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Abstract We investigate stable homology of modules over a commutative
noetherian ring R with respect to a semidualzing module C, and give some
vanishing results that improve/extend the known results. As a consequence,
we show that the balance of the theory forces C to be trivial and R to be
Gorenstein.
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1 Introduction

Stable homology, as a broad generalization of Tate homology to the realm of
associative rings, was introduced by Vogel and Goichot [9], and further studied
by Celikbas et al. [2,3] and Emmanouil and Manousaki [6]. In [2], it was
shown that the vanishing of stable homology over commutative noetherian local
rings can detect modules of finite projective (injective) dimension, even of finite
Gorenstein dimension, which lead to some characterizations of classical rings
such as Gorenstein rings, the original domain of Tate homology. Emmanouil
and Manousaki [6] further investigated stable homology of modules, and gave
some vanishing results that improve results in [2] by relaxing the conditions on
rings and modules.

The study of semidualizing modules was initiated independently by Foxby
[8], Golod [10], and Vasconcelos [19]. Over a commutative noetherian ring R,
a finitely generated R-module C is semidualizing if

HomR(C,C) ∼= R, ExtiR(C,C) = 0, ∀ i � 1.

Examples include finitely generated projective R-modules of rank 1. Modules
of finite homological dimension with respect to a semidualizing module have
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been studied in numerous papers. For example, Takahashi and White [18] and
Salimi et al. [15] gave some characterizations for such modules in terms of the
vanishing of relative (co)homology. In this paper, we show that the vanishing
of stable homology can also detect modules of finite homological dimension
with respect to a semidualizing module. Our main results are following two
theorems.

Theorem 1.1 Let R be a commutative noetherian ring, and let C be a
semidualizing R-module. For an R-module M, the following conditions are
equivalent:

(i) FC-pdRM < ∞;

(ii) ˜Tor
PCIC

n (M,−) = 0 for each n ∈ Z;

(iii) ˜Tor
PCIC

n (M,−) = 0 for some n � 0.
Moreover, if M is finitely generated, then (i)–(iii) are equivalent to

(i′) PC-pdRM < ∞.

Theorem 1.2 Let R be a commutative noetherian ring, and let C be a
semidualizing R-module. For an R-module N, the following conditions are
equivalent:

(i) IC-idRN < ∞;

(ii) ˜Tor
PCIC

n (−, N) = 0 for each n ∈ Z;

(iii) ˜Tor
PCIC

n (−, N) = 0 for some n < 0.

The above two results improve the right and left vanishing results
in the introduction of [2]. Here, the notations FC-pdRM, IC-idRN, and
˜Tor

PCIC

n (−,−) can be found in Sections 2 and 4. As a consequence, we show
that the isomorphisms

˜Tor
PCIC

∗ (M,N) ∼= ˜Tor
PCIC

∗ (N,M)

for all R-modules M and N force C to be trivial and R to be a Gorenstein ring;
see Corollary 4.1 below.

We prove these results using the next characterization of stable (unbounded)
tensor product inspired by the work of Emmanouil and Manousaki [6].

Theorem 1.3 Let X be a complex of R◦-modules, and let Y be a bounded
above complex of R-modules with sup{i ∈ Z | Yi �= 0} = k. Then there are
isomorphisms of complexes of Z-modules

X⊗RY ∼= lim
i∈N

((X ⊗R Y )/(X ⊗R Y�k−i))

and
X ˜⊗RY ∼= lim

i∈N

1(X ⊗R Y�k−i).
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One refers to Section 3 for the definitions of X⊗RY and X ˜⊗RY, and lim1

is the right derived functor of the limit lim; see Section 3.

2 Preliminaries

We begin with some notation and terminology for using throughout this paper.
Throughout this work, all rings are assumed to be associative rings. Let R

be a ring; by an R-module we mean a left R-module, and we refer to right R-
modules as modules over the opposite ring R◦. We denote by P (resp., F , I )
the class of projective R-modules (resp., flat R-modules, injective R-modules).

By an R-complex we mean a complex of R-modules. We frequently (and
without warning) identify R-modules with R-complexes concentrated in degree
0. For an R-complex X, we set

supX = sup{i ∈ Z | Xi �= 0}, inf X = inf{i ∈ Z | Xi �= 0}.
An R-complex X is bounded above if supX < ∞, and it is bounded below if
inf X > −∞. An R-complex X is bounded if it is both bounded above and
bounded below. The nth homology of X is denoted by Hn(X). For each k ∈ Z,
ΣkX denotes the complex with the degree-n term (ΣkX)n = Xn−k and whose
boundary operators are (−1)k∂X

n−k. We set ΣM = Σ1M.
If X and Y are both R-complexes, then by a morphism α : X → Y we mean

a sequence αn : Xn → Yn such that

αn−1∂
X
n = ∂Y

n αn, ∀n ∈ Z.

A quasi-isomorphism, indicated by the symbol ‘	’, is a morphism of complexes
that induces an isomorphism in homology.

Let X be a class of R-modules. Following Enochs and Jenda [7], an X -
precover of an R-module M is a homomorphism X → M with X ∈ X such
that the homomorphism

HomR(X ′,X) → HomR(X ′,M)

is surjective for each X ′ ∈ X . X is called a precovering class if each R-module
has a X -precover.

For a precovering class X , there is a complex X+ :

· · · → X1 → X0 → M → 0,

with each Xi in X , such that HomR(X ′,X+) is exact for each X ′ ∈ X . The
truncated complex X :

· · · → X1 → X0 → 0,

is called a proper X -resolution of M, which is always denoted by X → M. If
X contains all projective R-modules, then the complex X+ is exact. In this
case, we always denote by X

�→ M the proper X -resolution of M.
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The X -projective dimension of M is the quantity

X -pdRM = inf{supX | X → M is a proper X -resolution of M}.
We define preenveloping classes Y , proper Y -coresolutions, and Y -injective

dimension of M (denoted by Y -idRM) dually.
When X is the class of projective (resp., flat) R-modules, X -pdRM is the

classical projective (resp., flat) dimension; we refer the reader to [15, Remark
2.6] for the flat case. Also, when Y is the class of injective R-modules, Y -idRM
is the classical injective dimension.

3 Characterization of stable (unbounded) tensor product

We start by recalling the definition of stable (unbounded) tensor product.

Definition 3.1 Let X be an R◦-complex, and let Y be an R-complex. The
tensor product X ⊗R Y is the Z-complex with degree-n term

(X ⊗R Y )n =
∐

i∈Z

(Xi ⊗R Yn−i)

and differential given by

∂X⊗RY (x ⊗ y) = ∂X(x) ⊗ y + (−1)|x|x ⊗ ∂Y (y).

Following [2,9], the unbounded tensor product X⊗RY is the Z-complex with
degree-n term

(X ⊗R Y )n =
∏

i∈Z

(Xi ⊗R Yn−i)

and differential defined as above. X ⊗R Y is a subcomplex of X ⊗R Y, so we let
X ˜⊗R Y denote the quotient complex (X ⊗R Y )/(X ⊗R Y ), which is called the
stable tensor product.

We notice that if X or Y is bounded, or if both of them are bounded on
the same side (above or below), then the unbounded tensor product coincides
with the tensor product, and so the stable tensor product X ˜⊗R Y is zero.

Remark 3.1 Let {νuv : Xv → Xu}u�v be an N-inverse system of R-complexes.
For the morphism

1 − ν :
∏

i∈N

Xi →
∏

i∈N

Xi

given by
(1 − ν)k(xi)i∈N = (xi − νi,i+1

k (xi+1))i∈N, ∀ k ∈ Z,

where (xi)i∈N ∈ ∏

i∈N
Xi

k, it is well known that

Ker(1 − ν) = lim
i∈N

Xi, Coker(1 − ν) = lim
i∈N

1Xi.
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Here, lim1 is the right derived functor of the limit lim; see, e.g., [5,14,20], for
more details. That is, there is an exact sequence of R-complexes:

0 → lim
i∈N

Xi →
∏

i∈N

Xi →
∏

i∈N

Xi → lim
i∈N

1Xi → 0.

Let X be an R-complex, and let X = X0 ⊇ X1 ⊇ · · · be a filtration.
Then the embeddings εi : Xi → Xi−1 and the morphisms πi : X/Xi → X/Xi−1

determine the N-inverse systems

{εuv : Xv → Xu}u�v, {πuv : X/Xv → X/Xu}u�v,

respectively. For these systems, we have the following result.

Lemma 3.1 Let X be an R-complex, and let X = X0 ⊇ X1 ⊇ · · · be a
filtration. Then lim1

i∈N
X/Xi = 0, and there exists an exact sequence

0 → lim
i∈N

Xi → X → lim
i∈N

X/Xi → lim
i∈N

1Xi → 0.

Proof Consider the following commutative diagram with exact rows:

0 →
∏

i∈N

Xi →
∏

i∈N

X →
∏

i∈N

X/Xi → 0

↓ 1− ε ↓ 1− id ↓ 1− π

0 →
∏

i∈N

Xi →
∏

i∈N

X →
∏

i∈N

X/Xi → 0.

We notice that the constant N-inverse system {X} has limi∈N X = X and
lim1

i∈N X = 0 since 1 − id is surjective. Then by Remark 3.1 and the snake
lemma, one gets the desired results. �
Remark 3.2 Let X be an R◦-complex, and let Y be an R-complex. For fixed
k ∈ Z, the filtration

Y�k ⊇ Y�k−1 ⊇ Y�k−2 ⊇ · · ·
induces a filtration

X ⊗R Y�k ⊇ X ⊗R Y�k−1 ⊇ X ⊗R Y�k−2 ⊇ · · · .

Thus, we have two N-inverse systems

{εuv : X ⊗R Y�k−v → X ⊗R Y�k−u}u�v,

{πuv : (X ⊗R Y�k)/(X ⊗R Y�k−v) → (X ⊗R Y�k)/(X ⊗R Y�k−u)}u�v .

Proof of Theorem 1.3 We first prove the case when k = 0. In this case, Y =
Y�0. For each n ∈ Z,

(X ⊗R Y�0)n =
∐

p∈Z

(Xn+p ⊗R (Y�0)−p) =
∐

p�0

(Xn+p ⊗R (Y�0)−p),
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and for each i � 1,

(X ⊗R Y�−i)n =
∐

p∈Z

(Xn+p ⊗R (Y�−i)−p) =
∐

p�i

(Xn+p ⊗R (Y�0)−p).

Thus, one gets

((X⊗R Y�0)/(X ⊗R Y�−i))n ∼=
i−1
∐

p=0

(Xn+p⊗R (Y�0)−p) =
i−1
∏

p=0

(Xn+p⊗R (Y�0)−p).

This implies that

lim
i∈N

((X ⊗R Y�0)/(X ⊗R Y�−i))n ∼=
∏

p∈Z

(Xn+p ⊗R (Y�0)−p) = (X ⊗R Y�0)n.

Now, it is straightforward to verify

X ⊗R Y�0
∼= lim

i∈N

((X ⊗R Y�0)/(X ⊗R Y�−i)).

Since limi∈N(X ⊗R Y�−i) = 0, there is an exact sequence

0 → X ⊗R Y�0 → X ⊗R Y�0 → lim
i∈N

1(X ⊗R Y�−i) → 0

by Lemma 3.1 and the isomorphism proved above. Thus, one gets

X ˜⊗R Y�0
∼= lim

i∈N

1(X ⊗R Y�−i).

In the general case, when supY = k ∈ Z, we notice that

Y = Σk(Σ−kY )�0, (Σ−kY )�−i = Σ−kY�k−i.

Then one has

X ⊗R Y = Σk(X ⊗R (Σ−kY )�0)
∼= Σk lim

i∈N

((X ⊗R (Σ−kY )�0)/(X ⊗R (Σ−kY )�−i))

∼= Σk lim
i∈N

((X ⊗R Σ−kY�k)/(X ⊗R Σ−kY�k−i))

∼= lim
i∈N

((X ⊗R Y )/(X ⊗R Y�k−i))

and
X ˜⊗R Y = Σk(X ˜⊗R (Σ−kY )�0)

∼= Σklim
i∈N

1(X ⊗R (Σ−kY )�−i)

∼= Σklim
i∈N

1(X ⊗R Σ−kY�k−i)

∼= lim
i∈N

1(X ⊗R Y�k−i),
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as desired. �
Corollary 3.1 Let X be an R◦-complex, and let Y be a bounded above R-
complex with supY = k. Then there exists an exact sequence

0 →
∏

i∈N

(X ⊗R Y�k−i) →
∏

i∈N

(X ⊗R Y�k−i) → X ˜⊗R Y → 0.

Proof Since

lim
i∈N

(X ⊗R Y�k−i) = 0, lim
i∈N

1(X ⊗R Y�k−i) ∼= X ˜⊗R Y,

by Theorem 1.3, the desired exact sequence now follows from Remark 3.1. We
notice that the map from

∏

i∈N
(X ⊗R Y�k−i) to

∏

i∈N
(X ⊗R Y�k−i) in the

statement is 1 − ε, where

εuv : X ⊗R Y�k−v → X ⊗R Y�k−u

for u � v is induced by the filtration Y�k ⊇ Y�k−1 ⊇ Y�k−2 ⊇ · · · ; see Remarks
3.1 and 3.2. �
Corollary 3.2 Let X be an R◦-complex, and let Y be a bounded above R-
complex with supY = k. Then, for each n ∈ Z, there exists an exact sequence

0 → lim
i∈N

1Hn+1(X ⊗R Y�k−i) → Hn+1(X ˜⊗R Y ) → lim
i∈N

Hn(X ⊗R Y�k−i) → 0.

In particular, Hn+1(X ˜⊗R Y ) = 0 if and only if

lim
i∈N

1Hn+1(X ⊗R Y�k−i) = 0 = lim
i∈N

Hn(X ⊗R Y�k−i).

Proof By Corollary 3.1, there is an exact sequence

0 →
∏

i∈N

(X ⊗R Y�k−i) →
∏

i∈N

(X ⊗R Y�k−i) → X ˜⊗R Y → 0.

Thus, one gets the following exact sequence:

· · · →
∏

i∈N

Hn+1(X ⊗R Y�k−i) →
∏

i∈N

Hn+1(X ⊗R Y�k−i) → Hn+1(X ˜⊗R Y )

→
∏

i∈N

Hn(X ⊗R Y�k−i) →
∏

i∈N

Hn(X ⊗R Y�k−i) → · · · ,

which yields the desired exact sequence from the definitions of the lim and lim1

groups. �
Remark 3.3 Recall that an N-inverse system {δuv : Mv → Mu}u�v of R-
modules satisfies the Mittag-Leffler condition if for each i ∈ N, there
exists an index j ∈ N with j � i such that Im δij = Im δik for each k ∈ N
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with k � j. It is clear that if δi,i+1 is surjective for each i � 0, then the
N-inverse system {δuv : Mv → Mu}u�v satisfies the Mittag-Leffler condition.
Grothendieck proved in [11] that if the N-inverse system {δuv : Mv → Mu}u�v

satisfies the Mittag-Leffler condition, then one has lim1
i∈N Mi = 0. Moreover,

following [5, Corollary 6], lim1
i∈N

M
(N)
i = 0 if and only if the N-inverse system

{δuv : Mv → Mu}u�v satisfies the Mittag-Leffler condition.

Corollary 3.3 Let X be an R◦-complex, let Y be a bounded above R-complex
with supY = k, and let n ∈ Z. If Hn(X(N)

˜⊗R Y ) = 0, then the N-inverse
system {δuv : Hn(X ⊗R Y�k−v) → Hn(X ⊗R Y�k−u)}u�v satisfies the Mittag-
Leffler condition.

Proof If Hn(X(N)
˜⊗R Y ) = 0, then by Corollary 3.2,

lim
i∈N

1Hn(X(N) ⊗R Y�k−i) = 0,

and so one gets
lim
i∈N

1(Hn(X ⊗R Y�k−i))(N) = 0,

which implies that the N-inverse system {δuv : Hn(X ⊗R Y�k−v) → Hn(X ⊗R

Y�k−u)}u�v satisfies the Mittag-Leffler condition; see Remark 3.3. �
Checking the proof of [6, Lemma 4.1], one gets the following result.

Lemma 3.2 Let {δuv : Xv → Xu}u�v be an N-inverse system of R-modules
satisfying the Mittag-Leffler condition. If limi∈N Xi = 0, then one has

colim
i∈N

HomZ(Xi, Q/Z) = 0.

The next proposition will be used to prove our main results advertised in
the introduction.

Proposition 3.1 Let X be an R◦-complex, let Y be a bounded above R-
complex with supY = k, and let n ∈ Z. If

Hn(X(N)
˜⊗R Y ) = 0 = Hn+1(X ˜⊗R Y ),

then one has

colim
i∈N

H−n(HomR◦(X,HomZ(Y, Q/Z)�i−k)) = 0

and
colim

i∈N

H−n(HomR(Y�k−i,HomZ(X, Q/Z))) = 0.

Proof The N-inverse system {δuv : Hn(X ⊗R Y�k−v) → Hn(X ⊗R Y�k−u)}u�v

satisfies the Mittag-Leffler condition by Corollary 3.3. The vanishing of
Hn+1(X ˜⊗R Y ) implies that

lim
i∈N

Hn(X ⊗R Y�k−i) = 0;
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see Corollary 3.2. Thus, by Lemma 3.2, one has

colim
i∈N

H−n(HomZ(X ⊗R Y�k−i, Q/Z)) ∼= colim
i∈N

HomZ(Hn(X ⊗R Y�k−i), Q/Z)

= 0.

Now, the desired results hold by the adjoint isomorphism. �
We end this section with the following result that will be used in the next

section.

Proposition 3.2 Let X be an R◦-complex, let Y be a bounded (R,S◦)-complex,
and let Z be an S-complex. Then there is an isomorphism of Z-complexes

(X ⊗R Y ) ˜⊗S Z → X ˜⊗R (Y ⊗S Z), (3.1)

which is functorial in X, Y, and Z.

Proof Consider the following commutative diagram of Z-complexes:

0 → (X ⊗R Y ) ⊗S Z → (X ⊗R Y )⊗SZ → (X ⊗R Y )˜⊗SZ → 0

↓ α ↓
0 → X ⊗R (Y ⊗S Z) → X ⊗R (Y ⊗S Z) → X ˜⊗R (Y ⊗S Z) → 0.

We notice that

X ⊗R Y = X ⊗R Y, Y ⊗SZ = Y ⊗S Z,

since Y is bounded. Then the second vertical map α is an isomorphism by
[2, Proposition A4]. The first one is clearly an isomorphism. So one gets an
isomorphism (3.1), which is clearly functorial in X, Y, and Z. �

4 Stable homology with respect to semidualizing module

Convention In this section, R is a commutative noetherian ring, and C is a
semidualizing R-module.

Definition 4.1 Let X (resp., Y ) be a precovering (resp., preenveloping) class
of R-modules. For R-modules M and N, let X → M be a proper X -resolution
of M, and let N → Y be a proper Y -coresolution of N. For each n ∈ Z, the
nth stable homology of M and N with respect to X and Y is

˜Tor
X Y

n (M,N) = Hn+1(X ˜⊗R Y ).

Following [7, Section 8.2], any two proper X -resolutions of M, and similarly,
any two proper Y -coresolutions of N, are homotopy equivalent. Thus, by [2,
1.5(d)], the above definition is independent of the choices of (co)resolutions.
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We notice that ˜Tor
PI

n (M,N) is the classical stable homology, ˜Tor
R

n (M,N), of
M and N defined by Goichot [9]; see also [2].

We denote by PC (resp., FC , IC) the class of R-modules C ⊗R P (resp.,
C ⊗R F, HomR(C, I)) with P projective (resp., F flat, I injective). Then
PC and FC are precovering and IC is preenveloping; see, e.g., Holm and
White [12, Proposition 5.3]. In the next lemma, (a) and (b) can be found in
[15, Lemma 3.1], (c) can be proved as in [15, Lemma 3.1(c)], and (d) is from
[18, Lemma 2.1(b)].

Lemma 4.1 Let M be an R-module.
(a) If F

�→ HomR(C,M) is a proper flat (resp., projective) resolution, then
C ⊗R F → M is a proper FC (resp., PC)-resolution of M.

(b) If G → M is a proper FC (resp., PC)-resolution of M, then

HomR(C,G) �→ HomR(C,M)

is a proper flat (resp., projective)-resolution of HomR(C,M).

(c) If C ⊗R M
�→ I is an injective resolution of C ⊗R M, then M →

HomR(C, I) is a proper IC-coresolution.

(d) If M → J is a proper IC-coresolution of M, then C ⊗R M
�→ C ⊗R J

is an injective resolution of C ⊗R M.

Proposition 4.1 Let M and N be R-modules. Then there are isomorphisms

˜Tor
PCIC

n (M,N) ∼= ˜Tor
R

n (HomR(C,M), C ⊗R N) ∼= ˜Tor
FCIC (M,N),

which are functorial in M and N.

Proof Let P
�→ HomR(C,M) be a projective resolution of HomR(C,M), and

let C ⊗R N
�→ I be an injective resolution of C ⊗R N. Then by Lemma 4.1 (a)

and (c), C ⊗R P → M is a proper PC-resolution of M, and N → HomR(C, I)
is a proper IC-coresolution, and so one gets

˜Tor
PCIC

n (M,N) = Hn+1((C ⊗R P ) ˜⊗R HomR(C, I))
∼= Hn+1(P ˜⊗R (C ⊗R HomR(C, I)))
∼= Hn+1(P ˜⊗R I)

∼= ˜Tor
R

n (HomR(C,M), C ⊗R N),

where the first isomorphism follows from Proposition 3.2, and the second one
holds since I is a complex of injective R-modules.

The isomorphism

˜Tor
FCIC (M,N) ∼= ˜Tor

R

n (HomR(C,M), C ⊗R N)
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can be proved similarly by taking a proper flat resolution F
�→ HomR(C,M)

and using Lemma 4.1 (a) and [2, Proposition 2.6].
Now, it is straightforward to verify that the desired isomorphisms are

functorial in M and N. �
Lemma 4.2 Let M be an R-module, and let n ∈ Z.

(a) If ˜Tor
PCIC

n−1 (−,M) = 0, then ˜Tor
PCIC

n (−,M) = 0.

(b) If ˜Tor
PCIC

n+1 (M,−) = 0, then ˜Tor
PCIC

n (M,−) = 0.

Proof (a) For an R-module M ′, by [12, Proposition 5.3 (b)], there is a complex

0 → K → P → M ′ → 0

with P ∈ PC such that the sequence

0 → HomR(P ′,K) → HomR(P ′, P ) → HomR(P ′,M ′) → 0

is exact for each P ′ ∈ PC . In particular, the sequence

0 → HomR(C,K) → HomR(C,P ) → HomR(C,M ′) → 0

is exact. Since HomR(C,P ) is projective, one gets

˜Tor
R

n (HomR(C,M ′), C ⊗R M) ∼= ˜Tor
R

n−1(HomR(C,K), C ⊗R M),

and so by Proposition 4.1,

˜Tor
PCIC

n (M ′,M) ∼= ˜Tor
PCIC

n−1 (K,M) = 0,

which yields ˜Tor
PCIC

n (−,M) = 0.
(b) Let N be an R-module. Then by [12, Proposition 5.3 (c)], there is a

complex
0 → N → I → K → 0

with I ∈ IC such that the sequence

0 → HomR(K, I ′) → HomR(I, I ′) → HomR(N, I ′) → 0

is exact for each I ′ ∈ IC . Since C∨ = HomZ(C, Q/Z) is in IC , the sequence

0 → HomR(K,C∨) → HomR(I, C∨) → HomR(N,C∨) → 0

is exact, which implies that the sequence

0 → C ⊗R N → C ⊗R I → C ⊗R K → 0

is exact. We notice that C ⊗R I is injective. Then one gets

˜Tor
R

n (HomR(C,M), C ⊗R N) ∼= ˜Tor
R

n+1(HomR(C,M), C ⊗R K),
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and so by Proposition 4.1,

˜Tor
PCIC

n (M,N) ∼= ˜Tor
PCIC

n+1 (M,K) = 0,

which yields ˜Tor
PCIC

n (M,−) = 0. �
Now, we are in a position to give the proofs of our main results described

in the introduction.

Proof of Theorem 1.1 (i) ⇒ (ii) Since FC-pdRM < ∞, there is a proper FC -
resolution F → M with F bounded. Thus, for each R-module N with N → I
a proper IC-coresolution, one has

˜Tor
PCIC

n (M,N) ∼= ˜Tor
FCIC (M,N) = Hn+1(F ˜⊗R I) = 0

by Proposition 4.1.
(ii) ⇒ (iii) It is clear.
(iii) ⇒ (i) We first notice that

˜Tor
PCIC

0 (M,−) = 0 = ˜Tor
PCIC

−1 (M,−)

by Lemma 4.2.
Let F

�→ HomR(C,M) be a proper flat resolution of HomR(C,M). Then
C ⊗R F → M is a proper FC -resolution by Lemma 4.1 (a), and

C ⊗R HomZ(M, Q/Z) ∼= HomZ(HomR(C,M), Q/Z) �→ HomZ(F, Q/Z)

is an injective resolution of C ⊗R HomZ(M, Q/Z), and so

HomZ(M, Q/Z) → HomR(C,HomZ(F, Q/Z)) ∼= HomZ(C ⊗R F, Q/Z)

is a proper IC-coresolution of HomZ(M, Q/Z) by Lemma 4.1(c).
Let N be an R-module, and let C ⊗R N

�→ I be an injective resolution of
C ⊗R N. Then N → HomR(C, I) is a proper IC-coresolution by Lemma 4.1
(c), and

C ⊗R N (N) ∼= (C ⊗R N)(N) �→ I(N)

is an injective resolution of C ⊗R N (N), and so

N (N) → HomR(C, I(N)) ∼= (HomR(C, I))(N)

is a proper IC-coresolution by Lemma 4.1 (c).
Since

˜Tor
FCIC

0 (M,N) = 0 = ˜Tor
FCIC

−1 (M,N (N))

by Proposition 4.1, one gets

H1((C ⊗R F ) ˜⊗R HomR(C, I)) = 0,
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and

H0((C ⊗R F )(N)
˜⊗R HomR(C, I)) ∼= H0((C ⊗R F ) ˜⊗R (HomR(C, I))(N)) = 0

by Proposition 3.2. Now, using Proposition 3.1, one gets

colim
i∈N

H0(HomR(HomR(C, I)�−i,HomZ(C ⊗R F, Q/Z))) = 0,

and so
˜Ext

0

IC
(N,HomZ(M, Q/Z)) = 0

for each R-module N by Proposition A.9 in Appendix. Thus,

IC-idRHomZ(M, Q/Z) < ∞
by Proposition A.7 in Appendix, and so FC-pdRM < ∞; see [16, Lemma 4.2].

Finally, if M is finitely generated, then by [15, Theorem 5.5], conditions (i)
and (i′) are equivalent. �
Proof of Theorem 1.2 (i) ⇒ (ii) Since IC-idRN < ∞, there is a proper IC-
coresolution N → I with I bounded. Thus, for each R-module M with P → M
a proper PC-resolution, one has

˜Tor
PCIC

n (M,N) = Hn+1(P ˜⊗R I) = 0.

(ii) ⇒ (iii) It is clear.
(iii) ⇒ (i) We first notice that

˜Tor
PCIC

0 (−, N) = 0 = ˜Tor
PCIC

−1 (−, N)

by Lemma 4.2.
Let M be an R-module, and let F

�→ HomR(C,M) be a proper flat
resolution. Then, by Lemma 4.1 (a), C ⊗R F → M is a proper FC-resolution
of M. Let N → I be a proper IC-coresolution of N. Since

˜Tor
FCIC

0 (M,N) ∼= ˜Tor
PCIC

0 (M,N) = 0

by Proposition 4.1, one gets

H1((C ⊗R F ) ˜⊗R I) = 0.

On the other hand, one has

˜Tor
PCIC

−1 (M (N), N) = 0,

and so by Proposition 4.1,

˜Tor
R

−1((HomR(C,M))(N), C ⊗R N) = 0.
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Note that F
�→ HomR(C,M) is a flat resolution. Then

F (N) �→ (HomR(C,M))(N)

is a flat resolution of (HomR(C,M))(N). Since C ⊗R N
�→ C ⊗R I is an injective

resolution by Lemma 4.1 (d), one gets

H0(F (N)
˜⊗R (C ⊗R I)) = 0;

see [2, Proposition 2.6]. Thus, we have

H0((C ⊗R F )(N)
˜⊗R I) ∼= H0((C ⊗R F (N)) ˜⊗R I) ∼= H0(F (N)

˜⊗R (C ⊗R I)) = 0,

where the second isomorphism follows from Proposition 3.2.
Now, by Proposition 3.1, one gets

colim
i∈N

H0(HomR(C ⊗R F,HomZ(I, Q/Z)�i)) = 0.

We notice that C ⊗R F → M is a proper FC -resolution of M, and

HomZ(I, Q/Z) → HomZ(N, Q/Z)

is a proper FC-resolution of HomZ(N, Q/Z). Then, by Proposition A.8 in
Appendix, one gets

˜Ext
0

FC
(M,HomZ(N, Q/Z)) = 0

for each R-module M. Thus,

FC -pdRHomZ(N, Q/Z) < ∞
by Proposition A.6 in Appendix, and so IC-idRN < ∞; see [16, Lemma 4.2].

�
As a corollary of the above theorems, we give a balance result for stable

homology with respect to a semidualizing module.

Corollary 4.1 The following conditions are equivalent for a local ring R :

(i) ˜Tor
PCIC

n (M,N) ∼= ˜Tor
PCIC

n (N,M) for all R-modules M and N, and
for each n ∈ Z;

(ii) IC-idRC < ∞;
(iii) C ∼= R and R is Gorenstein.

Proof (i) ⇒ (ii) Since C is C-projective, one gets

˜Tor
PCIC

n (M,C) ∼= ˜Tor
PCIC

n (C,M) = 0

for all R-modules M and for each n ∈ Z, and so IC-id(C) < ∞ by Theorem
1.2.

(ii) ⇒ (iii) It follows from Sather-Wagstaff and Yassemi [17, Lemma 2.11].
(iii) ⇒ (i) It holds by [2, Corollary 4.7]. �
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Appendix Stable cohomology

The following definitions of bounded and stable Hom-complexes can be found
in [1,9].

Definition A.1 For R-complexes X and Y, the bounded Hom-complex
HomR(X,Y ) is the subcomplex of HomR(X,Y ) with degree-n term

HomR(X,Y )n =
∐

i∈Z

HomR(Xi, Yn+i).

We denote by H̃omR(X,Y ) the quotient complex HomR(X,Y )/HomR(X,Y ),
which is called the stable Hom-complex.

Proposition A.1 Let X and Z be an R-complex and an S-complex,
respectively, and let Y be a bounded (S,R◦)-complex. Then there are
isomorphisms of Z-complexes

HomS(Y ⊗R X,Z) ∼= HomR(X,HomS(Y,Z))

and
H̃omS(Y ⊗R X,Z) ∼= H̃omR(X,HomS(Y,Z)),

which are functorial in X,Y, and Z.

Proof For every n ∈ Z, one has

HomS(Y ⊗R X,Z)n =
∐

h∈Z

HomS((Y ⊗R X)h, Zn+h)

=
∐

h∈Z

HomS

(

∐

q∈Z

(Yq ⊗R Xh−q), Zn+h

)

∼=
∐

h∈Z

∐

q∈Z

HomS(Yq ⊗R Xh−q, Zn+h)

=
∐

p∈Z

∐

q∈Z

HomS(Yq ⊗R Xp, Zn+p+q).
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On the other hand, for every n ∈ Z, one has

HomR(X,HomS(Y,Z))n =
∐

p∈Z

HomR(Xp,HomS(Y,Z)n+p)

=
∐

p∈Z

HomR

(

Xp,
∏

q∈Z

HomS(Yq, Zn+p+q)
)

∼=
∐

p∈Z

∐

q∈Z

HomR(Xp,HomS(Yq, Zn+p+q)),

where the isomorphism holds since Y is bounded.
We notice that there is a natural isomorphism of Z-modules:

ρYqXpZn+p+q : HomS(Yq ⊗R Xp, Zn+p+q) → HomR(Xp,HomS(Yq, Zn+p+q)).

Then one gets an isomorphism of Z-complexes:

ρY XZ : HomS(Y ⊗R X,Z) → HomR(X,HomS(Y,Z)).

It is straightforward to verify that ρY XZ is functorial in X, Y, and Z.
For the second isomorphism in the statement, consider the following

commutative diagram of Z-complexes:

0 → HomS(Y ⊗R X, Z) → HomS(Y ⊗R X, Z) → H̃omS(Y ⊗R X, Z) → 0

ρ ↓ � ↓
0 → HomR(X, HomS(Y, Z)) → HomR(X, HomS(Y, Z)) → H̃omR(X, HomS(Y, Z)) → 0.

Since ρ and 	 are isomorphisms, one gets an isomorphism

H̃omS(Y ⊗R X,Z) → H̃omR(X,HomS(Y,Z)),

which is clearly functorial in X, Y, and Z. �
Let X be a precovering class of R-modules, and let XM → M and XN → N

be proper X -resolutions of R-modules M and N, respectively. For each n ∈ Z,
the nth stable cohomology of M and N with respect to X is

˜Ext
n

X (M,N) = H−n(H̃omR(XM ,XN )).

Dually, let Y be a preenveloping class of R-modules, and let M → YM and
N → YN be proper Y -coresolutions of M and N, respectively. For each n ∈ Z,
the nth stable cohomology of M and N with respect to Y is

˜Ext
n

Y (M,N) = H−n(H̃omR(YM , YN )).

Any two proper X -resolutions of M, and similarly, any two proper Y -
coresolutions of N, are homotopy equivalent; see [7, Section 8.2]. Thus, the
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above definitions are independent of the choices of (co)resolutions. We notice
that ˜Ext

n

P(M,N) is the classical stable cohomology, ˜Ext
n

R(M,N), of M and N ;
see [1] and [9]. Also ˜Ext

n

I (M,N) is the cohomology given by Nucinkis [13].

A.1 Stable cohomology with respect to proper flat (injective) resolutions

The proof of the next result can be modelled along the argument in the proof
of [1, Proposition 2.2], when the argument is applied to the functor ExtiF (M,−),
that is computed by H−i(HomR(F,−)), where F

�→ M is a proper flat
resolution.

Proposition A.2 For an R-module M, the following conditions are equivalent:
(i) fdRM < ∞;

(ii) ˜Ext
n

F (M,−) = 0 = ˜Ext
n

F (−,M) for each n ∈ Z;

(iii) ˜Ext
0

F (M,M) = 0.

Dually, we have the following result that was proved by Nucinkis
[13, Theorem 3.7].

Proposition A.3 For an R-module N, the following conditions are equivalent:
(i) idRN < ∞;

(ii) ˜Ext
n

I (N,−) = 0 = ˜Ext
n

I (−, N) for each n ∈ Z;

(iii) ˜Ext
0

I (N,N) = 0.

Proposition A.4 Let M and N be R-modules with proper flat resolutions
F

�→ M and F ′ �→ N, respectively. For every n ∈ Z, there is an isomorphism

˜Ext
n

F (M,N) ∼= colim
i∈N

H−n(HomR(F,F ′
�i)).

Proof Set

ΩsM = Coker(Fs+1 → Fs), ΩsN = Coker(F ′
s+1 → F ′

s).

Using a similar proof as in [13, Theorem 3.6], one gets a natural isomorphism

colim
i∈N

Exti
F (M,Ωi−nN) ∼= colim

i∈N

HomR(ΩiM,Ωi−nN)/FHomR(ΩiM,Ωi−nN).

Here, FHomR(ΩiM,Ωi−nN) denotes the set of all homomorphisms of R-
modules f ∈ HomR(ΩiM,Ωi−nN) factoring through a flat R-module. As proved
in [13, Theorem 4.4] (see also [3, B.2]), one gets an isomorphism

˜Ext
n

F (M,N) ∼= colim
i∈N

HomR(ΩiM,Ωi−nN)/FHomR(ΩiM,Ωi−nN).

On the other hand, we notice that

Σ−iF ′
�i

�→ ΩiN
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is a proper flat resolution. Thus, one has

colim
i∈N

ExtiF (M,Ωi−nN) ∼= colim
i∈N

Exti+n
F (M,ΩiN)

∼= colim
i∈N

H−i−n(HomR(F,Σ−iF ′
�i))

∼= colim
i∈N

H−n(HomR(F,F ′
�i)),

where the second isomorphism follows from [4, Proposition 2.6]. Now, one gets
the isomorphism in the statement. �

Dually, one gets the following result, which was proved in [6, Proposition
1.1 (iii)].

Proposition A.5 Let M and N be R-modules with injective resolutions M
�→

I and N
�→ I ′, respectively. For every n ∈ Z, there is an isomorphism

˜Ext
n

I (M,N) ∼= colim
i∈N

H−n(HomR(I�−i, I
′)).

A.2 Stable cohomology with respect to a semidualizing module

In this subsection, we assume that R is a commutative noetherian ring, and let
C be a semidualizing R-module.

Lemma A.1 Let M and N be R-modules. Then there is an isomorphism

˜Ext
n

FC
(M,N) ∼= ˜Ext

n

F (HomR(C,M),HomR(C,N)),

which is functorial in M and N.

Proof Let
F

�→ HomR(C,M), F ′ �→ HomR(C,N),

be proper flat resolutions of HomR(C,M) and HomR(C,N), respectively. Then
by Lemma 4.1 (a), C ⊗R F → M and C ⊗R F ′ → N are proper FC-resolutions
of M and N, respectively. Thus, one has

˜Ext
n

FC
(M,N) = H−n(H̃omR(C ⊗R F,C ⊗R F ′))

∼= H−n(H̃omR(F,HomR(C,C ⊗R F ′)))
∼= H−n(H̃omR(F,F ′))
∼= ˜Ext

n

F (HomR(C,M),HomR(C,N)),

where the first isomorphism follows from Proposition A.1, and the second one
holds since F ′ is a complex of flat R-modules. It is straightforward to verify
that the desired isomorphism is functorial in M and N. �

The next result can be proved dually using Lemma 4.1 (c) and Proposition
A.1.
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Lemma A.2 Let M and N be R-modules. Then there is an isomorphism

˜Ext
n

IC
(M,N) ∼= ˜Ext

n

I (C ⊗R M,C ⊗R N),

which is functorial in M and N.

Proposition A.6 For an R-module M, the following conditions are equivalent:
(i) FC-pdRM < ∞;

(ii) ˜Ext
n

FC
(M,−) = 0 = ˜Ext

n

FC
(−,M) for each n ∈ Z;

(iii) ˜Ext
0

FC
(M,M) = 0.

Proof (i) ⇒ (ii) Since FC -pdRM < ∞, there is a proper FC-resolution
F → M with F bounded, and so

H̃omR(F,−) = 0 = H̃omR(−, F ).

Thus, one gets

˜Ext
n

FC
(M,−) = 0 = ˜Ext

n

FC
(−,M), ∀n ∈ Z.

(ii) ⇒ (iii) It is clear.
(iii) ⇒ (i) By Lemma A.1, one gets

˜Ext
0

F (HomR(C,M),HomR(C,M)) ∼= ˜Ext
0

FC
(M,M) = 0,

and so fdRHomR(C,M) < ∞ by Proposition A.2. Thus, one gets FC-pdRM <
∞; see [15, Proposition 5.2(b)]. �

The next result can be proved dually using Proposition A.3, Lemma A.2,
and [18, Theorem 2.11(b)].

Proposition A.7 For an R-module N, the following conditions are equivalent:
(i) IC-idRN < ∞;

(ii) ˜Ext
n

IC
(N,−) = 0 = ˜Ext

n

IC
(−, N) for each n ∈ Z;

(iii) ˜Ext
0

IC
(N,N) = 0.

Proposition A.8 Let M and N be R-modules with proper FC-resolutions
F → M and F ′ → N, respectively. For every n ∈ Z, there is an isomorphism

˜Ext
n

FC
(M,N) ∼= colim

i∈N

H−n(HomR(F,F ′
�i)).

Proof By Lemma 4.1 (b), HomR(C,F ) �→ HomR(C,M) and HomR(C,F ′) �→
HomR(C,N) are proper flat resolutions of HomR(C,M) and HomR(C,N),
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respectively. Thus, we have

˜Ext
n

FC
(M,N) ∼= ˜Ext

n

F (HomR(C,M),HomR(C,N))
∼= colim

i∈N

H−n(HomR(HomR(C,F ),HomR(C,F ′)�i))

= colim
i∈N

H−n(HomR(HomR(C,F ),HomR(C,F ′
�i)))

∼= colim
i∈N

H−n(HomR(C ⊗R HomR(C,F ), F ′
�i))

∼= colim
i∈N

H−n(HomR(F,F ′
�i)),

where the first isomorphism follows from Lemma A.1, the second one follows
from Proposition A.4, and the last one holds since F is a complex of C-flat
R-modules. �

Dually, we have the following result.

Proposition A.9 Let M and N be R-modules with proper IC-coresolutions
M → I and N → I ′, respectively. For every n ∈ Z, there is an isomorphism

˜Ext
n

IC
(M,N) ∼= colim

i∈N

H−n(HomR(I�−i, I
′)).
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