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Abstract A subgroup H of a finite group G is called a c�-normal subgroup of
G if there exists a normal subgroup K of G such that G = HK and H ∩ K is
a CAP-subgroup of G. In this paper, we investigate the influence of fewer c�-
normal subgroups of Sylow p-subgroups on the p-supersolvability, p-nilpotency,
and supersolvability of finite groups. We obtain some new sufficient and
necessary conditions for a group to be p-supersolvable, p-nilpotent, and
supersolvable. Our results improve and extend many known results.
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1 Introduction

All groups considered will be finite. For a group G, π(G) will denote the set of
all prime divisors of the order of G.

As we know, the normality of subgroups of a group has been investigated by
many scholars. Thereinto, the cover-avoidance property is a generalization of
normality. A subgroup H of a group G is said to be a CAP-subgroup of G (have
the cover-avoidance property) if H either covers or avoids any G-chief factor
A/B, namely, either HA = AH or H∩A = H∩B. This concept was introduced
by Gaschutz [6] and has been studied extensively by some scholars. For example,
the interested readers can refer to [1,4]. As another generalization of normality,
the c-normality of subgroups was introduced by Wang [9]: a subgroup H of a
group G is said to be a c-normal in G if there exists a normal subgroup K of
G such that

G = HK, H ∩ K � HG,
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where HG is the core of H in G. Since then, a number of scholars continued
the study of influence of c-normality together with its generalization on the
structure of groups; see, for instance, [2,7,11,13,14,16,17,19]. As a common
generalization of cover-avoidance property (CAP) and c-normality, Wei and
Wang introduced the following concept of c�-normality (refer to [12] or [10]).

Definition 1.1 A subgroup H of a group G is said to be a c�-normal subgroup
of G if there exists a normal subgroup K of G such that G = HK and H ∩ K
is a CAP-subgroup of G.

It is clear that both CAP-subgroup and c-normal subgroup are c�-normal
subgroups, but the converse is not true, see, e.g., [10]. In order to use fewer
c�-normal subgroups to characterize the structure of a group, we employ the
following definition (refer to [8]).

Definition 1.2 Given a prime p and a p-group P, assume |P/Φ(P )| = pd.
Then, given a set

Md(P ) = {P1, P2, . . . , Pd}
of d maximal subgroups of P, we say that Md(P ) is a minimal system of maximal
subgroups of P if

d⋂

i=1

Pi = Φ(P ).

In this paper, we try to use the c�-normality of maximal subgroups of P
in Md(P ) to characterize the structure of a group G. We obtain some new
sufficient and necessary conditions for a group to be p-supersolvable, p-nilpotent,
and supersolvable. Our results improve and extend many related known results.

2 Preliminaries

Lemma 2.1 ([12, Lemma 1.2.6] or [10, Lemma 2.5]) Let G be a group, let H
be a subgroup of G, and let N be a normal subgroup of G.

(1) If N � H, then H is c�-normal in G if and only if H/N is c�-normal
in G/N.

(2) Let π be a set of primes, let H be a π-subgroup of G, and let N be a
normal π′-subgroup of G. If H is c�-normal in G, then HN/N is c�-normal in
G/N.

(3) Let L be a subgroup of G such that H � Φ(L). If H is c�-normal in G,
then H is a CAP-subgroup of G.

Lemma 2.2 [3, Theorem A.9.2] Let G be a group, let N be a normal subgroup
of G, and let H be a subgroup of G. If N � Φ(H), then N � Φ(G).

Lemma 2.3 [18, p. 180] Let G be a π-separable group. If Oπ′(G) = 1, then

CG(Oπ(G)) � Oπ(G).
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Lemma 2.4 [3, Theorem A.11.1] Let N be a normal abelian subgroup of a
group G, and let N � M � G such that (|N |, |G : M |) = 1. If a complement
subgroup of N in M exists, then N possesses a complement subgroup in G.

Lemma 2.5 [11, Lemma 3] Let H �= 1 be a solvable normal subgroup of a
group G. If every minimal normal subgroup of G which is contained in H is not
contained in Φ(G), then the Fitting subgroup F (H) of H is the direct product
of minimal normal subgroups of G which are contained in H.

Lemma 2.6 ([14, Lemma 2.8] or [15, Lemma 2.2]) Let G be a group, and let
p be a prime divisor of |G| with (|G|, p − 1) = 1.

(1) If N is normal in G of order p, then N � Z(G).
(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.
(3) If M � G and |G : M | = p, then M � G.

3 Main results

Theorem 3.1 Let G be a p-solvable group, and let P be a Sylow p-subgroup
of G, where p is a prime divisor of |G|. Then G is p-supersolvable if and only
if every member in some fixed Md(P ) is c�-normal in G.

Proof If G is p-supersolvable, then any p-subgroup of G is a CAP-subgroup
of G.

Conversely, suppose that every member in some fixed Md(P ) is c�-normal
in G. We will show that G is p-supersolvable. Let G be a counter-example
of minimal order, and let Md(P ) = {P1, P2, . . . , Pd}. By hypotheses, Pi is c�-
normal in G, and hence, there exists Ki � G such that G = PiKi and Pi ∩Ki is
a CAP-subgroup of G, i = 1, 2, . . . , d. Furthermore, we have the following four
claims.

(1) Op′(G) = 1.
It follows from Lemma 2.1 and the choice of G.

(2) CoreG(Φ(P )) = 1; in particular, Φ(Op(G)) = 1.
Since the class of p-supersolvable groups is a saturated formation, by Lemma

2.2, we can assume without loss of generality that CoreG(Φ(P )) = 1. In
particular, Φ(Op(G)) = 1.

(3) Every minimal normal subgroup of G contained in Op(G) is of order p.
Since G is p-solvable, Op(G) �= 1 by (1). Let N be a minimal normal

subgroup of G contained in Op(G). If for each i, Pi ∩ Ki covers N/1, namely,

(Pi ∩ Ki)N = Pi ∩ Ki,

then
N � Pi ∩ Ki.

Consequently,
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N �
d⋂

i=1

Pi = Φ(P ),

which is contrary to (2). Hence, there exists some j such that Pj ∩ Kj avoids
N/1, that is,

Pj ∩ Kj ∩ N = 1.

By the minimal normality of N in G, either Kj ∩ N = 1 or Kj ∩ N = N. If
Kj ∩N = 1, then NKj/Kj is minimal normal in G/Kj . But G = PjKj implies
that G/Kj is a p-group, so N ∼= NKj/Kj is of order p. If Kj ∩ N = N, then

Pj ∩ Kj ∩ N = Pj ∩ N = 1.

As NPj = P, we also get |N | = p and (3) follows.
(4) The counter-example does not exist.
Since G is p-solvable, by (1), (2), and Lemma 2.3, we have

CG(Op(G)) = Op(G).

Now, we claim that
Op(G) ∩ Φ(G) = 1.

If not, let N be a minimal normal subgroup of G contained in Op(G) ∩ Φ(G).
Then N is of order p by (3), so N is complemented in P by (2). By applying
Lemma 2.4, N is complemented in G, which is contrary to N � Φ(G). So
Op(G) ∩ Φ(G) = 1. In view of Lemma 2.5,

Op(G) = N1 × N2 × · · · × Ns,

where Ni � G and |Ni| = p (i = 1, 2, . . . , s). Since G/CG(Ni) � Aut(Ni) and
Aut(Ni) is abelian, G/CG(Ni) is abelian. Thus,

G
/ s⋂

i=1

CG(Ni) = G/CG(Op(G))

is also abelian, namely, G/Op(G) is abelian. Now, every chief factor of G
below Op(G) is of order p, and hence G is p-supersolvable. This is the final
contradiction.

The proof is complete. �
If p is some special prime, then the condition that G is p-solvable in Theorem

3.1 can be removed. In fact, we have the following result.

Theorem 3.2 Let G be a group, and let P be a Sylow p-subgroup of G, where
p is a prime divisor of |G| with (|G|, p − 1) = 1. Then G is p-nilpotent if and
only if every member in some fixed Md(P ) is c�-normal in G.

Proof Suppose that G is p-nilpotent. Then G is p-supersolvable, and hence,
every member in some fixed Md(P ) is c�-normal in G by Theorem 3.1.
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Conversely, suppose that every member in some fixed Md(P ) is c�-normal
in G. We will show that G is a p-nilpotent group. Let G be a counter-example
of minimal order and let Md(P ) = {P1, P2, . . . , Pd}. Since Pi is c�-normal in G,
there exists Ki � G such that G = PiKi and Pi ∩ Ki is a CAP-subgroup of G,
i = 1, 2, . . . , d. With the similar arguments as in the proof of Theorem 3.1, we
have the following five claims.

(1) Op′(G) = 1.
(2) CoreG(Φ(P )) = 1.
(1) and (2) are obvious.
(3) Every minimal normal subgroup of G is contained in Op(G).
Let N be a minimal normal subgroup of G. Because Op′(G) = 1, we have

p | |N |. If for some i, N ∩ Ki = 1, then

N ∼= NKi/Ki � G/Ki,

and hence, N is a p-group and N � Op(G). Now, we assume N ∩ Ki = N for
each i. Then N � Ki. Since Pi ∩ Ki is a CAP-subgroup of G, it either covers
or avoids N/1. If Pi ∩ Ki cover N/1, then

(Pi ∩ Ki)N = Pi ∩ Ki,

and, of course, N � Op(G). If Pi ∩ Ki avoids N/1, then

(Pi ∩ Ki) ∩ N = 1,

that is, Pi ∩ N = 1. Thus, |N |p = p and consequently, N is p-nilpotent by
Lemma 2.6. By (1), N is a p-group, thereby, N � Op(G) and (3) follows.

(4) Every minimal normal subgroup of G is of order p.
Let N be a minimal normal subgroup of G. By (3), N � Op(G). If for some

i, N ∩ Ki = 1, then
N ∼= NKi/Ki.

However, NKi/Ki is minimal normal in the p-group G/Ki, hence,

|N | = |NKi/Ki| = p.

Now, we assume N � Ki for each i. If for some j, (Pj ∩ Kj) ∩ N = 1, then

Pj ∩ N = 1, |N | = p.

So assume (Pi ∩ Ki)N = Pi ∩ Ki for each i. Then N � Pi ∩ Ki, and hence,

N �
d⋂

i=1

Pi = Φ(P ),

which is contrary to (2).



1174 Huaquan WEI et al.

(5) The counter-example does not exist.
Let N1, N2, . . . , Ns be all minimal normal subgroups of G. By (4), Ni is of

order p. Moreover, Ni is complemented in P by (2), so Ni has a complement
Mi in G by applying Lemma 2.4. In view of Lemma 2.6, Ni � Z(G), hence
Mi �G, where i = 1, 2, . . . , s. Now, let M be a supplement of N1N2 · · ·Ns to G
with order as small as possible. Assume Op(G)∩M �= 1. Since Op(G)∩M �G,
we can take a minimal normal subgroup N of G contained in Op(G)∩M. Then
N = Nj for some j, and so

G = NMj, M = N(M ∩ Mj).

Furthermore,
G = (N1N2 · · ·Ns)(M ∩ Mj).

The choice of M implies that M ∩ Mj = M, and hence,

N � M � Mj,

which is impossible. This proves that Op(G) ∩M = 1. Since 1 < M � G, there
exists some k such that Nk is contained in M. This is contrary to Op(G)∩M = 1.

The proof is complete. �
Theorem 3.3 Let G be a group, and let P be a Sylow p-subgroup of G, where
p is a prime divisor of |G|. Then G is p-nilpotent if and only if NG(P ) is
p-nilpotent and every member in some fixed Md(P ) is c�-normal in G.

Proof We only need to prove the ‘if’ part by Theorem 3.1. Let G be a counter-
example of minimal order, and let Md(P ) = {P1, P2, . . . , Pd}. By hypotheses,
there exists Ki � G such that G = PiKi and Pi ∩ Ki is a CAP-subgroup of G,
i = 1, 2, . . . , d. Then we have the following five claims.

(1) Op′(G) = 1.
(2) CoreG(Φ(P )) = 1.
(1) and (2) are obvious.
(3) Every minimal normal subgroup of G is contained in Op(G).
Let N be a minimal normal subgroup of G. By (1), p | |N |. Consider N and

Ki. If for some i, N ∩ Ki = 1, then

N ∼= NKi/Ki � G/Ki,

and hence, N is a p-group and N � Op(G). Now, assume N ∩Ki = N, namely,
N � Ki for each i. Since Pi ∩ Ki is a CAP-subgroup of G, it either covers or
avoids N/1. If Pi ∩ Ki cover N/1, then

(Pi ∩ Ki)N = Pi ∩ Ki,

and, of course, N � Op(G). If Pi ∩ Ki avoids N/1, then

(Pi ∩ Ki) ∩ N = 1,
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that is, Pi ∩ N = 1. Thus, |P ∩ N | = p. If N = G, then P is cyclic of order
p, and so CG(P ) = NG(P ) by the p-nilpotency of NG(P ). By the well-known
Burnside theorem, G is p-nilpotent, a contradiction. Hence, N < G. Now, write
G0 = PN. Clearly,

|PN | =
|P | |N |
|P ∩ N | = |Pi| |N | = |PiN |,

hence, G0 = PiN with Pi ∩ N = 1. Moreover, NG0(P ) is p-nilpotent, thereby
G0 satisfies the hypotheses of the theorem. If G0 < G, then G0 is p-nilpotent
by the choice of G. Of course, N is also p-nilpotent. It follows from (1) that N
is a p-group and N � Op(G). Now, assume G0 = G and set G1 = NG(P ∩ N).
Obviously,

P � G1, G1 = PiN ∩ G1 = Pi(N ∩ G1).

Again, NG1(P ) is p-nilpotent, hence G1 satisfies the hypotheses of the theorem.
If G1 < G, then G1 = NG(P ∩ N) is p-nilpotent; of course, NN (P ∩ N) is also
p-nilpotent. This implies that

CN (P ∩ N) = NN (P ∩ N),

and so N is p-nilpotent. Similarly, we have N � Op(G). If G1 = G, then
P ∩ N � G. The minimal normality of N implies that P ∩ N = N, and hence,
N � Op(G) and (3) follows.

(4) Every minimal normal subgroup of G is of order p.
Let N be a minimal normal subgroup of G. By (3), N � Op(G). If for some

i, N ∩ Ki = 1, then N ∼= NKi/Ki. Moreover, NKi/Ki is minimal normal in
the p-group G/Ki, and hence

|N | = |NKi/Ki| = p.

Now, we assume N � Ki for each i. If for some j, (Pj ∩ Kj) ∩ N = 1, then
Pj ∩ N = 1 and |N | = p. So assume (Pi ∩ Ki)N = Pi ∩ Ki for each i. Then
N � Pi ∩ Ki, and hence, N � ∩d

i=1Pi = Φ(P ), which is contrary to (2).
(5) The counter-example does not exist.
Let L be a supplement of Op(G) to G with order as small as possible. We

claim that Op(G) ∩ L = 1. In fact, if the claim is false, since Op(G) ∩ L � G,
we may take a minimal normal subgroup N of G contained in Op(G)∩L. Then
|N | = p by (4) and N is complemented in P by (2), which follows that N has
a complement M in G by Lemma 2.4. Now,

L = L ∩ NM = N(L ∩ M),

hence,
G = Op(G)(L ∩ M).

The choice of L implies that L ∩ M = L, namely, L � M. Thus,

N � Op(G) ∩ L � M,
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which is impossible. This proves

Op(G) ∩ L = 1.

On the other hand, with the similar arguments as in the proof of Theorem 3.1,
we see that

Op(G) = N1 × N2 × · · · × Ns,

where Ni � G and |Ni| = p (i = 1, 2, . . . , s). Hence,

Op(G) � Z(P ).

Since P = Op(G)(P ∩ L) and NG(P ) is p-nilpotent, P ∩ L �= 1. Let T be a
minimal normal subgroup of G contained in (P ∩ L)G, the normal closure of
P ∩ L in G. Then T � Op(G) by (3). However,

(P ∩ L)G = (P ∩ L)Op(G)L = (P ∩ L)L � L,

hence T � L. This is contrary to Op(G) ∩ L = 1.
The proof is complete. �

Remark 3.4 The conditions that G is p-solvable in Theorem 3.1, (|G|, p −
1) = 1 in Theorem 3.2, and NG(P ) is p-nilpotent in Theorem 3.3 cannot be
removed. For example, G = A5 is a counter-example for p = 5.

As an application of Theorem 3.2, we have the following result.

Theorem 3.5 Let G be a group. Then G is supersolvable if and only if every
member in some fixed Md(P ) is c�-normal in G for every non-cyclic Sylow
subgroup P of G.

Proof Suppose that G is supersolvable. Then every chief factor of G is of
prime order, and hence, every subgroup of G is a CAP-subgroup.

Conversely, suppose that every member in some fixed Md(P ) is c�-normal
in G for every non-cyclic Sylow subgroup P of G. If p is the smallest prime
dividing |G|, then G is p-nilpotent by Theorem 3.2. By the Odd Order Theorem,
G is solvable. Now, if P is cyclic, then G is p-supersolvable. On the other
hand, if P is non-cyclic, then G is p-supersolvable by Theorem 3.1. Thus, G is
supersolvable. �
Remark 3.6 Fan et al. [5] introduced the concept of semi-CAP-subgroup
which is also a common generalization of the concepts of CAP-subgroup and
c-normal subgroup. Naturally, one may ask if the above theorems are true if the
CAP-subgroup in Definition 1.1 is replaced by the semi-CAP-subgroup. Here
we give a negative answer to this question.

For example, let G = C2 × A4, where A4 is the alternating group of degree
4 and C2 = 〈c〉 is a cyclic group of order 2 with generator c. Then

A4 = K4 � C3,
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where K4 = 〈a, b〉 is the Klein four group with generators a and b of order 2 and
C3 is a cyclic group of order 3. It is clear that P = C2K4 is a Sylow 2-subgroup
of G and P is an elementary abelian 2-group. Take

P1 = K4, P2 = 〈a〉 × 〈bc〉, P3 = 〈ab〉 × 〈ac〉.

Then
Md(P ) = {P1, P2, P3}, P1 ∩ P2 ∩ P3 = 1.

It is clear that
Γ: 1 < 〈c〉 < P < G

is a chief series of G and Pi either covers or avoids each chief factor in Γ.
Hence, Pi is a semi-CAP-subgroup of G, where i = 1, 2, 3. However, G is not
2-supersolvable; of course, G is neither 2-nilpotent nor supersolvable. Hence,
none of Theorems 3.1, 3.2, and 3.5 is true if the CAP-subgroups are replaced
by the weaker semi-CAP-subgroups.
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