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Abstract Let σ = {σi | i ∈ I} be a partition of the set of all primes P, and
let G be a finite group. A set H of subgroups of G is said to be a complete
Hall σ-set of G if every member �= 1 of H is a Hall σi-subgroup of G for some
i ∈ I and H contains exactly one Hall σi-subgroup of G for every i such that
σi ∩ π(G) �= ∅. In this paper, we study the structure of G under the assuming
that some subgroups of G permutes with all members of H .
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1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
We use π(G) to denote the set of all primes dividing |G|. A subgroup A of G is
said to permute with a subgroup B if AB = BA. In this case, we say also that
the subgroups A and B are permutable.

Following [14], we use σ to denote some partition of P. Thus, σ = {σi | i ∈
I}, where P = ∪i∈Iσi and σi ∩ σj = ∅ for all i �= j.

A set H of subgroups of G is said to be a complete Hall σ-set of G [7,15] if
every nonidentity member of H is a Hall σi-subgroup of G for some σi ∈ σ and
H contains exactly one Hall σi-subgroup of G for every i such that σi∩π(G) �=
∅. If every two members of H are permutable, then H is said to be a σ-basis
of G [16]. In the case when σ = {{2}, {3}, . . .}, a complete Hall σ-set H of G
is also called a complete set of Sylow subgroups of G.

We use Hσ to denote the class of all soluble groups G such that every
complete Hall σ-set of G forms a σ-basis of G.

A large number of publications are connected with study the situation when
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some subgroups of G permute with all members of some fixed complete set of
Sylow subgroups of G. For example, the classical Hall’s result states that G is
soluble if and only if it has a Sylow basis, that is, a complete set of pairwise
permutable Sylow subgroups. Huppert [9] (see also [10, VI, § 3]) proved that
G is a soluble group in which every complete set of Sylow subgroups forms a
Sylow basis if and only if the automorphism group induced by G on every its
chief p-factor H/K is of the order paqb for some q that depends only on H/K.
Huppert [8] proved that if G is soluble and it has a complete set S of Sylow
subgroups such that every maximal subgroup of every subgroup in S permutes
with all other members of S , then G is supersoluble.

The above-mentioned results in [8–10] and many other related results make
natural to ask the following questions.

Question (I) Suppose that G has a complete Hall σ-set H such that every
maximal subgroup of any subgroup in H permutes with all other members
of H . What we can say then about the structure of G? In particular, does
it true then that G is supersoluble in the case when every member of H is
supersoluble?

Question (II) Suppose that G possesses a complete Hall σ-set. What we
can say then about the structure of G provided every complete Hall σ-set of G
forms a σ-basis in G?

Our first observation is the following result concerning Question (I).

Theorem A Suppose that G possesses a complete Hall σ-set H all whose
members are supersoluble. If every maximal subgroup of every non-cyclic
subgroup in H permutes with all other members of H , then G is super-
soluble.

In the classical case when σ = {{2}, {3}, . . .}, we get from Theorem A the
following two known results.

Corollary 1.1 [1] If G has a complete set S of Sylow subgroups such that
every maximal subgroup of every subgroup in S permutes with all other
members of S , then G is supersoluble.

Note that Corollary 1.1 was proved in [1] on the base of the classification
of all simple non-abelian groups. The proof of Theorem A does not use such a
classification.

Corollary 1.2 [10, VI, Theorem 10.3] If every Sylow subgroup of G is cyclic,
then G is supersoluble.

Recall that a formation F is a class of groups which is closed under taking
homomorphic images and subdirect products. F is said to be saturated if for
any group G, G/Φ(G) ∈ F would imply that G ∈ F. F is said to be hereditary
provided G ∈ F whenever G � A ∈ F.

Now, let p > q > r be primes such that qr divides p − 1. Let P be a group
of order p and QR � Aut(P ), where Q and R are groups with orders q and r,
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respectively. Let G = P �(QR). Then, in view of the above-mentioned Hupper’s
result in [9], G is not a group such that every complete set of Sylow subgroups
forms a Sylow basis of G. But it is easy to see that every complete Hall σ-set of
G, where σ = {{2, 3}, {7}, {2, 3, 7}′}, is a σ-basis of G. This elementary example
is a motivation for our next result, which gives the answer to Question (II) in
the universe of all soluble groups.

Theorem B The class Hσ is a hereditary formation and it is saturated if
and only if |σ| � 2. Moreover, G ∈ Hσ if and only if G is soluble and the
automorphism group induced by G on every its chief factor of order divisible by
p is either a σi-group, where p �∈ σi, or a (σi ∪ σj)-group for some different σi

and σj such that p ∈ σi.

In the case when σ = {{2}, {3}, . . .}, we get from Theorem B the following
result.

Corollary 1.3 [9] Every complete set of Sylow subgroups of a soluble group G
forms a Sylow basis of G if and only if the automorphism group induced by G
on every its chief factor H/K has order divisible by at most one different from
p prime, where p ∈ π(H/K).

2 Proof of Theorem A

Lemma 2.1 [12] Let H, K and N be pairwise permutable subgroups of G and
H is a Hall subgroup of G. Then

N ∩ HK = (N ∩ H)(N ∩ K).

Proof of Theorem A Assume that this theorem is false and let G be a
counterexample of minimal order. Let H = {H1,H2, . . . ,Ht}. We can assume,
without loss of generality, that the smallest prime divisor p of |G| belongs to
π(H1). Let P be a Sylow p-subgroup of H1.

(1) If R is a minimal normal subgroup of G, then G/R is supersoluble.
Hence, R is the unique minimal normal subgroup of G, R is not cyclic, and
R � Φ(G).

We show that the hypothesis holds for G/R. First, note that

H0 = {H1R/R,H2R/R, . . . ,HtR/R}
is a complete Hall σ-set of G/R, where

HiR/R � Hi/Hi ∩ R

is supersoluble since Hi is supersoluble by hypothesis for all i = 1, 2, . . . , t.
Now, let V/R be a maximal subgroup of HiR/R. Then V = R(V ∩Hi) and

|Hi : V ∩ Hi| = |HiV : V | = |HiR : V |
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is a prime. Thus, V ∩ Hi is maximal in Hi. Assume that HiR/R is not cyclic.
Then Hi is not cyclic, so

(V ∩ Hi)Hj = Hj(V ∩ Hi)

for all j �= i by hypothesis. Hence,

(V/R)(HjR/R) = (R(V ∩ Hi)/R)(HjR/R)
= (HjR/R)((V ∩ Hi)R/R)
= (HjR/R)(V/R).

Consequently, the hypothesis holds for G/R, and so G/R is supersoluble by the
choice of G. Moreover, it is well known that the class of all supersoluble groups
is a saturated formation (see [10, VI] or [6, Chapter 3, Example 4, Theorem
3.1.11]). Hence, the choice of G implies that R is the unique minimal normal
subgroup of G, R is not cyclic, and R � Φ(G).

(2) G is not soluble. Hence, R is not abelian and 2 ∈ π(R).
Assume that this is false. Then R is an abelian q-group for some prime q.

Let q ∈ σk. Since R is non-cyclic by Claim (1) and R � Hk, Hk is non-cyclic.
Hence, every member of H permutes with each maximal subgroup of Hk. Since

R � Φ(G), R � Φ(Hk),

there exists a maximal subgroup V of Hk such that RV = Hk. Hence, E =
R ∩ V �= 1 since |R| > q and Hk is supersoluble. Clearly, E is normal in Hk.
Now, assume that i �= k. Then V permutes with Hi by hypothesis, so V Hi is a
subgroup of G and

R ∩ V Hi = (R ∩ V )(R ∩ Hi) = R ∩ V = E

by Lemma 2.1, and so Hi � NG(E). Therefore, Hi � NG(E) for all i =
1, 2, . . . , t. This implies that E is normal in G, which contradicts the minimality
of R. Hence, we have (2).

(3) If R has a Hall {2, q}-subgroup for each q dividing |R|, then a Sylow
2-subgroup R2 of R is non-abelian.

Assume that this is false. Then by Claim (2) and [11, XI, Theorem 13.7],
the composition factors of R are isomorphic to one of the following groups:

a) PSL(2, 2f );
b) PSL(2, q), where 8 divides q − 3 or q − 5;
c) the Janko group J1;
d) a Ree group.

But with respect to each of these groups, it is well known (see, for example,
[17, Theorem 1]) that the group has no Hall {2, q}-subgroup for at least one
odd prime q dividing its order. Hence, we have (3).

(4) If Hi or Hk is non-cyclic, then HiHk = HkHi.
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This follows from the fact that every maximal subgroup of Hi permutes
with Hk.

(5) H = H1 is not cyclic.
This directly follows from Claim (2), [10, IV, 2.8], and the Feit-Thompson

theorem.
In view of Claim (5), H contains non-cyclic subgroups. Without loss of

generality, we may assume that H1,H2, . . . ,Hr are non-cyclic groups and all
groups Hr+1,Hr+2, . . . ,Ht are cyclic.

(6) Let E{i,j} = HiHj, where i � r. If r is the smallest prime dividing
|E{i,j}|, then E{i,j} is p-nilpotent, so it is soluble. Therefore, E{i,j} �= G.

Clearly, the hypothesis holds for E{i,j}. Hence, if E{i,j} < G, then this
subgroup is supersoluble by the choice of G, and so it is p-nilpotent. Now,
assume that E{i,j} = G. Then r = p = 2 and

E{i,j} = HHj = HjH.

Let {V1, V2, . . . , Vt} be the set of all maximal subgroups of a Sylow 2-subgroup
P of H. Since H is supersoluble, it has a normal 2-complement S. Then SVi is
a maximal subgroup of H, so SViHj = HjSVi is a subgroup of G by hypothesis.
Moreover, this subgroup is normal in G = E{i,j} since |G : HjSVi| = 2. Now,
let

E = SV1Hj ∩ SV2Hj ∩ · · · ∩ SVtHj.

Then E is normal in G and clearly, E ∩ P � Φ(P ). Therefore, E is 2-nilpotent
by Tate’s theorem [10, IV, Satz 4.7], so the Feit-Thompson theorem implies
that G has an abelian minimal normal subgroup, which contradicts Claim (2).
Thus, (6) holds.

(7) Ei = HHi is supersoluble for all i = 2, 3, . . . , t.
Since the hypothesis holds for Ei and Ei < G by Claim (6), this follows

from the choice of G.

(8) E = H1H2 · · ·Hr is soluble.
We argue by induction on r. For r = 2, it is true by Claim (6). Now, let

r > 2 and assume that the assertion is true for r− 1. Then by Claim (4), E has
at least three soluble subgroups E1, E2, E3, whose indices |E : E1|, |E : E2|,
|E : E3| are pairwise coprime. But then E is soluble by the Wielandt theorem
[3, Chapter I, 3.4].

(9) R has a Hall {2, q}-subgroup for each q dividing |R|.
It is clear in the case when q ∈ π(H). Now, assume that q ∈ π(Hi) for some

i > 1. Then Claim (6) implies that B = HHi is a Hall soluble subgroup of G.
Hence, B has a Hall {2, q}-subgroup V and so V ∩ R is a Hall {2, q}-subgroup
of R.

(10) A Sylow 2-subgroup R2 of R is non-abelian.
This follows from Claims (3) and (9).
(11) If q ∈ π(Hk) for some k > r, then q does not divide |R : NR((R2)′)|.
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By Claim (7), B = HHk is supersoluble. Hence, there is a Sylow q-subgroup
of Q of B such that PQ is a Hall {2, q}-subgroup of B. Then

U = PQ ∩ R = (P ∩ R)(Q ∩ R) = R2(Q ∩ R)

is a Hall supersoluble subgroup of R with a cyclic Sylow q-subgroup Q∩R. By
[10, VI, 9.1], Q ∩ R is normal in U, and U/CU (Q ∩ R) is an abelian group by
[4, Ch. 5, 4.1]. Hence,

R2CU (Q ∩ R)/CU (Q ∩ R) � R2/R2 ∩ CU (Q ∩ R)

is abelian and so
(R2)′ � CU(Q ∩ R).

Consequently,
Q ∩ R � NR((R2)′),

which yields that q does not divide |R : NR((R2)′)|.
(12) The final contradiction.
In view of Claim (11),

R = (E ∩ R)NR((R2)′).

Hence,
((R2)′)R = ((R2)′)(E∩R)NR((R2)′) = ((R2)′)E∩R � E ∩ R.

But by Claim (8), E ∩ R is soluble and so ((R2)′)R is soluble. On the other
hand, Claim (10) implies that (R2)′ �= 1. But ((R2)′)R is a normal subgroup
of R and R is a direct product of isomorphic simple groups, so R is soluble,
contrary to Claim (2).

The final contradiction completes the proof of Theorem A. �

3 Proof of Theorem B

The following lemma can be proved by the direct calculations on the base of
well-known properties of Hall subgroups of soluble subgroups.

Lemma 3.1 The class Hσ is closed under taking homomorphic images,
subgroups, and direct products.

Proof Let E � G ∈ Hσ. Then G is soluble, so for any normal subgroup R of
G, any complete Hall σ-set H0 of G/R is of the form

H0 = {H1R/R,H2R/R, . . . ,HtR/R},
where H = {H1,H2, . . . ,Ht} is a complete Hall σ-set of G. But since G ∈ Hσ ,
H is a σ-basis of G. Hence, for all i, j, HiHj = HjHi, and so

(HiR/R)(HjR/R) = HiHjR/R = HjHiR/R = (HjR/R)(HiR/R).
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Hence, H0 is a basis of G/R, and so G/R ∈ Hσ. On the other hand, for any
complete Hall σ-set E = {E1, E2, . . . , Er} of E, there is a complete Hall σ-set
H = {H1,H2, . . . ,Ht} of G such that Ei = Hi ∩ E for all i = 1, 2, . . . , t. Then

〈Ei, Ej〉 � E ∩ HiHj � Ei,j,

where Ei,j is a Hall π-subgroup of E and

π = π(Hi) ∪ π(Hj).

Hence, Ei,j = EiEj , so E is σ-basis of E. Thus, E ∈ Hσ.
Finally, we show that if A,B ∈ Hσ, then

G = A × B ∈ Hσ .

First, note that H is a complete Hall σ-set of G. Then

H = {A1 × B1, A2 × B2, . . . , At × Bt},

where {A1, A2, . . . , At} is a complete Hall σ-set of A and {B1, B2, . . . , Bt} is a
complete Hall σ-set of B. Then

(AiBi)(AjBj) = (AjBj)(AiBi), ∀ i, j,

since A,B ∈ Hσ and [Ak, Bl] = 1 for all k �= l. The lemma is proved. �
Proof of Theorem B First, from Lemma 3.1, Hσ is a hereditary formation.

Now, we prove that G ∈ Hσ if and only if G is soluble and the automorphism
group induced by G on every its chief factor of order divisible by p is either a
σi-group, where p �∈ σi, or a (σi ∪ σj)-group for some different σi and σj such
that p ∈ σi.

Necessity. Assume that this is false and let G be a counterexample of
minimal order. Then G has a chief factor H/K of order divisible by p such that
A = G/CG(H/K) is neither a σi-group, where p �∈ σi, nor a (σi ∪ σj)-group,
where σi �= σj and p ∈ σi. Since

G/CG(H/K) � (G/K)/(CG(H/K)/K) = (G/K)/CG/K(H/K)

and the hypothesis hods for G/K by Lemma 3.1, the choice of G implies that
K = 1.

First, we show that H �= CG(H). Indeed, assume that H = CG(H). By
hypothesis, every complete Hall σ-set W = {W1,W2, . . . ,Wt} of G forms a σ-
basis of G. Without loss of generality, we can assume that p ∈ π(W1). It is cleat
that t > 2. Since H = CG(H), H is the unique minimal normal subgroup of G
and H � Φ(G) by [3, Ch.A, 9.3(c)] since G is soluble. Hence,

H = Op(G) = F (G)
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by [3, Ch.A, 15.6]. Then, for some maximal subgroup M of G, we have

G = H � M.

Let V = W3. We now show that V x � CG(W2) for all x ∈ G. First, note that
W2V

x = V xW2 is a Hall (σ2∪σ3)-subgroup of G. Since |G : M | is a power of p,
any Hall σ0-subgroup of M, where p �∈ π0, is a Hall π0-subgroup of G. Hence,
we can assume, without loss of generality, that W2V

x � M since G is soluble.
By hypothesis,

W2(V x)y = (V x)yW2, ∀ y ∈ G,

so
D = 〈(W2)V

x〉 ∩ 〈(V x)W2〉
is subnormal in G by [2, 1.1.9(2)]. But

D � 〈W2, V
x〉 � M,

so
DG = DHM = DM � MG = 1

by [3, Ch. A, 14.3], which implies that [W2, V
x] = 1. Thus, V x � CG(W2) for

all x ∈ G. It follows that

H � (W3)G � NG(W2),

and therefore,
W2 � CG(H) = H,

a contradiction. Hence, H �= CG(H).
Finally, let

D = G × G, A∗ = {(g, g) | g ∈ G},
C = {(c, c) | c ∈ CG(H)}, R = {(h, 1) | h ∈ H}.

Then C � CD(R), R is a minimal normal subgroup of A∗R, and the factors
R/1 and RC/C are (A∗R)-isomorphic. Moreover,

CA∗R(R) = R(CA∗R(R) ∩ A∗) = RC,

so
A∗R/C = (RC/C) � (A∗/C),

where A∗/C � A and RC/C is a minimal normal subgroup of A∗R/C such
that

CA∗R/C(RC/C) = RC/C.

As H < CG(H), we see that

|A∗R/C| < |G|.
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On the other hand, by Lemma 3.1, the hypothesis holds for A∗R/C, so the
choice of G implies that A � A∗/C is either a σi-group, where p �∈ σi, or a
(σi∪σj)-group for some different σi and σj such that p ∈ σi. This contradiction
completes the proof of the necessity.

Sufficiency. Assume that this is false and let G be a counterexample of
minimal order. Then G has a complete Hall σ-set W = {W1,W2, . . . ,Wt} such
that for some i and j, we have WiWj �= WjWi. Let R be a minimal normal
subgroup of G.

(1) G/R ∈ Hσ, so R is a unique minimal normal subgroup of G.
It is clear that the hypothesis holds for G/R, so G/R ∈ Hσ by the choice of

G. If G has a minimal normal subgroup L �= R, then we also have G/L ∈ Hσ .
Hence, G is isomorphic to some subgroup of (G/R) × (G/L) by [10, I, 9.7]. It
follows from Lemma 3.1 that G ∈ Hσ . This contradiction shows that we have
Claim (1).

(2) The hypothesis holds for any subgroup E of G.
Let H/K be any chief factor of G of order divisible by p such that

H ∩ E �= K ∩ E.

Then G/CG(H/K) is either a σi-group, where p �∈ σi, or a (σi ∪ σj)-group for
some different σi and σj such that p ∈ σi. Let H1/K1 be a chief factor of E
such that

K ∩ E � K1 < H1 � H ∩ E.

Then H1/K1 is a p-group and

ECG(H/K)/CG(H/K) � E/(E ∩ CG(H/K))

is either a σi-group or a (σi ∪ σj)-group. Since

CG(H/K) ∩ E � CE(H ∩ E/K ∩ E) � CE(H1/K1),

E/CE(H1/K1) is also either a σi-group or a (σi ∪ σj)-group. Therefore, the
hypothesis holds for every factor H1/K1 of some chief series of E. Now, applying
the Jordan-Hölder Theorem for chief series, we get Claim (2).

(3) R is a Sylow p-subgroup of G.
Since G/R ∈ Hσ by Claim (1),

(WiR/R)(WjR/R) = (WjR/R)(WiR/R),

so WiWjR is a subgroup of G. Assume that R is not a Sylow p-subgroup of G
and let B = WiWjR. Then B �= G. On the other hand, the hypothesis holds
for B by Claim (2). The choice of G implies that B ∈ Hσ , so WiWj = WjWi,
a contradiction. Hence, Claim (3) holds.

(4) Final contradiction for sufficiency.
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In view of Claims (1) and (3), there is a maximal subgroup M of G such
that

G = R � M, MG = 1.

Hence,
R = CG(R) = Op(G)

by [3, Ch.A, 15.6]. Since p does not divide |G : R| = |G : CG(R)| by Claim (3),
the hypothesis implies that M � G/R is a Hall σk-group for some σk ∈ σ, so
one of the subgroups Wi or Wj coincides with R. Thus,

G = WiWj = WjWi.

This contradiction completes the proof of the sufficiency.
Finally, we prove that Hσ is saturated if and only if |σ| � 2. It is clear that

Hσ is a saturated formation for any σ with |σ| � 2. Now, we show that for any
σ such that |σ| > 2, the formation Hσ is not saturated.

Indeed, since |σ| > 2, there are primes p < q < r such that for some distinct
σi, σj, and σk in σ, we have p ∈ σi, q ∈ σj, and r ∈ σk. Let Cq and Cr be
groups of order q and r, respectively. Let P1 be a simple FpCq-module which is
faithful for Cq (see [3, Chapter B, Theorem 10.9] or [13, Lemma 2.6]), and let
P2 be a simple FpCr-module which is faithful for Cr. Let H = P1 � Cq and Q
be a simple FqH-module which is faithful for H. Let

E = (Q � H) × (P2 � Cr).

Let A = Ap(E) be the p-Frattini module of E ([3, p. 853]), and let G be a
non-splitting extension of A by E. In this case, A ⊆ Φ(G) and G/A � E. Then
G/Φ(G) ∈ Hσ, where σ = {σi, σj, σk}. By [5, Corollary 1],

QP1P2 = Op′,p(E) = CE(A/Rad(A)),

where Rad(A) is the radical of A, that is, the intersection of all maximal
submodules of A (see [6, p. 235]). Hence, for some normal subgroup N of
G, we have

A/N � Φ(G/N)

and
G/CG(A/N) � Cq × Cr

is a (σj ∪ σk)-group. But neither p �∈ σj nor p ∈ σk. Hence, G �∈ Hσ by the
necessity. Theorem B is proved. �
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