7→ (p1(v), . . . , pr(v))>,

where P(V ) is the image of P on V. Actually, this map is defined over V/G,
as each pi ∈ P is an invariant. Moreover, this map, with V/G → P(V ), is
onto and one to one, following from the separability of R[V ]G on V and the
fact that each algebraic invariant is generated by p1, . . . , pr. Thus, there is an
inverse map

P−1 : P(V )→ V/G.

In summary, we can conclude that [v] (the equivalent class in V/G) for any
v ∈ V can be determined by the values of p1(v), . . . , pr(v). On the other side,
each invariant in I (V ), the set of invariants of V, is a function over V/G. Thus,
we have a chain of functions

V → P(V )↔ V/G→ R.

Reading throughout the above chain, we get that the integrity basis P gives a
function basis for I (V ). �

When conditions in Theorem 1 are fulfilled, we can derive a function
basis and even an irreducible function basis from an integrity basis or
minimal integrity basis. A function basis derived from an integrity basis is
called a polynomial function basis, and an irreducible function basis derived
from a minimal integrity basis is called an irreducible polynomial function basis.
Note that any function basis consisting of polynomial invariants is a polynomial
function basis as it can always be expanded to an integrity basis. In the
following, we will give a lower bound for the cardinality of a polynomial function
basis.

Since R[V ]G is finitely generated [6] and has no nilpotent elements, it follows
from [14, Theorem 1.3] that that V/G is a (quotient) variety. It is the variety
determined by the coordinate ring R[V ]/(R[V ]G).

Theorem 2 (Cardinality Theorem) Let G be a compact group of dimension
d, and let V be a finite dimensional real linear vector space representing G of
dimension N > d. Then, any polynomial function basis has cardinality being
not smaller than N − d.
Proof Let {p1, . . . , pr} ⊂ P [V ]G be a polynomial function basis. We must
have, for each pair u, v ∈ V,

pi(u) = pi(v), ∀ i ∈ {1, . . . , r},

which implies
[u] = [v],
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since each polynomial in P [V ]G is a function of p1, . . . , pr, and P [V ]G separates
the orbits of V/G [19].

We therefore have the mapping

P : V/G→ Rr,

[v] 7→ (p1(v), . . . , pr(v))>,

is a one-to-one regular map. Obviously, we can consider the mapping

P : V/G→P(V/G) ⊆ Rr

whenever P is not dominant. Now, the map

P : V/G→P(V/G)

is a dominant morphism. Then, when

r < N − d 6 dim(V/G),

each fibre of P−1(y) for y ∈P(V/G) will have dimension at least

dim(V/G)− dim(P(V/G)) > N − d− r > 1

[2, Proposition 6.3]. This contradicts the separability of the set {p1, . . . , pr} on
the orbits of V/G immediately. �

3.3 Irreducible function bases of a third order symmetric and traceless tensor

By the cardinality theorem for function basis, we have the following result for
third order three-dimensional symmetric and traceless tensors.

Theorem 3 Every minimal integrity basis of isotropic invariants of a third
order three-dimensional symmetric and traceless tensor D is an irreducible
function basis of that tensor.

Proof First, note that the dimension of St(3, 3) is 7. Thus, the dimension
of St(3, 3)/O(3) is at least 4. It follows from Theorem 2 that an irreducible
function basis will have cardinality at least 4.

On the other hand, every minimal integrity basis of St(3, 3) will have the
same cardinality 4 [17], which is of course an upper bound for the cardinality
of irreducible function bases derived from them.

As the lower bound is equal to the upper bound for the cardinality of the
irreducible function basis, the conclusion follows. �

Remark 1 We may directly show that the Smith-Bao minimal integrity basis
{I2, I4, I6, I10} is an irreducible function basis of a third order three-dimensional
symmetric and traceless tensor D by using the method proposed in [12]. Since
a minimal integrity basis is also a function basis, we only need to prove that
none of {I2, I4, I6, I10} is a single-valued function of the others.
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Using seven independent elements of the tensor D,

D111, D112, D113, D122, D123, D222, D223,

we represent the multi-way array corresponding to D as

D111 D112 D113

D112 D122 D123

D113 D123 −D111 −D122

D112 D122 D123

D122 D222 D223

D123 D223 −D112 −D222

D113 D123 −D111 −D122

D123 D223 −D112 −D222

−D111 −D122 −D112 −D222 −D113 −D223


.

Let

D111 =
4
√

3, D112 = D113 = D122 = D123 = D222 = D223 = 0.

Then
I2 = 4

√
3, I4 = 24, I6 = I10 = 0.

Let
D112 =

4
√

2, D111 = D113 = D122 = D123 = D222 = D223 = 0.

Then
I2 = 6

√
2, I4 = 24, I6 = I10 = 0.

We see that with respect to these two examples, the values of I4, I6, and I10
keep invariant, but the value of I2 is changed. This shows that I2 is not a
function of I4, I6, and I10.

Let

D111 =
√

3, D112 = D113 = D122 = D123 = D222 = D223 = 0.

Then
I2 = 12, I4 = 72, I6 = I10 = 0.

Let
D112 =

√
2, D111 = D113 = D122 = D123 = D222 = D223 = 0.

Then
I2 = 12, I4 = 48, I6 = I10 = 0.

We see that with respect to these two examples, the values of I2, I6, and I10
keep invariant, but the value of I4 is changed. This shows that I4 is not a
function of I2, I6, and I10.
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Let

D111 = D112 = 1, D113 = D122 = D123 = D222 = D223 = 0.

Then
I2 = 10, I4 = 44, I6 = 16, I10 = 64.

Let
D111 = D123 = 1, D112 = D113 = D122 = D222 = D223 = 0.

Then
I2 = 10, I4 = 44, I6 = 16, I10 = −64.

We see that with respect to these two examples, the values of I2, I4, and I6
keep invariant, but I10 changes its sign. This shows that I10 is not a function
of I2, I4, and I6.

Let
f(t) = −43 + cos 6t+ 84 sin 3t.

Since
f(0)f

(π
6

)
= −42 · 40 < 0,

we know that f(t) = 0 has a root in (0, π/6), which is denoted as t0. Let

D111 = 1, D122 = −1

2
+

1

2
sin t0, D123 =

1

2
cos t0,

D223 = −2, D112 = D113 = D222 = 0.

Then
I2 = 20, I4 = 176, I6 = 104− 24 sin 3t0,

I10 = −16(−43 + cos 6t0 + 84 sin 3t0) = 0.

On the other hand, let

D111 = D112 = D113 = D123 = 1, D122 = D222 = D223 = 0.

Then
I2 = 20, I4 = 176, I6 = 128, I10 = 0.

Clearly, since t0 ∈ (0, π/6), we have

104− 24 sin(3t0) < 104 < 128.

Hence, I6 is not a function of I2, I4, and I10.
Hence, none of I2, I4, I6, and I10 is a function of the other three invariants,

i.e., {I2, I4, I6, I10} is also an irreducible function basis of a third order three-
dimensional symmetric and traceless tensor D.

Theorem 3 claims that any minimal integrity basis of a third order three-
dimensional symmetric and traceless tensor D is an irreducible function basis
of that tensor. Hence, Theorem 3 is more general. The above direct proof for
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the Smith-Bao minimal integrity basis {I2, I4, I6, I10} just provides a support
to Theorem 3.

4 Four invariants of basis are algebraically independent

The next theorem claims that there is no syzygy relation among four invariants
J2, J4, J6, and J10, where {J2, J4, J6, J10} is an arbitrary minimal integrity basis
of D.

Theorem 4 Let {J2, J4, J6, J10} be an arbitrary minimal integrity basis of a
third order three-dimensional symmetric and traceless tensor D. Then there is
no syzygy relation among four invariants J2, J4, J6, and J10.

Proof We first show that there is no syzygy relation among four invariants
I2, I4, I6, and I10, where {I2, I4, I6, I10} is the Smith-Bao minimal integrity
basis of D.

For a given third order three-dimensional symmetric and traceless tensor
D, we define

g(x) := Dijkxixjxk,

where x = (x1, x2, x3)
>. Using seven independent elements of the tensor D,

D111, D112, D113, D122, D123, D222, D223,

the homogeneous polynomial g(x) could be rewritten as

g(x) = D111x
3
1 + 3D112x

2
1x2 + 3D113x

2
1x3 + 3D122x1x

2
2 + 6D123x1x2x3

+ 3(−D111 −D122)x1x
2
3 +D222x

3
2 + 3D223x

2
2x3

+ 3(−D112 −D222)x2x
2
3 + (−D113 −D223)x

3
3.

On the unit sphere {x : xixi = 1}, the homogeneous polynomial g(x) has a
maximizer. By rotating coordinates, we could place one maximizer at a point
(1, 0, 0)>. Hence, the maximizer x = (1, 0, 0) satisfies the following system:

3D111x
2
1 + 6D112x1x2 + 6D113x1x3 + 3D122x

2
2

+ 6D123x2x3 + 3(−D111 −D122)x
2
3 = λx1,

3D112x
2
1 + 6D122x1x2 + 6D123x1x3 + 3D222x

2
2

+ 6D223x2x3 + 3(−D112 −D222)x
2
3 = λx2,

3D113x
2
1 + 6D123x1x2 + 6(−D111 −D122)x1x3 + 3D223x

2
2

+ 6(−D112 −D222)x2x3 + 3(−D113 −D223)x
2
3 = λx3.

Then, we get
D112 = D113 = 0, D111 > 0,

and

g(x) = D111x
3
1 + 3D122x1x

2
2 + 6D123x1x2x3 + 3(−D111 −D122)x1x

2
3

+D222x
3
2 + 3D223x

2
2x3 − 3D222x2x

2
3 −D223x

3
3.
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Since
g(0,−x2,−x3) = −g(0, x2, x3),

g(x) must have a zero point in the circle

{(0, x2, x3)> : x22 + x23 = 1}.

We may further rotate coordinates such that g(0, 1, 0) = 0. Hence, we have

D222 = 0.

In the new coordinate, the tensor D has four independent elements (with
slightly abusing of notations)

D111 > 0, D122, D123, D223.

Four isotropic invariants I2, I4, I6, and I10 are indeed

I2 = 4D2
111 + 6D122D111 + 6D2

122 + 6D2
123 + 4D2

223,

I4 = 2(4D4
111 + 12D122D

3
111 + (18D2

122 + 12D2
123 + 5D2

223)D
2
111

+ 12D122(D
2
122 +D2

123 +D2
223)D111 + 6D4

122 + 6D4
123 + 4D4

223

+ 12D2
123D

2
223 + 12D2

122(D
2
123 +D2

223)),

I6 = 4(4(D2
122 +D2

223)D
4
111 + 8D122(D

2
122 +D2

123 + 3D2
223)D

3
111

+ (4D4
122 + (8D2

123 + 37D2
223)D

2
122 + 4D4

123 +D4
223 − 3D2

123D
2
223)D

2
111

+ 4D122(5D
2
122 − 7D2

123)D
2
223D111 + 4(D2

122 +D2
123)

2D2
223),

and

I10 = − 8(8(D3
122 − 3D122D

2
223)D

7
111 + 4(6D4

122 + (6D2
123 − 39D2

223)D
2
122

− 5D4
223 − 6D2

123D
2
223)D

6
111 + 6D122(4D

4
122 + (8D2

123 − 73D2
223)D

2
122

+ 4D4
123 − 21D4

223 − 8D2
123D

2
223)D

5
111 + (8D6

122 + 24(D2
123 − 26D2

223)D
4
122

+ 3(8D4
123 − 28D2

223D
2
123 − 109D4

223)D
2
122 + 8D6

123 +D6
223 + 72D2

123D
4
223

+ 84D4
123D

2
223)D

4
111 − 2D122D

2
223(231D4

122 + 2(69D2
123 + 101D2

223)D
2
122

− 45D4
123 − 78D2

123D
2
223)D

3
111 − 6D2

223(28D6
122 + (32D2

123 + 41D2
223)D

4
122

+ 2(6D4
123 − 11D2

123D
2
223)D

2
122 + 8D6

123 + 9D4
123D

2
223)D

2
111

− 24D122D
2
223(D

6
122 − (D2

123 − 3D2
223)D

4
122 − (5D4

123 + 14D2
223D

2
123)D

2
122

−D4
123(3D

2
123 +D2

223))D111 + 8(−D6
122 + 15D2

123D
4
122 − 15D4

123D
2
122

+D6
123)D

4
223).

We now consider the Jacobian of {I2, I4, I6, I10} in variables {D111, D122, D123,
D223} :
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Jac =



∂I2
∂D111

∂I2
∂D122

∂I2
∂D123

∂I2
∂D223

∂I4
∂D111

∂I4
∂D122

∂I4
∂D123

∂I4
∂D223

∂I6
∂D111

∂I6
∂D122

∂I6
∂D123

∂I6
∂D223

∂I10
∂D111

∂I10
∂D122

∂I10
∂D123

∂I10
∂D223


.

By some calculations, the determinant of this Jacobian is

det(Jac) = 27648D123(9D
4
111 + 24D122D

3
111 − 24(D2

122 +D2
123)D

2
111

− 32D122(3D
2
122 +D2

123)D111 + 16(−3D4
122 − 2D2

123D
2
122 +D4

123))

·D3
223(16(3D2

122 −D2
223)D

8
111 + 32(D3

122 + 3D2
123D122)D

7
111

− 8(18D4
122 + 3(4D2

123 + 3D2
223)D

2
122 − 6D4

123 − 5D4
223

− 18D2
123D

2
223)D

6
111 − 24D122(8D

4
122 + (16D2

123 −D2
223)D

2
122

+ 8D4
123 +D4

223 + 3D2
123D

2
223)D

5
111 − (64D6

122 + 48(4D2
123

− 7D2
223)D

4
122 + 3(64D4

123 + 96D2
223D

2
123 + 7D4

223)D
2
122 + 64D6

123

+ 25D6
223 + 132D2

123D
4
223 + 240D4

123D
2
223)D

4
111 + 6D122D

2
223

· (48D4
122 + 4(8D2

123 − 3D2
223)D

2
122 − 16D4

123 + 5D4
223

− 8D2
123D

2
223)D

3
111 + 4D2

223(16D6
122 + 6(8D2

123 − 7D2
223)D

4
122

+ (48D4
123 + 78D2

223D
2
123 + 9D4

223)D
2
122 + 16D6

123 + 3D2
123D

4
223

+ 12D4
123D

2
223)D

2
111 − 8D122(D

2
122 − 3D2

123)D
4
223(12D2

122

−D2
223)D111 − 16(D3

122 − 3D122D
2
123)

2D4
223),

which is a polynomial in variables {D111, D122, D123, D223}. Clearly, the hyper-
surface det(Jac) = 0 divides the space R4 of (D111, D122, D123, D223) into several
regions. We consider one of them.

Let

Ω ⊆ {(D111, D122, D123, D223)
> : det(Jac) 6= 0}

be a maximal connected open set, where ‘maximal’ means that Ω cannot
be contained in another connected open set such that det(Jac) 6= 0. As a
polynomial in D111, D122, D123, and D223, det(Jac) 6= 0 holds for all points
in Ω. Then, we process by contradiction. Suppose that there exists a syzygy
relation among isotropic invariants I2, I4, I6, and I10, which is denoted as a
polynomial equation

p(I2, I4, I6, I10) = 0.

Clearly, p is also a polynomial in variables D111, D122, D123, and D223. By chain



14 Yannan CHEN et al.

rule, we have

∂p

∂D111

∂p

∂D122

∂p

∂D123

∂p

∂D223


=

∂p

∂I2



∂I2
∂D111

∂I2
∂D122

∂I2
∂D123

∂I2
∂D223


+
∂p

∂I4



∂I4
∂D111

∂I4
∂D122

∂I4
∂D123

∂I4
∂D223



+
∂p

∂I6



∂I6
∂D111

∂I6
∂D122

∂I6
∂D123

∂I6
∂D223


+

∂p

∂I10



∂I10
∂D111

∂I10
∂D122

∂I10
∂D123

∂I10
∂D223


= 0. (2)

Clearly, ∂p
∂I2
, ∂p
∂I4
, ∂p
∂I6
, and ∂p

∂I10
are polynomials in variables D111, D122, D123,

and D223. Since det(Jac) 6= 0 for all points in Ω, we know that four one-way
arrays in the middle of (2) are linear independent. Hence, we have

∂p

∂I2
=

∂p

∂I4
=

∂p

∂I6
=

∂p

∂I10
= 0.

Therefore, the polynomial p is a constant function in Ω whose value is zero.
By a similar discussion, we obtain that p is a constant function in every

region. Since p is a polynomial, we get that p must be a zero function. This
contradicts the assumption that there exists a syzygy relation among isotropic
invariants I2, I4, I6, and I10.

We now show that there is no syzygy relation among four invariants J2, J4,
J6, and J10, where {J2, J4, J6, J10} is an arbitrary minimal integrity basis of
D. Suppose that there exists a syzygy relation among isotropic invariants
J2, J4, J6, and J10, which is denoted as a polynomial equation

q(J2, J4, J6, J10) = 0.

Since {I2, I4, I6, I10} is an integrity basis of D, we may represent J2, J4, J6, and
J10 as polynomials of I2, I4, I6, and I10. Note that in this way, J2 should be a
polynomial of I2, J4 should be a polynomial of I2 and I4, etc. Thus, we have
polynomial function relations:

J2 = J2(I2), J4 = J4(I2, I4),

J6 = J6(I2, I4, I6), J10 = J10(I2, I4, I6, I10).
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Then we have a syzygy relation among isotropic invariants I2, I4, I6, and I10
as follows:

q(J2(I2), J4(I2, I4), J6(I2, I4, I6), J10(I2, I4, I6, I10)) = 0.

This forms a contradiction. Hence, there is no syzygy relation among four
invariants J2, J4, J6, and J10. �

Remark 2 We note that the conclusion of algebraic independence among
invariants forming an irreducible function basis of a tensor is not trivial. There
exist syzygies in invariants forming an irreducible function basis of several
tensors. For example, Chen et al. [4] studied third order three-dimensional
symmetric tensors and gave three syzygies among the eleven invariants of an
irreducible function basis of isotropic invariants of the symmetric tensors.
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