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1 Introduction

Theories of functions and operators from Qj into R or C play an important
role in the theory of dynamical systems, in the stochastic analysis, in the
p-adic quantum mechanics, and in p-adic analysis [1,4,7,15,19,20,23,24].
p-adic analysis and non-Archimedean geometry can be used not only for the
description of geometry at small distances, but also for describing chaotic
behavior of complicated systems such as spin glasses and fractals in the frame-
work of traditional theoretical and mathematical physics (see [16,17,23,24] and
references therein). As far as we know, the studies of the p-adic Hardy operators
and p-adic Hausdorff operators are also useful for p-adic analysis [4,7,8,13,22,
25,26].
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The weighted Hardy averaging operators are defined for measurable
functions on @, by

Upf(z) = [t v € Qy, (1.1)

where Zy is the ring of p-adic non-zero integers, and d¢ is the Haar measure on
Qp. Rim and Lee [22] considered the problem of characterizing function 1 on
Zy so that we have inequalities

102 fllx < Clifllx

where X is a p-adic Lebesgue or bounded mean oscillation (BMO) space. The
corresponding best constants C' are also obtained by these authors. Such results
has been extended by Hung [13], where he considered the above problems for
a more general class of p-adic weighted Hardy averaging operators, which are
called p-adic Hardy-Cesaro operators,

Ugsf(@) = | f(st)z)i(t)dt. (1.2)
Z;

Here, s: Z; — Qp and ¢: Zy — [0,00) are measurable functions. The

characterizations on function (t), under certain conditions on s(t), so that

10Uy fllx <Clifllx, VfeX,

where X is a p-adic Lebesgue or BMO space, are obtained. The best constants
C in the above inequalities are worked out, too. It is interesting to notice that,
by applying the boundedness of Uy, s on p-adic weighted Lebesgue spaces, Hung
gave a relation between p-adic Hardy operators and discrete Hardy inequalities
on the real field.

Our aim of this paper is to study a family of p-adic weighted multilinear
Hardy averaging operators, which was considered very recently by Hung and Ky
[14] and by us [6], on the real case. We define the p-adic weighted multilinear
Hardy-Cesaro operator U, 5:;”’” as follows.

n_

Definition 1.1 Let m and n be positive integer numbers, and let ¢: (Zy)
[0,00), 8 = (81,--+,8m): (Zy)" — Q' be measurable. The p-adic weighted
multilinear Hardy-Cesaro operator Uy'"", which define on f = (f1,..., fm):

Qg — C™ vector of measurable functions, by

UL o d)) = [ T fdsmeoa 09
p/ k=1

When m =n =1, Uf;’?’n is reduced to Uf; . as defined before. In this paper,
we establish the sharp bounds of Ui’?’" on the product of weighted Lebesgue
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spaces and weighted central Morrey spaces. We also consider the problem of
characterizing weights so that the commutators of Uii" are bounded on the
central Morrey spaces.

This paper is organized as follows. In Section 2, we give the notation and
definitions that we shall use in the sequel. We define the weighted Morrey
spaces L‘ZJA(QZ), the weighted central Morrey spaces ij’\((@g), and the p-adic
weighted central BMO spaces CM ng‘(@g). In Section 3, we state the main
results on the boundedness of Uf;:?’n on the above weighted spaces. We also

work out the norms of U™ on such spaces. In Section 4, we obtain the

sufficient and necessary results for the boundedness of commutator operators

of Ui’i’n, with symbols in the weighted central BMO spaces, on the weighted

central Morrey spaces.

2 Basic notions and lemmas

Let p be a prime number, and let » € Q*. Write
a
r= pfy b?

where a and b are integers not divisible by p. Define the p-adic absolute value
|- |p on Q by |r|, =p~7 and |0], = 0. The absolute value |- |, gives a metric on
Q defined by

dp(@,y) = |z = ylp-
We denote by Q, the completion of Q with respect to the metric d. Q, with
natural operations and topology induced by the metric d, is a locally compact,
non-discrete, complete, and totally disconnected field. A non-zero element x of
Qp, is uniquely represented as a canonical form
x=pl(zo+ 21p + 22p” + -+ -),
where x; € Z/pZ and o # 0. We then have |z|, = p~7. Define
Zp={z € Qp: ||, <1}, Z; = Zp \ {0}.

Qp = Qp X -+ x Qp contains all n-tuples of Q. The norm on Qj is

|x|77 = fél]?gn |$k|pa T = (xla o 7a7n) € QZ

The space Q) is a complete metric locally compact and totally disconnected
space. For each a € Q) and x = (71,...,7,) € Q}, we denote

ar = (axy,...,axy).

For v € Z, we denote B, as a 7-ball of Q) with center at 0, containing all x
with |z|, < p7, and S, = B, \ B,_1 its boundary. Also, for a € Qg, B (a)
consists of all z with x —a € B, and S,(a) consists of all z with x —a € §,.
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Since Qg is a locally-compact commutative group with respect to addition,
there exists the Haar measure dz on the additive group of QZ normalized by

/ dx =1.
Bg

d(az) = |algde, Ya € Qp,  |By(2)| =p™, [8,(z)| =pT(1—p~9).

Then

We shall consider the class of weights #,,, which consists of all nonnegative
locally integrable function w on Qg so that

w(tz) = [t|jw(z), Yz € QL Vte Q) 0< / w(z)dz < co.
So

It is easy to see that w(z) = [z[; is in #,, if and only if a > —d.

Let w be any weight function on Qg, that is a nonnegative, locally integrable
function from Q¢ into R. Let LL,(Q%) (1 < 7 < 00) be the space of complex-
valued functions f on Qg so that

1/r
iziap = ([ 1@ otenae) < oo

P

For further readings on p-adic analysis, see [23,24]. Here, some often used
computational principles are worth mentioning at the outset. First, for f €
LL(Q,), we can write

(2)w(@)de =) | F@e)dy. (2.1)

d
Q YEZ ¥ =Y

Second, we also often use the fact that

1
f(ax)dx = lald
Q4 alp Jod

flx)dz, VaeQi\{0},VfeL'(Qd). (2.2)

It is well known that Morrey spaces are useful to study the local behavior
of solutions to second-order elliptic partial differential equations and the
boundedness of Hardy-Littlewood maximal operator, the fractional integral
operators, and singular integral operators. We notice that the weighted Morrey
spaces in FEucliden settings were introduced by Komori and Shirai [18],
where they used them to study the boundedness of some important classical
operators in harmonic analysis such as Hardy-Littlewood maximal operators
and Calderéon-Zygmund operators. Their p-adic versions are given in the
followings.
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Definition 2.1 Let w be a weight function on Qg, 1 < qg<oo,and let A be
a real number such that —1/¢ < A < oco. The weighted p-adic Morrey space

LE,’)‘(Qg) is defined by the set of all functions f € L? (Qg) so that

w,loc
Hf”ng/\(Qg) < o0,

where

1/q
If(fv)lqw(x)dx> ey

1
171 o gy = SUP SUD ( /
LE@) ez acqd \@(By(a))'" Jp ()

With the norm || - HLq,)\(Qd)7 Lg;’\((@g) becomes a Banach space. From
w P
Definition 2.1, it is easy to get

LE~Y9(Qp) = LE(Qp).

Here, we restrict our consideration in case when A belongs to [—1/¢,00) since

the fact that Lg)‘(@g) = {0} for any A < —1/q. One of useful example for

functions from p-adic weighted Morrey spaces is given in the following lemma.

Lemma 2.1 Letl < g <oo, —1/g < A<0, andw € #,, where a > —d. If
d+a)X A

Jo(@) = lals™, then fo € LENQg) and [l foll g ga) > O

Proof Let a € Q) and v € Z, and put

1 q
l = iy, ol

~

Since fo(z) > 0 almost everywhere x € Qp, it is enough to prove I,, < C,
where C' is a positive constant which does not depend on a,~y. We consider two
cases.

Case 1 |a|, =p" > p".
For each « € By(a), we have

|z|p = max{lalp, [z — alp} = |alp.
This implies B, (a) C S,. As a consequence, we have

1

= 2| (N (1) de
o w(By(a))H2a /Ba,(a)‘ | (@)
= (lal, ™*Yw (B, (a)))
< (Jaly ") (8,))
= (w(So)) M

< 0.
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Case 2 |a|, <p.
In this case, B,(a) = B,. Similarly, we get

Loy < (p~ "N w(B,)) M = (w(Bo)) M.
Thus, we obtain
Loy < max{(w(S0)) ™, (w(Bo)) 1}, V(a,7) € Q) x Z.

This completes the proof of the lemma. U

We also consider here A-central bounded mean oscillation spaces, which are
very close to Morrey spaces. The class of such spaces turn out to be useful to
study the continuity of Hardy operators ([12,14]).

Definition 2.2 Let A and ¢ be real numbers so that 1 < ¢ < oo. We define
the p-adic weighted central Morrey space Bg)’)‘(Qg) by the set of all functions f
on Q¢ satisfying f € LT | (Qf) such that HfHBg),A(Qg) < 00, where

w,loc

1 1/q
50 0 =509 (g yone [, @) .

It is clear that LE,’)‘(Qg) is continuously embedded in Bg)’)‘((@g) for all ¢ €

(1,00) and A € R. Moreover, Bg)’)‘(Qg) is a Banach space and reduces to {0}
when A < —1/¢g. We remark that if 1 < ¢; < g2 < oo, then

BENQp) © BN (Q)), VAER.

Indeed, this follows immediately from Holder’s inequality. On the other hand,
while by(z) = log |z|, belongs to BMO space (see [13, Lemma 6.1]), it is not

hard to see that by(z) & Bg)’)‘((@g).

Lemma 2.2 Letl1 <g<oo, —1/¢< A <0, and w € #,, a > —d. Then the
function fo(z) = \x|§)d+a)>‘ belongs to Bg’)‘((@g).

Proof From Lemma 2.1, fy belongs to L‘ZJA(QZ). Since ng)‘((@g) is continuously
included in Bg’)‘((@g), we get fo € Bg’)‘((@g). O

The spaces of bounded central mean oscillation CMO? appears naturally
when considering the dual spaces of the homogeneous Herz type Hardy spaces
(see [2,3,21] for the settings in T and R?). The p-adic setting of such spaces is
as follows.

Definition 2.3 Let A < 1/d and ¢ € (1,00) be two real numbers. The p-adic

weighted space C M ng‘(@g) is defined as the set of all functions f € L | (Qf)
such that

1 1/q
f , = sup < / f(@) = fory|Tw(z dx> < oo. (2.5
H HCMO?U’\(Q%) ez w(Bv)lJr)‘q B, | ( ) 7| ( ) ( )
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It is clear that, C'M Og})‘(@g) becomes a Banach space if we identify
functions that differ in a constant. We denote CMOZ(QZ) by CM Og;o((@g).
On the other hand, it follows from Definition 2.3 that, Bw’A(Qg) are Banach
spaces continuously included in CM Og,(@;,l) spaces. By a simple argument, one
can see that C'M Og;)‘((@g) reduces to the constant functions when A\ < —1/q.
In this work, we study multilinear operators defined on products of functional

spaces and we seek conditions to have the boundedness of operators on certain
products of Banach spaces. We will use the notation

HT”X1><---><Xm—>X - sup ”T(fhafm)HX
13l =1, 1< <m

Throughout the whole paper, the letter C' will indicate an absolute
constant, probably different at different occurrences. The symbol f < g means
that f < Cg. With xg we will denote the characteristic function of a set E.
With |A| we will denote the Haar measure of a measurable set I, and B¢ will
be the set Q7 \ E. With w(E) we will denote by [, w(z)dz.

3 Boundsof U, 5,:7:’" on product of Lebesgue spaces and spaces of Morrey type

Let X be LL(QY) or L‘ZJ’A(QZ). Our purpose in this section is to characterize
conditions on functions ¥(t) and s1(t),. .., Smn(t) such that

1Ugs ™" (1o )l x < CHIIkaX (3.1)

holds for any fi,..., fr and the best constant C' is obtained. The main results
of this section are Theorems 3.1-3.3.
In this and the next sections, if not explicitly stated otherwise, ¢, o, g;, o

are real numbers, 1 < ¢ < oo, 1 < ¢gj < 00, aj > —d for each j = 1,...,m so
that
1 1 1
e + PN + , (3.2)
q q1 dm
and
« «
a=1 4. . 1m (3.3)
q1 dm

For the weights w, € #,,, k=1,...,m, set

H W/ (). (3.4)

It is obvious that w € %#,,.
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Definition 3.1 We say that (wi,...,w,,) satisfies the #¢ condition if
m
H SO Q/Qk (3‘5)

For example, (w1,...,wn), where wy(z) = |z[p* for k = 1,...,m, satisfies
the #q condition.

Throughout this paper, s1, ..., s, are measurable functions from (Z;)" into
Qp and we denote by s the vector (s1,...,Snm).

Theorem 3.1 Assume that (wi,...,wn) satisfies #e condition and there
exists a constant 8 > 0 such that

se(t1, - tn)lp = min{[t1), .. [tald} ae t=(t1,....ta) € (Z})", (3.6)

for every k =1,...,m. Then there exists a constant C such that the inequality
UGS " (frs- - fm)ll Lo oe) < Ckl—l 17kl zx @) (3.7)
=1
holds for any measurable fi,..., fm if and only if
o = / TT Is(t)]; @) agp(t)dt < oo. (3.8)
(Zp)" =1

Moreover, < is the best constant C' in (3.7).

Proof As we noted above, w € #. First, suppose that & is finite. Let
fr € L& (Qd) Using Minkowski’s inequality, Holder’s inequality, and p-adic
change of variable (2.2), we have

”Up’ 7 (fla"'afm)HLq Qd

< Qd </Z* H | (sk(t)2) [o(t)dt )qW(x)dx>1/q

< 0.

Thus, Uy’g"" is bounded from L} Q%) x -+ x L7 (Qf) to LL(QY) and the best

constant C’ in (3.7) satisfies
C< . (3.9)
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In order to prove the converse, we first need the following lemma.

Lemma 3.1 Let w € #,, a > —d, and v > 0. Then the functions

0) |$|p < 1>
frn@) =4 _ara_1

|z]p ’ 727 |x‘p>1

belong to LI, (Q%) and

w(So) )m > 0.

Hfr,‘YHLL(Qg) = (1 B p_r/’YQ (3.10)

Proof From the formula for f, ., we see that

ol o) = /Q Nfralrw(a)da

7
(d+a+ 5)

—k d+a+ o
Z/S ( 2) ot hd () dy

= S u(s)

k=0
1
- 1—pr/7? w()

< 0.

Thus, f., € LL(Qg) for each v and (3.10) holds. O

Now, assume that UJ";"" is defined as a bounded operator from L} (Qg) X

-x LI (Qg) to Lg,(@g). Let v be an arbitrary positive number and for each
k=1,....,m, we set v := \/Qk/Q’Y and

0, lz], <1
f%ﬁk (x) = _dtar 1

2
|z[p " Wka |x|p>1

By Lemma 3.1, fg, ~, € L‘ZJ;(QZ) and

1
wk(SQ) ) /ax <0

qukﬁkHqu Q) — (1 _p—Qk/’Y)%



10 Nguyen Minh CHUONG et al.

We fix = € Qd such that |z|, > 1 and set

= Nt e @) |sp(t)el, > 1},
k=1

From the assumption (3.6), there exists a subset F' of (Z;)" has measure
zero and FE, is contained in

{t e @p)": [ty > |al, P\ F.
Consequently, we have

WURE" G-+ Famen) %,

d+ak d+ak

- /lep>l<le\p E )\ / [T oo

Bz =1

H Tar (Sk(t dt‘ dz

_ m d+ak 1 q
> [ ( [ Mo " ”w<t>dt) (o)
|z|p>1 xk 1
d+ak 1
—d— q
> / 2] dx( H|sk qk w(t)dt>
|z]p2p7 O -
d+a

a; 12. q
o H el oo [ H sl © utnar)

Here, we denote E by the set {t € (Zy)": |t|, > p~7/P}. Assumption (3.6)
implies F, D E. Thus, we have the following inequality:

AR MU S+ Famom)l
/ H I5(8) a ”kw(t)dtg i |¢|1}:vl H GmsTm
E L k=1 1@, e Lk (@)

< Cp'l,

where C'is the constant in (3.7). Letting v to infinity, by Lebesgue’s dominated
convergence theorem, we obtain

/ [ sk (t)], @res)/asay#)dt < C. (3.11)
(Z5)" =1

From (3.8) and (3.11), we deduce that o7 is the best constant in (3.7). O
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Theorem 3.2 Let 1 < q,qx < oo, and let A\, ag, A\, be as in (3.2) and (3.3)
such that —1/qx < A\ <0 for k=1,...,m. Assume that (w1, ...,wy) satisfies
We condition. Put

d+ o d+ am
d+a T 44a
We assume
2= [ TIsol o < 5.12)
Z3)" g=1
and
(w(By))HHAD/a > H(wk(BO))(H)\qu)/qk. (3.13)
k=1

Here By is the ball {x € Qg: |z|, < 1}. Then there exists a constant C' such
that the inequality

m
”Up:?m(fh RRE) fm)HLgd»A(Qg) <C H ka”LEJZ’Ak(Qg) (3.14)
k=1
holds for any measurable functions fi,..., fm. Moreover, the best constant C

in (3.14) equals A.

Proof Suppose that £ is finite. Since

by Minkowski’s inequality, Holder’s inequality, and p-adic change of variable,
we have

1 m,n 1/q
<w(B,Y(a))1+>\q/B (@) |U£’,s’ (fl,---,fm)(l’)|qw($)dx>

1
o et ayon
1/q
<wk(B,Y(cj))1+>\qu /Bq(a) |fk(3k(t)$)|qkwk(x)dx> p(t)dt
= 1 [r)l%wn(y)dy Y™ (@
- H </$k(t)37(a) wk(sk(t)Bv(a))H)\qu) H |s;(t) Tap(t)dt

m
< A . .

1/q
ka (1)) w(a:)da:) b(b)dt

A
3
b
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The last estimate ensures that U, i’?’n is a bounded operator from LZZ};M (Qg) X

- X Lg},’;’)‘m((@g) to Lff;)‘((@g) and the best constant C' in (3.14) is not greater
than A.
For the converse, let us take

forlz) = el | =1, m,
Applying Lemma 2.1, we have
for(®) € LMD, okl gy > 0 fole) = el € L27(@)).

On the other hand, we have

Uyl (fors-- s fom)(z /Z; kl;IlfOk P(t)dt
/ TT sk (e e)at
(Z3)" k=1
(d+a)A . (d+ak)g
= Ja§ /(Z Aoy
=% fo(z).

Therefore,
HUp::lm(fOla s vam)”ng/\(Qg) =% ||f0||ng/\(Qg) <C- HfOHng/\(Qg)'

So 4 is not greater than C, the constant in (3.14). Thus, Theorem 3.2 is proved.

O
Theorem 3.3 Let q,qi, A, ap, A\, be as in Theorem 3.2 with q,q, > 1, and
let conditions (3.2) and (3.3) be hold. Assume that (w1, ...,wn,) satisfies Wa

condition. Then UZ’;”’” is determined as a bounded opemtor from BIM (Qg) X

- X Bfﬁ’km((@d) to Bg)‘(@d). Moreover,

1U5s = AB. (3.15)

HBql A (Qd)x Xqu Am (Qd) Bq X(Qd)

Proof From the proof of Theorem 3.2, with a = 0, we obtain that

1 pomn 1/q m
<W(BV)1+M /Bw |U¢75 (f1,---, fm)(l’)|qw(x)dl’> < %’H ka”BZi’;’A’“(Qg)

for all fi € Bq"’>"c (Qg) This implies that Uf;:?’n is bounded on Bg’)‘(Qg) it #
is finite.
The converse is similar to the proof of Theorem 3.2 since fo € Lq’“)"C (Qd)

implies that for, € Bq’“)"‘((@g) for k = 1,...,m, and fo(z) = \x|(d+a
Bg)‘((@g), thus we omit the details here. O

m
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4 Sharp estimates for commutator of weighted bilinear Hardy-Cesaro
operators

More recently, great attention was paid to the study on commutators of
operators. A well-known result of Coifman et al. [10] states that the commutator
Tyf =bTf—=T(bf) (where T is a Calderén-Zygmund singular integral operator)
is bounded on LP(R™), 1 < p < oo, if and only if b € BMO(R"). Many results
have been generalized to commutators of other operators, not only Calderén-
Zygmund singular integral operators. In p-adic settings, commutators of
integral operators of Hardy type were recently investigated in various papers
(see, e.g., [8,9,13,27-29] and references therein).

In this section, we obtain sharp estimates of the commutator generated by
bilinear operator U? in with symbols in CM Oﬁ(@;j). This commutator can be
defined in formally as follows.

Definition 4.1 Let m,n € N, ¢: (Z;)" — [0,00), s1,...,8m: (Zy)" — Qp, let
bi,..., by belocally integrable functions on Qg, and let fi,..., fmm: Qg — C be
measurable functions. The commutator of weighted multilinear Hardy-Cesaro
operator U” ’;n’n is defined as

UL (fr, o fn)(2)

= [, (I tewm) (TIn) - tentomn oo i
P =1

In what follows, we set

m

6= [ (Tl oo 42)

k=1
D = /(Z; § (;ﬁ |Sk(t)‘l()d+ak))\k> <£[1 |log,, \sk(t)\p|>1/;(t)dt. (4.3)

Notice that in case m = 1, we obtained the boundedness of such commutator
on p-adic weighted central Morrey space BffjA(Qg) in [5]. Our purpose is to
apply methods which were used in [5,11,14,27] to the case m = 2. We have the
following result.

Theorem 4.1 Let

1
l<g<q <oo, 1<pg<oo, —p <M <0, k=12,
k

such that
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and A = A + Xo. Assume

a4 4 94 9 « a feY «
wle) =t Toel B oas qthl i qp11 i qq22 i qp;’

and
1+ A g ag 1

2
w(Bo)1HAD/a > Hwk(Bo) @k
k=1

(i) If both €5 and Py are finite, then for any b= (b1, by) € CMOL (QF) x
CMOE(QY), Ui:i’"’b is bounded from Bgll’)‘l((@g) X Bgé’h(@g) to Bg’)‘((@g).
(i) If for any b = (b1, ba) € CMOE; (QY) x CMOZ(QD), Ui:i’"’b is bounded
from BIM (Qg) x BB (Qg) to Bg)’)‘((@g), then 9 is finite.
It is not hard to see that %, < oo does not imply %5 < co. For example, if
1

sp(t) =1, Y(t1,....tn) = ,
) et = el

then 25 = 0 but %5 = co. The example below showed that %5 < oo does not
imply %5 < oo. Indeed, let

1 g(t1)
Sl(t): s Sg(tl,...,tn):tl, ¢(t1,...,tn): 9 di A
P [Tizy [s(t) 5
where
0’ |t1|P = la
t1) = 1
9(tr) oo Il <1
‘t1|p Ing |t1|p
Then -
_ B 1\ 1
Gy = 25" / g(t)dty = |Z5" 1) (1 - p)j2 < 0.
ZP 7j=1
However,
> 1N\ 1
o= 2" [ g, lylat)dn = 23 (1) =

Corollary 4.1 Let1 < qg<qp <00, 1 <pp <oo, —1/pr <A\ <0, k=12,
such that ] ] 1 1 1
= + 4+ 4+ , A=A+
9 @ 92 pr P2
Furthermore, suppose that |sg(t)], > 1 a.e. t € (Zy)" or |sg(t)]p < 1 ae. t €
(Zy)", for each k =1,2. Then Ui’i’"’b is bounded from Bf}l’h(@g) x Bi2A2 (Qg)

to Bg’A(Qg) if and only if Do is finite.
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Since |z|, > 1 implies |z|, > p, we deduce that % > (logp)6>. Thus,
Corollary 4.1 follows immediately from Theorem 4.1. Before proving Theorem
4.1, we need the following lemma.

Lemma 4.1 Suppose that b is a function in CMOg’)‘(Qg) and v,~' are integer
numbers. Here, A € R so that A < 1/d, 1 < ¢ < 00, and w € #,, with a > —d.
Then

|bB«/,w - bB,Y/,w| < pd+a : |7/ - /7| : max{w(BV)Aaw(Bv’)A} O HbHCMOgJ’A'
Here and after,
1, A =0,
c) = p(d-l-oz))\
(d+0¢)10gp |p(d+a)>\_1| ‘)“7 )‘7&0

Proof Tt is enough to prove the lemma for 4/ > ~. Applying Holder’s inequality,
we have

b=l € gy [ @) = b (o)
w(By) B,

1
B
< 1 / b(2) — bp..., olw(x)dz
w(B’Y) Byya la

(¢—1)/q 1/q
< w(By+1) </ Ib(z) — bBW+1,w|qw(x)dx>
By11

w(By)
— d+05 . B A . b ‘
p w(By+1)" | HCMOg,A(Qg)
Therefore,
d A
b8, 41w = b8, 0| <P w(By)t 16l caro8 @g)- (4.4)
Now, we have
7 -1
|bB'Y”w N bB“”w| S Z |ka+17w - ka,w|
k=
7 -1
d A
sP MHbHCMog’*(Qg) Y w(Biy1)
k=~
v —=y-1
d A —(d+a)\j
=D +aHbHCMOZ’>‘(Qg) ‘W(Bvr) Z P (d+a) J .
§=0

Therefore, it suffices to prove the lemma in case A # 0. For the first case
when A > 0, by using the elementary inequality 1 — e ™ < x in case © =
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(d+ a)\(v' —v)log p, we obtain
|bB,Y/ w bBW,w|

<t PO — ) logpl (B
P p(‘”a))‘ _1 Y vy gp C’MOZ’A(Qg) 0%
plte. o 'max{w(BV)A,w(By))‘} SCy - HbHCMOg,A(Qg).

For the rest case when A < 0, the proof is similar, so we omit it here. O

Proof of Theorem 4.1 Suppose first that ¢5 and %, are finite. Let b = (b1, bs) €
CMOL; (QY) x CMOZ;(QL). Then Minkowski’s inequality implies that

1/q
= (w(B 1)1+>\q/ \Ui’,i’n’b(fhfz)(x)\qw(x)dx>

< (o fy, (s H'ffsf

2 q
. H b () — bk(sk(t)x)h/)(t)dt) w(x)dx>
k=1

S /(Z;,)” <W( 1+)‘q/ <H S

q 1/q
H|bk — by(sp(t)x )\) w(a:)da:) Y(t)dt.

1/q

For any x;,:,z,t; € C with ¢ = 1,2, we have the following elementary
inequality:

2 2 2 2
H|9Ez—yz| < H|$i—2i|+H|yi—ti|+H|Zi—ti|
k=1 k=1 k=1 k=1

+ (21 — 21)(22 — t2)| + [ (22 — 22) (21 — 1))
+ (21 — 21)(y2 — t2)| + (22 — 22)(y1 — 21)]
+ (21 — t1)(y2 — t2)| + |(22 — t2)(y1 — t1)|-

It is convenient to denote

1
b; w:—/ bi(x)w(x)dx, 1=1,2.
= [ B

Now, applying the inequality above with

z; =bi(x), yi=bi(si(t)r), 2 =0bip, ti=D0biswBa,
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and using Minkowski’s inequality, we get

IS+ + I

where, if we set
2
f@) =TT s @))],
k=1

then

2

L= /( . ( /B 7 <f(a:) IT 1o () - bk,B%wk\>qwz"g§fﬂq>l/qw)dt,

k=1

I = /(Z;)n (/B7 <f(a:)£[1|bk(8k(t)x) - bk,sk(t)B%wk|>qwz)55i§?f)\q>l/qw(t)dﬂ

= [ ([ (T bnomad) 250%,) vt
P Jizg \Us, LA PR B IR OB @l | (B, )1 ’

n= [ (] (0 3 06 b ), o))

1<i#j <2

w(z)dz )1/‘1

w(B,) 1
Choose now ¢ < s1, 82 < oo such that

1 1 1 1 1 1
= + = + .
S1 p1 q1 52 D2 q2

Notice that
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Then, by Holder’s inequality, we have

2 1 ' 1/q;
s /(Z,*,)n H <wj(37)1+>‘ﬂ"1j /B»Y |fj(8j(t)$)|qJWj(x)dx>

7j=1
1 1/pk
kl:Il <wk(B7) /B'v| k() = Ok, B, o [P Wi () ) »(t)
< ﬁ ‘3‘(t) (d+aj))\j(w,(B ))Aj ﬁ </ |fk(y)|qkwk(y)dy >1/qk
< (Zp)" 551 JATP I\ Py L sos, wi(sk(t) By) 1+ kax
1 1/m
llj[l (wl(B )/Bw bi(2) — b1, B,y [P i ( )dx) W(t)dt
2
(d+aj)A;
< /(Z;)"E|Sj(t)| Y (w; H 140 v

=
2
= H H ”b HCMO A H ka”qu Ak(Qd

i=1 j=1
2

- / [Tl e
(25" 121

Similar to the estimate of 17, we have

2

12</
@z 52

i 11 <wj(37§1+>‘jqj /Bw\fj(sj(t)g;)|quj(x)dx>1/%'

2 1 1/pk
TL sy, L, 10680~ b Petaria)

2

2 Y _ ey (y)dy O\
A1 ISR | (R )

(Zp)" =1 k=1

2 1 1/m
11 <wl<sl<t>3 [ )= an, et ) vinar

2
= [Tt H (- H 1540 gy e

[ Tl war

™ =1
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Now, we give the estimate for Is3. Applying Holder’s inequality, we get

= [ Canbon [, (ncronco )

2

: H |bk Byw, — bk‘ ,Sk( t)B»‘/,wk|w(t)dt

/* H< 1+A 55 /B7 |fj(3j(t)x)\sjwj(x)dx>l/sj

P

. H |0k, B wi = Okysy (£) By i [0 (£)dE

k=1

- 2 1/qx
) (d+aj)N; )\J ‘fk( )|kak(y)dy )
< /(Z )nj1:11|83(t) p H </ 1, Wr(s1(8)By) 1+ ke

k=1

SRS

61,8, — Oty (6) B, o [0 (£)dE

/N
Shiife
&

2
i )

1

/ H |sk(t) d+°‘" Ak H 101,81 — b,y (8) By [P () dE
p

=1

(2

From the hypothesis of the theorem, it follows that, for almost everywhere
t € Zy, there exists an integer 7' such that [s(t)[, = p?". Using Lemma 4.1 with
A =0, we get

bk, B wi. = Ok (6) By wor | = |0k, By, — OB, s

Y+
<P W bkl earor o)

d
—p +ak‘ logp |3k(t)‘p‘ ”kaCMOf;IZ(Qg)

Therefore, we obtain

2 2 2 2
d+a; Aj
Hp H By))Y H ||kaCMofj§(Qg) H ”fl”lel’”(Qg)
i=1 j=1 k=1 =1
2
/ TT 5o (012 1og, s, (1) l(E)at
(Zz*? r=1
2 2 2
2d+a . )
<P H ]:[ |b HC’MOZ?(Q¢ U ||f/€||B‘1k Ak (Qd)

=1
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2
- / LT Ist O Tog, lsu(@lpl(0)dr
=1

Now, we give the estimate for I. Similarly, we choose s € (1,00) such that
L G I

pP1
bij(x) = [(bi(z) = bi,,)(bj,B, — bjs;1)B,wWj)|-

Then, by Minkowski’s inequality and Holder’s inequality, we have

<c / 3 ( / <H|fksk 2)lbi i >>qwf;f;?fkq>l/qw<t>dt

1<275]<2

1 L/ ak
) C/< 5" kgl <Wk(Bv)1+)‘qu /B fitexEie)l wk(w)dx)

1 1/s
P (/B w‘(B,Y)> 165,8, — bjs;(0) By 0, [ (1)
1<i#5<2 y

2

< CH(WT(BW))AT/ H |Sl(t)‘éd+al))‘l
r=1 (Zx)m =1
: 1 1/qx
. Tre()| ™ we(y dy>
kl;Il <wk(3k(t)B,y)1+)‘ka /sk(t)BW‘ k()" wr(y)
|bi(x) — b; B7|Swi($)d$> 1/s
7 blvB _b's~ w.¢tdt
1<§;‘<2 (/Bw wi(Bv) | ] 3,85 (1) By, j| ( )
2 2
< C H(wk‘(B’Y))Ak||fk||ng,>\k(Qd) / H |Sl(t)|§;d+al))\lw(t)
k=1 k P (Z;)n =1
Z < ; / |bi(x) — i B, ["wi(x)d )1/s|b b d
i\T) — i,B swi x)axr i\ B, — 5 w; t.
1<i#j <2 wi(By) /s, ! 5.8y T Ujs(6) By w;

From the estimates of I; and I3, we deduce that

CH wT’ )\ ”f?“”B‘Ir /\r(Qd HHblHCMOpl(Qd)

2
/ T s (0] ( 3 pd+%|1ogp|s]<>|p|> ()t
3" =1

P 1<i#5 <2
2 2
)\r
< O JTr (B 1l gy Tl crroty e
r=1

2
/Z TT lsw(@)[(eres k(Zpd+af|1ogp|s]-<t>|p|)w<t>dt.
k:l

J=1

—~
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It can be deduced from the estimates of I1,...,I; that

C/ > ( )1+Aa /B7 <£[ | fr(sk(t)z)

1<275]<2

1/q

(i) — bis )by (5 (1)) — bj,sj@)Bw,wm) w(x)dx) Bt
1/qx
<c / > H( S [, 1Gsr0) e

1<275]<2k 1

. <wl(1Bv) /B |bi(x) — bi’B”f‘piwi(ﬂf)dx> 1/p

o

1 _ 1/pj
' (wj(ny) / |b;(s(t)x) — bj,sj(t)wajlprj(x)dx> W(t)dt

~

2
< Ak .

2
TTIsiIS = 3= Wllenoz @ I9iloarors gy 0t

N\

(Z5)™ 1=1 1<i#5<2
2 2
< O TT@rBD ™ il g g Hnbzucmm@d)
k=1
2
155 (8) S9N 0 () dlt
(Zp)™ j=1

and

1
16 - /( " <W(B’Y)1+>\q /Bw <f(x) \Z Kbi’B’Y - bi’8i(t>B“/)

P

<c / z( i /Bw<k]i[1|fk<sk<t>x>

1<275]<2
q 1/q
1853, = B, )O3 (55(00) by o)) wla)dn) (o)

<C / . > H(wk RIS /B W |fk<sk<t>x>\%k<x>dx)1/%

1<7,;£_7<2k 1

21
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1 . 1/s
~
: |bi,Bw - bi,si(t)Bﬂ,W(t)dt

— C/( ) ,f[l (wk(B;H,\qu /B7 |fk(sk(t)x)|qkwk($)d$> 1/q
| < 2 <wj(1Bv) /B 165 (s (1)) - bj,sJ'(t)waﬂswj(x)dx)1/8

1<i#£5<2 el
: |bi,B,y — bi,si(t)Bﬂ,Ow(t)dt
2
< C [T BV Il gap ) H 1ol onron @)

r=

[\

[y

[T Ise(lgres?s > ptellog, [si(t)ple(t)dt

)" k=1 1<i#5<2

=

hSEs

2
=C (WT(Bv)))\THfT’HBg;»M(Qg) H ”bl”cz\/joﬁll((@g)
=1

T

Il
A

T

2
/ H s S s log s ()], (2)dt
P j:l

Combining the estimates of Iy, ..., I gives
I 1 p,2,n,b q d /e
- (w(BW) /B U (o) )
2
< TT B Ul g Hub - H\sk (e
=1
(3+c+p2d+aﬂuogp\sz< o +2c§jpd+ar|1ogp|sr< ECE
=1

This proves the first part of Theorem 4.1.
Now, we assume that Ui”i’n’b is bounded from Bf}l’h(@g) x B (Qg) to

B%*(Qg). Take
bi(@) = ba(a) = logy .
Then by, by € BMO,(Q%) (see [13, Lemma 6.1]). Since

BMO,(Q)) € CMOL(Q;), Vg € (1,00),
we obtain by € CMOLE (Qg) Let

Fi(w) = Ja[grrese,
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Then Lemma 2.2 implies that f;(x) belongs to Bq’“)"‘ (Qg), and

folx) = |zl{T* € BL Q).
We have

UL2 P (f1, f2) ()

Hence,

p727n7b
HU1/175 (fl’f2)||33,17€’>\k(@g)

— <W(Bl)1+>\q/ |f0(x)|qw($)dx>l/q

/ H s (t |(d+04k: )k H ‘ logp ‘Sl(lt ‘¢(t)dt

= 1ol g0 / H|sk s T o [u(® (00t

=1
= ‘@2 ' ”fOHBZIZ’Ak(Qg)

Therefore, 25 is finite. O
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