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Abstract Let S = K[x1, x2, . . . , xn] be the polynomial ring in n variables over
a field K, and let I be a squarefree monomial ideal minimally generated by the
monomials u1, u2, . . . , um. Let w be the smallest number t with the property
that for all integers 1 � i1 < i2 < · · · < it � m such that lcm(ui1 , ui2 , . . . , uit) =
lcm(u1, u2, . . . , um). We give an upper bound for Castelnuovo-Mumford
regularity of I by the bigsize of I. As a corollary, the projective dimension
of I is bounded by the number w.
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1 Introduction

Let S = K[x1, x2, . . . , xn] be the polynomial ring in n variables over a field K,
and let I be an ideal of S. The (Castelnuovo-Mumford) regularity of an ideal
I, denoted by reg(I), is defined to be the minimal number r such that the i-th
syzygy module of I is generated by elements of degree � i+r for all i � 0. It can
be considered as a refined notion of the maximal degree of minimal generators of
I as a measure of the complexity of Gröbner basis computation. On the other
hand, the regularity provides the relationship between the local cohomology
and the syzygy module of I, and directly links to the geometric degree, the
dimension of I or S/I, and other invariant. We can refer to some papers, such
as [1–3,5,6,13,16], for the background and some important development of the
regularity of I. In particular, there are two conjectures (see [1,6]) related to the
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regularity of I :
reg(I) � geom-deg(I),

reg(I) � deg(S/I) − codim(S/I) + 1.

In fact, under the special conditions that I is a (squarefree) monomial ideal,
geom-deg(I), deg(S/I)− codim(S/I) + 1, and so on, provide the bounds of the
regularity of I (see [7,11]).

The notions of the size and bigsize of a monomial ideal were introduced by
Lyubeznik [12] and Popescu [14], respectively. Lyubeznik used the size of a
monomial ideal to study its arithmetical rank. One result was given by him
that

projdim (S/I) � ara(I)

if I is a squarefree monomial ideal ([12, Proposition 3]). While the bigsize of a
monomial ideal was used firstly by Popescu to consider the Stanley Conjecture.

Let I be a squarefree monomial ideal minimally generated by the
monomials u1, u2, . . . , um. We prove that the regularity of I can be bounded
by bigsizeS(I) + 1 (bigsizeS(I) denotes the bigsize of I). As a corollary, the
projective dimension of a squarefree monomial ideal I is bounded by the
number w. Here, w is the smallest number t with the property that for all
integers 1 � i1 < i2 < · · · < it � m such that

lcm(ui1 , ui2 , . . . , uit) = lcm(u1, u2, . . . , um).

2 Results

Throughout this paper, Let S = K[x1, x2, . . . , xn]. Let I ⊂ S be a squarefree
monomial ideal, and let I = ∩s

i=1Pi be its presentation as an irredundant
intersection of prime monomial ideals. It is well known that the set {P1, P2, . . . ,
Ps} is determined uniquely by I.

The following result is useful for the computation of the regularity of a
graded finitely generated S-modules.

Lemma 1 [5, Corollary 20.19] Let

0 → L → M → N → 0

be a short exact sequence of graded finitely generated S-modules. Then
(i) reg(L) � max{reg(M), reg(N) + 1}, the equality holds if reg(M) �=

reg(N);
(ii) reg(M) � max{reg(L), reg(N)}, the equality holds if reg(N) �= reg(L)−

1 or if Ln = 0 for n � 0;
(iii) reg(N) � max{reg(M), reg(L) − 1}, the equality holds if reg(M) �=

reg(L).
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Let I1, I2, . . . , Id be some monomial complete intersections. Chardin et al. [4]
proved that

reg(I1 ∩ I2 ∩ · · · ∩ Id) � reg(I1) + reg(I2) + · · · + reg(Id).

In fact, it was proved by Herzog [8] that this result holds in case that I1, I2, . . . , Id

are arbitrary monomial ideals. Note that reg(P ) = 1 for P an ideal generated
by some variables, and that

reg(S/I) = reg(I) − 1.

The following lemma is an immediate consequence of their result. Here, we
directly deduce it from Lemma 1. This technique of the proof gives us a hint that
we could get an upper bound from the number of some particular subset of the
minimal prime ideals appearing in the primary decomposition of a squarefree
monomial ideal.

Lemma 2 Let I ⊂ S be a squarefree monomial ideal, and let I = ∩s
i=1Pi be

its presentation as an irredundant intersection of prime monomial ideals. Then

reg(S/I) � s − 1.

Proof We use induction on s.
If s = 1, then

reg(S/I) = reg(S/P1) = 0 � s − 1.

Note that
s−1⋂

i=1

Pi + Ps =
s−1⋂

i=1

(Pi + Ps)

since these ideals are all monomial ideals. Then there exists a short exact
sequence

0 −→ S/I −→ S
/ s−1⋂

i=1

Pi ⊕ S/Ps −→ S
/ s−1⋂

i=1

(Pi + Ps) −→ 0.

Note that
reg(S/Pi) = 0, i ∈ {1, 2, . . . , s}.

Then, by induction and Lemma 1, we have

reg(S/I) � max
{

reg
(

S
/ s−1⋂

i=1

Pi ⊕ S/Ps

)
, reg

(
S

/ s−1⋂

i=1

(Pi + Ps)
)

+ 1
}

� max
{

reg
(

S
/ s−1⋂

i=1

Pi

)
, reg(S/Ps), reg

(
S

/ s−1⋂

i=1

(Pi + Ps)
)

+ 1
}

� s − 1. �
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In order to present our main result in this paper, we recall the notion of size
and bigsize of a monomial ideal. Let I ⊂ S be a squarefree monomial, and let
I = ∩s

i=1Pi be an irredundant intersection of prime monomial ideals. The size
of I, denoted by sizeS(I), is the number

v + n − height
( s∑

j=1

Pj

)
− 1,

where

v = min
{

t
∣∣∣

t∑

k=1

Pik =
s∑

j=1

Pj holds for some integers i1 < i2 < · · · < it

}
.

Replacing in the previous definition of v “for some integers i1 < i2 < · · · < it”
by “for any integers i1 < i2 < · · · < it”, one obtains the definition of bigsize of
I, which is denoted by bigsizeS(I). The corresponding number v is denoted by
b-sizeS(I). Clearly,

sizeS(I) � bigsizeS(I) � s.

When
s∑

i=1

Pi = (x1, x2, . . . , xn),

we have
bigsizeS(I) = b-sizeS(I) − 1.

Theorem 3 Let S = K[x1, x2, . . . , xn] = K[X]. Let I ⊂ S be a squarefree
monomial ideal. Then

reg(S/I) � b-sizeS(I) − 1.

In particular,
reg(S/I) � bigsizeS(I).

Proof Let I = ∩s
i=1Pi be its presentation as an irredundant intersection of

prime monomial ideals. We prove the result by using induction on b-sizeS(I).
We may assume that

s∑

i=1

Pi = m = (x1, x2, . . . , xn),

the graded maximal ideal of S. Indeed, let

Z =
{

xi �∈
s∑

i=1

Pi

}
, T = K[X \ Z], J = I ∩ T.
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Then the sum of the associated prime ideals of J is the graded maximal ideal
of T,

reg(S/I) = reg(T/J),

and by the definition of b-size and bigsize,

b-sizeS(I) = b-sizeT (J), bigsizeS(I) = bigsizeT (J) + |Z|.
If b-sizeS(I) = 1, then

I = P1 = m,

so reg(S/I) = 0 and the result is clear.
If b-sizeS(I) = 2, then

S
/( s−1⋂

i=1

Pi + Ps

)
= S

/ s−1⋂

i=1

(Pi + Ps) = S/m.

By Lemma 1, the short exact sequence

0 −→ S/I −→ S
/ s−1⋂

i=1

Pi ⊕ S/Ps −→ S
/( s−1⋂

i=1

Pi + Ps

)
−→ 0

implies that

reg(S/I) � max
{

reg
(

S
/ s−1⋂

i=1

Pi ⊕ S/Ps

)
, reg

(
S

/( s−1⋂

i=1

Pi + Ps

))
+ 1

}

� max
{

reg
(

S
/ s−1⋂

i=1

Pi

)
, reg(S/Ps), reg(S/m) + 1

}

� max
{

reg
(

S
/ s−1⋂

i=1

Pi

)
, 1

}
.

When
s − 1 � b-sizeS(I) = 2,

noting that

b-sizeS

( s−1⋂

i=1

Pi

)
= 2,

we replace the above ideal I by ∩s−1
i=1Pi and repeat the above process. Then

reg(S/I) � max
{

reg
(

S
/ s−1⋂

i=1

Pi

)
, 1

}
� 1 = b-sizeS(I) − 1.

Now, we let
t = b-sizeS(I) > 2,
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and assume that the result holds for any squarefree monomial ideal with smaller
b-size. Clearly, t � s.

By Lemma 1, the short exact sequence

0 −→ S/I −→ S
/ s−1⋂

i=1

Pi ⊕ S/Ps −→ S
/( s−1⋂

i=1

Pi + Ps

)
−→ 0

implies that

reg(S/I) � max
{

reg
(

S
/ s−1⋂

i=1

Pi ⊕ S/Ps

)
, reg

(
S

/( s−1⋂

i=1

Pi + Ps

))
+ 1

}

� max
{

reg
(

S
/ s−1⋂

i=1

Pi

)
, reg(S/Ps), reg

(
S

/ s−1⋂

i=1

(Pi + Ps)
)

+ 1
}

.

Note that

b-sizeS

( s−1⋂

i=1

(Pi + Ps)
)

� t − 1.

So by induction,

reg
(

S
/ s−1⋂

i=1

(Pi + Ps)
)

� t − 2.

Then

reg(S/I) � max
{

reg
(

S
/ s−1⋂

i=1

Pi

)
, t − 1

}
.

When s − 1 > t, noting that

b-sizeS

( s−1⋂

i=1

Pi

)
� t,

we replace the above ideal I by ∩s−1
i=1Pi and repeat the above process until

s − 1 � t. Then

reg(S/I) � max
{

reg
(

S
/ s−1⋂

i=1

Pi

)
, t − 1

}
� t − 1 = b-sizeS(I) − 1.

(The last inequality holds by Lemma 2.) This completes the proof. �
Example 4 Let S = K[x1, x2, x3, x4, x5], and let

I = (x1x3, x1x4, x2x5, x2x3)
= (x1, x2) ∩ (x1, x3, x5) ∩ (x3, x4, x5) ∩ (x2, x3, x4).
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Then
sizeS(I) = 1, bigsizeS(I) = 2.

By Theorem 3,
reg(S/I) � 2.

If reg(I) = 2, then I has a linear resolution. This is impossible. So

reg(S/I) = 2.

This tells us that the upper bound bigsizeS(I) of reg(S/I) cannot be refined by
sizeS(I).

Remark 5 Let I ⊂ S be a squarefree monomial ideal. It is well known that

dim(S/I) � reg(S/I)

(see [15, Chap. 2, Lemma 2.5]). In addition, some upper bounds of reg(I) were
provided by Frühbis-Krüger and Terai [7], Hoa and Trung [11], and so on.
Theorem 3 also provides an upper bound for the regularity of I.

Example 6 Let S = K[x1, x2, x3, x4, x5], and let

I = (x1x4, x2x4x5, x3x4x5) = (x1, x2, x3) ∩ (x4) ∩ (x1, x5).

Then
bigsizeS(I) = 2, dimS(S/I) = 4, depthS(S/I) = 2.

By Theorem 3, reg(S/I) � 2, and so reg(S/I) = 2. Thus, the bound in Theorem
3 is tight in some cases. In particular, [7, Theorem 4.1 or 4.3] is not applicable
in this situation.

Example 7 Let S = K[x1, x2, . . . , x7], and let

I = (x1x3, x2x4, x5x6x7)
= (x1, x2, x5) ∩ (x2, x3, x5) ∩ (x1, x4, x5) ∩ (x1, x4, x6)

∩ (x3, x4, x5) ∩ (x3, x4, x6) ∩ (x1, x4, x7) ∩ (x1, x2, x6)
∩ (x1, x2, x7) ∩ (x2, x3, x6) ∩ (x2, x3, x7) ∩ (x3, x4, x7).

Then

sizeS(I) = 2, bigsizeS(I) = 6, reg(S/I) = 4, dimS(S/I) = 4.

This tells us that Theorem 3 provides the upper bound bigsizeS(I) for reg(I)
is bad sometimes.

As before, let S = K[x1, x2, . . . , xn] be the polynomial ring in n variables
over a field K, and let Δ be a simplicial complex on [n]. For each subset F ⊂ [n],
we set

xF =
∏

i∈F

xi.
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Recall that the Stanley-Reisner ideal of Δ is the ideal IΔ of S which is generated
by those squarefree monomials xF with F �∈ Δ. One sets

K[Δ] = S/IΔ.

Then the Alexander dual of Δ is defined to be the simplicial complex

Δ∨ = {[n] \ F : F �∈ Δ}.

Clearly, one has
(Δ∨)∨ = Δ.

Let
IΔ = PF1 ∩ PF2 ∩ · · · ∩ PFm

be the standard primary decomposition of IΔ. Here,

PG = ({xi}i∈G), G ⊂ [n].

Then {xF1, xF2 , . . . , xFm} is the minimal monomial set of generators of IΔ∨ . It
is well known that (see [17])

projdim(IΔ) = reg(K[Δ∨]).

Let I be a squarefree monomial ideal minimally generated by the monomials
u1, u2, . . . , um. Let

G(I) = {u1, u2, . . . , um}.
Recently, the notion of the big cosize of I was defined by Herzog et al. [10]. Let
w be the smallest number t with the property that for all integers 1 � i1 <
i2 < · · · < it � m,

lcm(ui1 , ui2 , . . . , uit) = lcm(u1, u2, . . . , um).

Then the number deg lcm(u1, u2, . . . , um) − w is called the big cosize of I,
denoted by bigcosizeS(I). We denote the corresponding number w by
b-cosizeS(I).

It is well known that projdim(M) � n for any finitely generated S-module
M. Lyubeznik also gave a result that

projdim(S/I) � ara(I)

if I is a squarefree monomial ideal. So the following result relates these two
results in case that I is a squarefree monomial ideal.

Corollary 8 Let I be a squarefree monomial ideal of S. Then

projdim(S/I) � b-cosizeS(I).
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Proof Let Δ be the simplicial complex with the property that I = IΔ. Note
that

b-cosizeS(IΔ) = b-sizeS(IΔ∨).

Then, by Theorem 3,

projdim(IΔ) = reg(K[Δ∨]) � b-sizeS(IΔ∨) − 1 = b-cosizeS(IΔ) − 1. �

Let u be a monomial in S. Set

m(u) = max{i | xi | u}.

It shows that the generators of a squarefree stable monomial ideal have the
following property.

Corollary 9 Let I be a squarefree stable ideal of S. Then for any u ∈ G(I),

m(u) − deg(u) + 1 � b-cosizeS(I).

Proof Note that, for the squarefree stable ideal I,

projdim(I) = max{m(u) − deg(u) | u ∈ G(I)}

(see [9, Corollary 7.4.2]). Then the result follows. �
Corollary 10 Let I be a squarefree monomial ideal of S. Then

grade(I, S) � b-cosizeS(I).

Proof By using the Auslander-Buchsbaum formula and Corollary 8, we have

b-cosizeS(I) − 1 � projdim(I)
= n − depth(I)
= dim(S) − depth(S/I) − 1
� dim(S) − dim(S/I) − 1
� grade(I, S) − 1.

Then the result follows. �
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