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Abstract For solving minimization problems whose objective function is the
sum of two functions without coupled variables and the constrained function is
linear, the alternating direction method of multipliers (ADMM) has exhibited
its efficiency and its convergence is well understood. When either the involved
number of separable functions is more than two, or there is a nonconvex
function, ADMM or its direct extended version may not converge. In this
paper, we consider the multi-block separable optimization problems with linear
constraints and absence of convexity of the involved component functions.
Under the assumption that the associated function satisfies the Kurdyka-
Lojasiewicz inequality, we prove that any cluster point of the iterative
sequence generated by ADMM is a critical point, under the mild condition
that the penalty parameter is sufficiently large. We also present some sufficient
conditions guaranteeing the sublinear and linear rate of convergence of the
algorithm.
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1 Introduction

In this paper, we consider the following nonconvex optimization problem:
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min
m∑

i=1

fi(xi)

s.t. A1x1 + A2x2 + · · · + Am−1xm−1 + xm = b,

(1)

where
f1 : R

n1 → R ∪ {+∞}
is a proper lower semicontinuous function,

fi : R
ni → R, i = 2, 3, . . . ,m − 1, fm : R

s → R,

are continuous differentiable functions with ∇fi being Lipschitz continuous with
modulus Li > 0, Ai ∈ R

s×ni, i = 1, 2, . . . ,m − 1, is a given matrix, and b ∈ R
s

is a vector.
The direct extension of the classic alternating direction method of

multipliers (ADMM) (initiated from [11–13]) for solving problem (1) reads as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 ∈ arg min

x1

{Lβ(x1, x
k
2 , . . . , x

k
m, λk)},

xk+1
2 ∈ arg min

x2

{Lβ(xk+1
1 , x2, x

k
3 , . . . , x

k
m, λk)},

. . . ,

xk+1
m ∈ arg min

xm

{Lβ(xk+1
1 , xk+1

2 , . . . , xk+1
m−1, xm, λk)},

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 + · · · + Am−1x

k+1
m−1 + xk+1

m − b),

(2)

which can be viewed as a Gauss-Seidel implementation of the well-known
augmented Lagrangian algorithm for linear constraint optimization problems.
Here and throughout the paper, Lβ(·) denotes the augmented Lagrangian
function for (1):

Lβ(x1, x2, . . . , xm, λ) :=
m∑

i=1

fi(xi) −
〈

λ,

m−1∑

i=1

Aixi + xm − b

〉

+
β

2

∥∥∥
m−1∑

i=1

Aixi + xm − b
∥∥∥

2
, (3)

where λ is the Lagrange multiplier associated with the linear constraints and
β > 0 is the penalty parameter.

When m = 2 and the involved component functions f1 and f2 are both
convex and some very mild conditions are satisfied, ADMM is proved to
converge to a solution of (1) globally. Under some further conditions (for
special problems where strong convexity or some error bound conditions hold),
ADMM can achieve linear convergence [4,16,20,34]. For the case either there are
three or more separable blocks in model (1), or there are nonconvex component
functions (even for the two-block case), ADMM may not converge [9]. On the
other hand, there are many applications that can naturally be modeled or
reformulated as a multi-block linearly constrained minimization model whose



Convergence of ADMM for multi-block nonconvex separable optimization models 1141

objective function is the sum of more than two functions without coupled
variables, such as phase retrieval [32], nonconvex background/foreground
extraction problem [33]. In fact, heuristic applications of ADMM in solving
these problems result in very well numerical results. Such a gap between the
high efficiency of ADMM in numerical experiments and lack of convergence
result attracts the researchers’ more and more attentions on it, and there have
been a few developments. Here, we summarize the progress from two aspects.

(i) The multi-block case. Han and Yuan [15] first theoretically considered
this problem and they proved that when all the objective functions are strongly
convex, the direct extension ADMM scheme is globally (linear) convergent,
provided that the penalty parameter is smaller than a threshold. Then, this
condition was relaxed and only one or more functions in the objective are
required to be strongly convex to ensure the convergence [8,25]. On the other
hand, some researchers suggested twisting the ADMM scheme slightly. For
examples, in [18,19], it was suggested to correct the output of ADMM scheme
to generate a new iterate and the resulting prediction-correction schemes are
guaranteed to be convergent. Numerically, the original ADMM scheme usually
performs better than all the twisted variants with provable convergence (see,
e.g., [17]); and it is the most convenient scheme to be implemented compared
with its variants. Hong and Luo [21] suggested attaching a shrinkage factor to
the Lagrange multiplier updating step and it was shown that the convergence
of ADMM is guaranteed when this factor is small enough to satisfy some error
bound conditions.

(ii) The case that there is at least one nonconvex component function. For
two block nonconvex separable optimization problem, under the assumption
that the associated function satisfies the Kurdyka-Lojasiewicz (KL) inequality,
Guo et al. [14] proved that any cluster point of the iterative sequence generated
by the alternating direction method is a critical point provided that the penalty
parameter is greater than 2L, where L is the Lipschitz constant of the gradient
of one of the involving function. Under some further conditions on the
problem’s data, they also analyzed the rate of convergence of the algorithm. Li
and Pong [24] showed that if the penalty parameter in the augmented
Lagrangian function associated to the problem is chosen sufficiently large and
the sequence generated by the algorithm has a cluster point, then it gives a
critical point of the nonconvex problem when one of the component objective
functions is twice continuously differentiable with bounded Hessian, and the
other one is a proper closed function. Hong et al. [22] analyzed the convergence
of the ADMM for solving certain special nonconvex problems, i.e., the
consensus and sharing problems. They proved that the sequence generated by
ADMM converges to the set of stationary solutions, provided that the penalty
parameter in the augmented Lagrangian function is chosen to be sufficiently
large.

The purpose of this paper is to prove the convergence of the classic ADMM
for multi-block nonconvex optimization problems (1). Using the important KL
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inequality (see Definition 3 below), we prove that if the augmented Lagrangian
function is a KL function, then the sequence generated by ADMM converges
to a critical point of the augmented Lagrangian function. If some further
conditions on the problem’s data hold, we then prove the sublinear and
linear rate of convergence of the algorithm. The importance of KL inequality
is due to the fact that many functions emerged in the modern application
models satisfy this inequality. Especially, when the function belongs to some
functional classes, e.g., semi-algebraic, subanalytic, and log-exp (see [2,3,5,6]
and references therein). These facts originate in the pioneering and fundamental
work of �Lojasiewicz [26] and Kurdyka [23]; work which was recently extended
to nonsmooth functions is in [5,6].

The rest of this paper is organized as follows. In Section 2, we present some
preliminary materials that will be used in our next analysis. In Section 3, we
prove the convergence of scheme (2). Then, we establish the convergence rate
for scheme (2) in Section 4. Finally, we draw some conclusions.

2 Preliminaries

In this section, we summarized some notations and preliminaries to be used for
further analysis.

The following notation and definitions are quite standard and can be found
in, e.g., [27,29,30]. Let F : R

n ⇒ R
m be a point-to-set mapping. Then its graph

is defined by
Graph F := {(x, y) ∈ R

n × R
m : y ∈ F (x)}.

For any subset S ⊆ R
n and any point x ∈ R

n, the distance from x to S, denoted
by d(x, S), is defined as

d(x, S) := inf
y∈S

‖y − x‖.

When S = ∅, we set d(x, S) := +∞ for all x. Let x ∈ R
n, y ∈ R

m. We denote

v := (x, y) ∈ R
n × R

m, ‖v‖2 := ‖x‖2 + ‖y‖2.

Definition 1 Given a function f : R
n → R∪{+∞}, the effective domain and

the epigraph of f are defined by

dom f := {x ∈ R
n | f(x) < +∞}, epi f := {(x, α) ∈ R

n × R : f(x) � α},

respectively. We say that the function f is proper (resp., lower semicontinuous)
if dom f (resp., epi f) is nonempty (resp., closed).

Definition 2 Let f : R
n → R ∪ {+∞} be a proper lower semicontinuous

function.
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(i) The Fréchet subdifferential, or regular subdifferential, of f at x ∈ dom f,

written as ∂̂f(x), is the set of vectors x∗ ∈ R
n satisfying

lim inf
y �=x, y→x

f(y) − f(x) − 〈x∗, y − x〉
‖y − x‖ � 0.

When x /∈ dom f, we set ∂̂f(x) := ∅.
(ii) The limiting-subdifferential, or simply the subdifferential, of f at x ∈

dom f, written as ∂f(x), is defined as

∂f(x) := {x∗ ∈ R
n : ∃xn → x, f(xn) → f(x), x∗

n ∈ ∂̂f(xn), x∗
n → x∗}.

Remark 1 In view of Definition 2, the following conclusions hold.
(i) The above definition implies ∂̂f(x) ⊆ ∂f(x) for each x ∈ R

n, where the
first set is closed convex while the second one is only closed.

(ii) Let (xk, x̂k) ∈ Graph ∂f be a sequence that converges to (x, x∗). By
the very definition of ∂f(x), if f(xk) converges to f(x) as k → +∞, then
(x, x∗) ∈ Graph ∂f.

(iii) If f : R
n → R∪{+∞} is a proper lower semicontinuous and h : R

n → R

is continuous differentiable, then

∂(h + f)(x) = ∇h(x) + ∂f(x), ∀x ∈ dom f.

The Kurdyka-�Lojasiewicz property plays a central role in our analysis.
Below, we recall the essential elements.

Definition 3 ([2], Kurdyka-�Lojasiewicz inequality) Let f : R
n → R ∪ {+∞}

be a proper lower semicontinuous function. For −∞ < η1 < η2 � +∞, set

[η1 < f < η2] := {x ∈ R
n : η1 < f(x) < η2}.

We say that the function f has the KL property at x∗ ∈ dom ∂f, if there
exist η ∈ (0, +∞], a neighborhood U of x∗, and a continuous concave function
ϕ : [0, η) → R+, such that

(i) ϕ(0) = 0;
(ii) ϕ is C1 on (0, η) and continuous at 0;
(iii) ϕ′(s) > 0, ∀ s ∈ (0, η);
(iv) for all x in U ∩ [f(x∗) < f < f(x∗) + η], the following Kurdyka-

�Lojasiewicz inequality holds:

ϕ′(f(x) − f(x∗))d(0, ∂f(x)) � 1.

Definition 4 ([3], Kurdyka-�Lojasiewicz function) Denote Φη the set of
functions which satisfy (i)–(iii) in Definition 3. If f satisfies the KL property
at each point of dom ∂f, then f is called a KL function.
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Remark 2 One can easily check that the Kurdyka-�Lojasiewicz property is
automatically satisfied at any noncritical point x∗ ∈ dom f ; see, e.g., [2, Lemma
2.1, Remark 3.2 (b)].

Lemma 1 ([7], Uniformized KL property) Let Ω be a compact set, and let
f : R

n → R ∪ {+∞} be a proper and lower semicontinuous function. Assume
that f is constant on Ω and satisfies the KL property at each point of Ω. Then
there exist ε, η > 0 and ϕ ∈ Φη such that for all x ∈ Ω and for all x in the
intersection

{x ∈ R
n : d(x, Ω) < ε} ∩ [f(x) < f < f(x) + η],

one has
ϕ′(f(x) − f(x))d(0, ∂f(x)) � 1.

Lemma 2 [28] Let h : R
n → R be a continuous differentiable function with

gradient ∇h is Lipschitz continuous with the modulus Lh > 0. Then, for any
x, y ∈ R

n, we have

|h(y) − h(x) − 〈∇h(x), y − x〉| � Lh

2
‖y − x‖2.

3 Convergence

In this section, we prove the convergence of the ADMM procedure (2). However,
in the following, we only consider the case m = 3 because in the convergence
analysis, the proof for m > 3 follows the same roadmap as m = 3. When m = 3,
problem (1) reduces to

min f1(x1) + f2(x2) + f3(x3)

s.t. A1x1 + A2x2 + x3 = b.
(4)

The corresponding algorithm (2) becomes
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1
1 ∈ arg min

x1

{Lβ(x1, x
k
2 , x

k
3 , λ

k)},
xk+1

2 ∈ arg min
x2

{Lβ(xk+1
1 , x2, x

k
3 , λ

k)},
xk+1

3 ∈ arg min
x3

{Lβ(xk+1
1 , xk+1

2 , x3, λ
k)},

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 + xk+1

3 − b),

(5)

where the augmented Lagrangian function (3) reduces to

Lβ(x1, x2, x3, λ) :=
3∑

i=1

fi(xi) − 〈λ,A1x1 + A2x2 + x3 − b〉

+
β

2
‖A1x1 + A2x2 + x3 − b‖2. (6)
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First, we make some assumptions.

Assumption 1 Let f1 : R
n1 → R ∪ {+∞} be a proper lower semicontinuous

function, and let f2 : R
n2 → R and f3 : R

s → R be continuously differentiable
functions with ∇f2 and ∇f3 being Lipschitz continuous with modulus L2 > 0
and L3 > 0, respectively. Set L := max{L2, L3}. Furthermore, assume the
following holds:

(i) β > max{2L,L/μ};
(ii) AT

1 A1 � μI, AT
2 A2 � μI for some μ > 0.

Let

δ := min
{β − L

2
− L2

β
,

βμ − L

2

}
. (7)

Then it follows from (i) of Assumption 1 that δ > 0.

Definition 5 We say that (x∗
1, x

∗
2, x

∗
3, λ

∗) is a critical point of the augmented
Lagrangian function Lβ(·) in (6), if it satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AT
1 λ∗ ∈ ∂f1(x∗),

∇f2(x∗
2) = AT

2 λ∗,
∇f3(x∗

3) = λ∗,
A1x

∗ + A2x
∗
2 + x∗

3 − b = 0.

(8)

The set of critical points of Lβ(·) is denoted by crit Lβ .

Remark 3 Actually, if (x∗
1, x

∗
2, x

∗
3) is a local minimizer of problem (4), then

(x∗
1, x

∗
2) is a local minimizer of the following problem:

min
x1,x2

f1(x1) + f2(x2) + f3(b − A1x1 − A2x2).

By [30, Theorem 8.15], it follows from (iii) of Remark 1 that

{
0 ∈ ∂f1(x∗

1) − AT
1 ∇f3(b − A1x

∗
1 − A2x

∗
2),

0 = ∇f2(x∗
2) − AT

2 ∇f3(b − A1x
∗
1 − A2x

∗
2).

(9)

Since
A1x

∗
1 + A2x

∗
2 + x∗

3 = b,

setting
λ∗ := ∇f3(x∗

3),

we know that system (8) holds in view of (9). Hence, system (8) is indeed the
first-order necessary condition of (4).



1146 Ke GUO et al.

Before the proof, let us present the variational characterization of scheme
(5). Invoking the optimality condition for (5), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ∈ ∂f1(xk+1
1 ) − AT

1 λk + βAT
1 (A1x

k+1
1 + A2x

k
2 + xk

3 − b),

0 = ∇f2(xk+1
2 ) − AT

2 λk + βAT
2 (A1x

k+1
1 + A2x

k+1
2 + xk

3 − b),

0 = ∇f3(xk+1
3 ) − λk + β(A1x

k+1
1 + A2x

k+1
2 + xk+1

3 − b),

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 + xk+1

3 − b).

(10)

Using the last equality and rearranging terms, we obtain
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AT
1 λk+1 + βAT

1 (A2x
k+1
2 − A2x

k
2) + βAT

1 (xk+1
3 − xk

3) ∈ ∂f1(xk+1
1 ),

∇f2(xk+1
2 ) = AT

2 λk+1 + βAT
2 (xk+1

3 − xk
3),

∇f3(xk+1
3 ) = λk+1,

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 + xk+1

3 − b).

(11)

In the sequel, for convenience, we often use the notation {vk := (xk
2 , x

k
3)}.

We begin our analysis with the following lemma.

Lemma 3 Let {wk := (xk
1 , x

k
2 , x

k
3 , λ

k)} be the sequence generated by algorithm
(5). Then we have

Lβ(wk+1) � Lβ(wk) − δ‖vk+1 − vk‖2. (12)

Proof From the definition of the augmented Lagrangian function Lβ(·) in (6),
it follows that

Lβ(xk+1
1 , xk+1

2 , xk+1
3 , λk+1)

= Lβ(xk+1
1 , xk+1

2 , xk+1
3 , λk) + 〈λk − λk+1, A1x

k+1
1 + A2x

k+1
2 + xk+1

3 − b〉
= Lβ(xk+1

1 , xk+1
2 , xk+1

3 , λk) +
1
β
‖λk − λk+1‖2 (13)

and

Lβ(xk+1
1 , xk+1

2 , xk
3 , λk) − Lβ(xk+1

1 , xk+1
2 , xk+1

3 , λk)

= f3(xk
3) − f3(xk+1

3 ) + 〈λk, xk+1
3 − xk

3〉 +
β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk

3 − b‖2

−β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk+1

3 − b‖2. (14)

Since ∇f3 is Lipschitz continuous with modulus L3 � L, it follows from Lemma
2 and the third equality of (11) that

f3(xk
3) − f3(xk+1

3 ) � 〈λk+1, xk
3 − xk+1

3 〉 − L

2
‖xk

3 − xk+1
3 ‖2. (15)
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Inserting (15) into (14) yields

Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k) − Lβ(xk+1
1 , xk+1

2 , xk+1
3 , λk)

� 〈λk+1 − λk, xk
3 − xk+1

3 〉 +
β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk

3 − b‖2

− L

2
‖xk

3 − xk+1
3 ‖2 − β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk+1

3 − b‖2. (16)

From the fourth equation of (11), we know

A1x
k+1
1 + A2x

k+1
2 + xk

3 − b =
1
β

(λk − λk+1) + (xk
3 − xk+1

3 ).

Thus,

〈λk+1 − λk, xk
3 − xk+1

3 〉 +
β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk

3 − b‖2

= 〈λk+1 − λk, xk
3 − xk+1

3 〉 +
β

2

∥∥∥
1
β

(λk − λk+1) + (xk
3 − xk+1

3 )
∥∥∥

2

=
β

2
‖xk

3 − xk+1
3 ‖2 +

1
2β

‖λk+1 − λk‖2. (17)

Substituting (17) into (16), we obtain

Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k)−Lβ(xk+1
1 , xk+1

2 , xk+1
3 , λk) � β − L

2
‖xk

3 −xk+1
3 ‖2. (18)

On the other hand, since ∇f3(zk+1) = λk+1 and ∇f3 is Lipschitz continuous,
we get

‖λk+1 − λk‖ � L‖xk+1
3 − xk

3‖. (19)

Consequently, it follows from (13), (18), and (19) that

Lβ(xk+1
1 , xk+1

2 , xk+1
3 , λk+1)

� Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k) −
(β − L

2
− L2

β

)
‖xk+1

3 − xk
3‖2. (20)

Similarly,

Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) − Lβ(xk+1
1 , xk+1

2 , xk
3 , λk)

= f2(xk
2) − f2(xk+1

2 ) + 〈λk, A2x
k+1
2 − A2x

k
2〉

+
β

2
‖A1x

k+1
1 + A2x

k
2 + xk

3 − b‖2 − β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk

3 − b‖2. (21)

Since ∇f2 is Lipschitz continuous with modulus L2 � L, it follows from Lemma
2 and the second equality of (10) that

f2(xk
2) − f2(xk+1

2 ) � 〈AT
2 λk − βAT

2 (A1x
k+1
1 + A2x

k+1
2 + xk

3 − b), xk
2 − xk+1

2 〉
− L

2
‖xk

2 − xk+1
2 ‖2. (22)
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Inserting (22) into (21) and by (ii) of Assumption 1 yield

Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) − Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k)

� −β〈A1x
k+1
1 + A2x

k+1
2 + xk

3 − b,A2x
k
2 − A2x

k+1
2 〉

+
β

2
‖A1x

k+1
1 + A2x

k
2 + xk

3 − b‖2

− β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk

3 − b‖2 − L

2
‖xk

2 − xk+1
2 ‖2

=
β

2
‖A2x

k
2 − A2x

k+1
2 ‖2 − L

2
‖xk

2 − xk+1
2 ‖2

� βμ − L

2
‖xk+1

2 − xk
2‖2. (23)

Thus, it follows from (20) and (23) that

Lβ(xk+1
1 , xk+1

2 , xk+1
3 , λk+1)

� Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k) −
(β − L

2
− L2

β

)
‖xk+1

3 − xk
3‖2

� Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) −
(β − L

2
− L2

β

)
‖xk+1

3 − xk
3‖2 − βμ − L

2
‖xk+1

2 − xk
2‖2

� Lβ(xk
1 , x

k
2 , x

k
3 , λ

k) − δ‖vk+1 − vk‖2,

where the third inequality follows from (7) and the fact that xk+1
1 is the global

minimizer of Lβ(x1, x
k
2 , x

k
3 , λ

k) with respect to variable x1, i.e.,

Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) � Lβ(xk
1 , x

k
2 , x

k
3 , λ

k).

The proof is complete. �
Remark 4 Since δ > 0, in view of Lemma 3, we know that Lβ(·) is
monotonicity nonincreasing.

Remark 5 In fact, if we assume that f2 is a convex function instead of a
smooth function, then we can also prove Lemma 3 holds. In this situation,
L := L3 and we assume

(i) β > 2L, then the corresponding

δ := min
{β − L

2
− L2

β
,

βμ

2

}
> 0;

(ii) AT
1 A1 � μI, AT

2 A2 � μI for some μ > 0.

Since the proof can go in a similar way as Lemma 3 and for the sake of
clarity, we move the corresponding proof to Appendix.

Lemma 4 Let {wk := (xk
1 , x

k
2 , x

k
3 , λ

k)} be the sequence generated by algorithm
(5) which is assumed to be bounded. Then

+∞∑

k=0

‖wk+1 − wk‖2 < +∞. (24)
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Proof Since {wk} is bounded, there exists a subsequence {wkj} such that
wkj → w∗. Due to the continuity of f2 and f3 and lower semicontinuity of f1,
Lβ(·) is lower semicontinuous, and hence,

Lβ(w∗) � lim inf
j→+∞

Lβ(wkj ).

Consequently, Lβ(wkj ) is bounded from below, which, together with the fact
that Lβ(·) is nonincreasing, means that Lβ(wkj ) is convergent. Moreover, we
have Lβ(wk) is convergent and Lβ(wk) � Lβ(w∗). Rearranging terms of (12)
yields

δ‖vk+1 − vk‖2 � Lβ(wk) − Lβ(wk+1).

Summing up the above inequality for all k � 0, we get

+∞∑

k=0

δ‖vk+1 − vk‖2 �
+∞∑

k=0

(Lβ(wk) − Lβ(wk+1)) � Lβ(w0) − Lβ(w∗) < +∞.

Since δ > 0, we have
+∞∑

k=0

‖vk+1 − vk‖2 < +∞.

Thus,
+∞∑

k=0

‖xk+1
2 − xk

2‖2 < +∞,
+∞∑

k=0

‖xk+1
3 − xk

3‖2 < +∞.

Consequently, it follows from (19) that

+∞∑

k=0

‖λk+1 − λk‖2 < +∞.

Recall that
{

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 + xk+1

3 − b),

λk = λk−1 − β(A1x
k
1 + A2x

k
2 + xk

3 − b),

and hence,

λk+1−λk = (λk−λk−1)+β(A1x
k
1−A1x

k+1
1 )+β(A2x

k
2−A2x

k+1
2 )+β(xk

3−xk+1
3 ).

Then it follows that

‖β(A1x
k
1 − A1x

k+1
1 )‖2

= ‖(λk+1 − λk) − (λk − λk−1) − β(xk
3 − xk+1

3 ) − β(A2x
k
2 − A2x

k+1
2 )‖2

� 4(‖λk+1 − λk‖2 + ‖λk − λk−1‖2 + β2‖xk+1
3 − xk

3‖2

+ β2‖A2‖2 ‖xk+1
2 − xk

2‖2). (25)
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Using (ii) of Assumption 1, we have

‖β(A1x
k
1 − A1x

k+1
1 )‖2 � β2μ‖xk+1

1 − xk
1‖2. (26)

Substituting (26) into (25) implies

+∞∑

k=1

‖xk+1
1 − xk

1‖2 < +∞.

Therefore, we obtain (24). �
Remark 6 If Lβ(·) is bounded from below, it is easy to deduce (24) without
using the boundedness of {wk}.
Lemma 5 Let {wk := (xk

1 , x
k
2 , x

k
3 , λ

k)} be the sequence generated by algorithm
(5). Then there exists ζ > 0 such that

d(0, ∂Lβ(wk+1)) � ζ‖vk+1 − vk‖.

Proof From the definition of the augmented Lagrangian function Lβ(·) in (6),
it follows that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂x1Lβ(wk+1) = ∂f1(xk+1
1 ) − AT

1 λk+1 + βAT
1 (A1x

k+1
1 + A2x

k+1
2 + xk+1

3 − b),

∂x2Lβ(wk+1) = ∇f2(xk+1
2 ) − AT

2 λk+1 + βAT
2 (A1x

k+1
1 + A2x

k+1
2 + xk+1

3 − b),

∂x3Lβ(wk+1) = ∇f3(xk+1
3 ) − λk+1 + β(A1x

k+1
1 + A2x

k+1
2 + xk+1

3 − b),

∂λLβ(wk+1) = −(A1x
k+1
1 + A2x

k+1
2 + xk+1

3 − b).

This, together with (11), yields
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

AT
1 (λk − λk+1) + βAT

1 (A2x
k+1
2 − A2x

k
2) + βAT

1 (xk+1
3 − xk

3) ∈ ∂x1Lβ(wk+1),

AT
2 (λk − λk+1) + βAT

2 (xk+1
3 − xk

3) ∈ ∂x2Lβ(wk+1),

λk − λk+1 ∈ ∂x3Lβ(wk+1),
1
β

(λk+1 − λk) ∈ ∂λLβ(wk+1).

Define

(x̂k+1
1 , x̂k+1

2 , x̂k+1
3 , λ̂k+1)

:=
(
AT

1 (λk − λk+1) + βAT
1 (A2x

k+1
2 − A2x

k
2) + βAT

1 (xk+1
3 − xk

3),

AT
2 (λk − λk+1) + βAT

2 (xk+1
3 − xk

3), λk − λk+1,
1
β

(λk+1 − λk)
)
.

Then we have
(x̂k+1

1 , x̂k+1
2 , x̂k+1

3 , λ̂k+1) ∈ ∂Lβ(wk+1).
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Moreover, there exist ζ1, ζ2, ζ3 > 0 such that

‖(x̂k+1
1 , x̂k+1

2 , x̂k+1
3 , λ̂k+1)‖ � ζ1‖xk+1

2 − xk
2‖ + ζ2‖xk+1

3 − xk
3‖ + ζ3‖λk+1 − λk‖.

By setting ζ4 := ζ2 + Lζ3, it follows from (19) that

d(0, ∂Lβ(wk+1)) � ‖(x̂k+1
1 , x̂k+1

2 , x̂k+1
3 , λ̂k+1)‖

� ζ1‖xk+1
2 − xk

2‖ + ζ4‖xk+1
3 − xk

3‖
�

√
ζ2
1 + ζ2

4 · ‖vk+1 − vk‖,
where the third inequality follows from the Cauchy inequality. By setting

ζ :=
√

ζ2
1 + ζ2

4 ,

we complete the proof. �
In the following result, we summarize several properties of the limit point

set. Let {wk} be a sequence generated by the ADMM procedure (5) from a
starting point w0. The set of all limit points is denoted by S(w0), i.e.,

S(w0) := {w∗ : ∃ subsequence {wkj} of {wk} converges to w∗}.
Lemma 6 Let {wk := (xk

1 , x
k
2 , x

k
3 , λ

k)} be the sequence generated by algorithm
(5) which is assumed to be bounded. Let S(w0) denote the set of its limit points.
Then

(i) S(w0) is a nonempty compact set, and

d(wk, S(w0)) → 0, k → +∞;

(ii) S(w0) ⊂ crit Lβ ;
(iii) Lβ(·) is finite and constant on S(w0), equal to

inf
k∈N

Lβ(wk) = lim
k→+∞

Lβ(wk). (27)

Proof We prove the results item by item.
(i) Obviously, S(w0) is a nonempty bounded set and d(wk, S(w0)) → 0 as

k → +∞. Thus, we only need to show that S(w0) is a closed set. To see this,
let pn ∈ S(w0) and pn → ŵ, we just need to prove ŵ ∈ S(w0). Indeed, since
pn → ŵ, for any fixed i > 0, we can find ni such that

‖pni − ŵ‖ � 1
2i

. (28)

For any n, pn ∈ S(w0), then there exits a subsequence {wn
kj
} of {wk} that

converges to pn. That is, for any n,

wn
kj

→ pn, j → +∞. (29)
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Since pni ∈ S(w0), for fixed ni, it follows from (29) that there exits jni such
that

‖wni
kjni

− pni‖ � 1
2i

. (30)

Thus, it follows from (28) and (30) that

‖wni
kjni

− ŵ‖ � ‖wni
kjni

− pni‖ + ‖pni − ŵ‖ � 1
i
.

Therefore, {wni
kjni

} is a subsequence of {wk} that converges to ŵ. Hence, ŵ ∈
S(w0).

(ii) Let w∗ := (x∗
1, x

∗
2, x

∗
3, λ

∗) ∈ S(w0). Then there exists a subsequence
(xkj

1 , x
kj

2 , x
kj

3 , λkj ) of (xk
1 , x

k
2 , x

k
3 , λ

k) converges to (x∗
1, x

∗
2, x

∗
3, λ

∗). Note that
Lemma 4 implies

‖wk+1 − wk‖ → 0, k → +∞. (31)

Then we know that (xkj+1
1 , x

kj+1
2 , x

kj+1
3 , λkj+1) also converges to (x∗

1, x
∗
2, x

∗
3, λ

∗).
Since xk+1

1 is a global minimizer of Lβ(x1, x
k
2 , x

k
3 , λ

k) for the variable x1, it holds

Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) � Lβ(x∗
1, x

k
2 , x

k
3 , λ

k). (32)

It follows from (31), (32), and the continuity of Lβ(·) with respect to x2, x3,
and λ, we have

lim sup
j→+∞

Lβ(xkj+1
1 , x

kj+1
2 , x

kj+1
3 , λkj+1) = lim sup

j→+∞
Lβ(xkj+1

1 , x
kj

2 , x
kj

3 , λkj )

� Lβ(x∗
1, x

∗
2, x

∗
3, λ

∗). (33)

On the other hand, from the lower semicontinuity of Lβ(·), we have

lim inf
j→+∞

Lβ(xkj+1
1 , x

kj+1
2 , x

kj+1
3 , λkj+1) � Lβ(x∗

1, x
∗
2, x

∗
3, λ

∗). (34)

The above two relations (33) and (34) show that

lim
j→+∞

f1(xkj+1
1 ) = f1(x∗

1).

Because of the continuity of ∇f2 and ∇f3 and the closedness of ∂f1, taking
limit in (11) along the subsequence (xkj+1

1 , x
kj+1
2 , x

kj+1
3 , λkj+1) and using (31)

again, we obtain ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AT
1 λ∗ ∈ ∂f1(x∗

1),

∇f2(x∗
2) = AT

2 λ∗,
∇f3(x∗

3) = λ∗,
A1x

∗
1 + A2x

∗
2 + x∗

3 − b = 0.

Then, (x∗
1, x

∗
2, x

∗
3, λ

∗) satisfies system (8), and hence, w∗ ∈ crit Lβ.
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(iii) For any point (x∗
1, x

∗
2, x

∗
3, λ

∗) ∈ S(w0), there exists a subsequence
(xkj

1 , x
kj

2 , x
kj

3 , λkj ) converges to (x∗
1, x

∗
2, x

∗
3, λ

∗). By means of (33), (34), and
{Lβ(wk)}k∈N is nonincreasing, we obtain

lim
k→+∞

Lβ(xk
1 , x

k
2 , x

k
3 , λ

k) = Lβ(x∗
1, x

∗
2, x

∗
3, λ

∗).

Therefore, Lβ(·) is constant on S(w0). Moreover, (27) holds. �
Remark 7 Based on [7, Remark 5], we can also show that S(w0) is a
connected set; for more details, see [7].

We are now ready for proving the main result of this paper.

Theorem 1 Let {wk := (xk
1 , x

k
2 , x

k
3 , λ

k)} be the sequence generated by
algorithm (5) which is assumed to be bounded. Suppose that Lβ(·) is a KL
function. Then {wk} has finite length, that is,

+∞∑

k=0

‖wk+1 − wk‖ < +∞,

and as a consequence, we have {wk} converges to a critical point of Lβ(·).
Proof From the proof of Lemma 6, it follows that Lβ(wk) → Lβ(w∗) for all
w∗ ∈ S(w0). We consider two possible cases.

(i) The first case is that there exists an integer k0 such that

Lβ(wk0) = Lβ(w∗).

Rearranging terms of (12) and by Remark 4, for any k > k0, we have

δ‖vk+1 − vk‖2 � Lβ(wk) − Lβ(wk+1) � Lβ(wk0) − Lβ(w∗) = 0,

and so, for any k > k0, we have vk+1 = vk. Associated with (19), (25), and
(26), for any k > k0 + 1, it follows that wk+1 = wk and the assertion holds.

(ii) The second case is that Lβ(wk) > Lβ(w∗) for all k. Since d(wk, S(w0))
→ 0, it follows that for any ε > 0, there exists k1 > 0 such that for any k > k1,
d(wk, S(w0)) < ε. Again, since Lβ(wk) → Lβ(w∗), it follows for all η > 0,
there exists k2 > 0 such that for any k > k2,

Lβ(wk) < Lβ(w∗) + η.

Consequently, for all ε, η > 0, when k > k̃ := max{k1, k2},
d(wk, S(w0)) < ε, Lβ(w∗) < Lβ(wk) < Lβ(w∗) + η.

Since S(w0) is a nonempty compact set and Lβ(·) is constant on S(w0),
applying Lemma 1 with Ω := S(w0), we deduce that for any k > k̃,

ϕ′(Lβ(wk) − Lβ(w∗))d(0, ∂Lβ(wk)) � 1.
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Since

Lβ(wk) − Lβ(wk+1) = (Lβ(wk) − Lβ(w∗)) − (Lβ(wk+1) − Lβ(w∗)),

using the concavity of ϕ, we get

ϕ(Lβ(wk) − Lβ(w∗)) − ϕ(Lβ(wk+1) − Lβ(w∗))

� ϕ′(Lβ(wk) − Lβ(w∗))(Lβ(wk) − Lβ(wk+1)).

Thus, associating with

d(0, ∂Lβ(wk)) � ζ‖vk − vk−1‖, ϕ′(Lβ(wk) − Lβ(w∗)) > 0,

we know

Lβ(wk) − Lβ(wk+1)

� ϕ(Lβ(wk) − Lβ(w∗)) − ϕ(Lβ(wk+1) − Lβ(w∗))
ϕ′(Lβ(wk) − Lβ(w∗))

� ζ‖vk − vk−1‖[ϕ(Lβ(wk) − Lβ(w∗)) − ϕ(Lβ(wk+1) − Lβ(w∗))].

For convenience, we set

Δp,q := ϕ(Lβ(wp) − Lβ(w∗)) − ϕ(Lβ(wq) − Lβ(w∗)).

Combining Lemma 3 and the above inequality yields that for all k > k̃,

δ‖vk+1 − vk‖2 � ζ‖vk − vk−1‖Δk,k+1,

and hence,

‖vk+1 − vk‖ �
√

ζ

δ
Δk,k+1 ‖vk − vk−1‖1/2.

By using the fact
2
√

αβ � α + β, ∀α, β > 0,

we obtain
2‖vk+1 − vk‖ � ‖vk − vk−1‖ +

ζ

δ
Δk,k+1. (35)

Summing up (35) for k = k̃ + 1, k̃ + 2, . . . ,m yields

2
m∑

k=k̃+1

‖vk+1 − vk‖ �
m∑

k=k̃+1

‖vk − vk−1‖ +
ζ

δ
Δ

k̃+1,m+1
.

Notice that
ϕ(Lβ(wm+1) − Lβ(w∗)) > 0.
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Rearranging terms and letting m → +∞ yield

+∞∑

k=k̃+1

‖vk+1 − vk‖ � ‖vk̃+1 − vk̃‖ +
ζ

δ
ϕ(Lβ(wk̃+1) − Lβ(w∗)), (36)

which means
+∞∑

k=0

‖vk+1 − vk‖ < +∞.

Thus, we can deduce

+∞∑

k=0

‖xk+1
2 − xk

2‖ < +∞,

+∞∑

k=0

‖xk+1
3 − xk

3‖ < +∞.

Moreover, it follows from (19) that

+∞∑

k=0

‖λk+1 − λk‖ < +∞.

On the other hand, it follows from (25) and (26) that

‖xk+1
1 − xk

1‖

�
√

4
β2μ

(‖λk+1 − λk‖2 + ‖λk − λk−1‖2 + β2‖xk
3 − xk+1

3 ‖2

+ β2‖A2‖2 ‖xk+1
2 − xk

3‖2)1/2

�
√

4
β2μ

(‖λk+1 − λk‖ + ‖λk − λk−1‖ + β‖xk
3 − xk+1

3 ‖ + β‖A2‖ ‖xk+1
2 − xk

2‖).

Hence,
+∞∑

k=1

‖xk+1
1 − xk

1‖ < +∞.

Moreover, we note that

‖wk+1 − wk‖ � ‖xk+1
1 − xk

1‖ + ‖xk+1
2 − xk

2‖ + ‖xk+1
3 − xk

3‖ + ‖λk+1 − λk‖.
Therefore,

+∞∑

k=0

‖wk+1 − wk‖ < +∞,

{wk} is a Cauchy sequence (see [7, p. 482] for a simple proof), and thus is
convergent. The assertion then follows immediately from Lemma 6. �
Remark 8 Actually, [2,3] proved an abstract convergence result for descent
methods satisfying a sufficient decrease assumption, and allowing a relative
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error tolerance. However, as stated in [24], their results cannot be applied
directly to our algorithm. In fact, their sufficient descent property in our case
reads, there exits θ > 0 such that

Lβ(wk+1) � Lβ(wk) − θ‖wk+1 − wk‖2, (37)

while we only have

Lβ(wk+1) � Lβ(wk) − δ‖vk+1 − vk‖2,

which is not sufficient for (37) holding.

Next, we give some sufficient conditions to guarantee the sequence {wk :=
(xk

1 , x
k
2 , x

k
3 , λ

k)} generated by the ADMM (5) is bounded.

Lemma 7 Let {wk := (xk
1 , x

k
2 , x

k
3 , λ

k)} be the sequence generated by algorithm
(5). Suppose that

inf
x3

{
f3(x3) − 1

4L
‖∇f3(x3)‖2

}
=: f3 > −∞.

If
lim inf

‖x1‖→+∞
f(x1) = +∞, lim inf

‖x2‖→+∞
f2(x2) = +∞, (38)

then {wk} is bounded.

Proof From Lemma 3, we know that

Lβ(xk
1 , x

k
2 , x

k
3 , λ

k) � Lβ(x1
1, x

1
2, x

1
3, λ

1).

Then, combining with λk = ∇f3(xk
3), we get

Lβ(x1
1, x

1
2, x

1
3, λ

1)

� f1(xk
1) + f2(xk

2) + f3(xk
3) − 〈λk, A1x

k
1 + A2x

k
2 + xk

3 − b〉
+

β

2
‖A1x

k
1 + A2x

k
2 + xk

3 − b‖2

= f1(xk
1) + f2(xk

2) + f3(xk
3) − 1

2β
‖λk‖2 +

β

2

∥∥∥A1x
k
1 + A2x

k
2 + xk

3 − b − 1
β

λk
∥∥∥

2

= f1(xk
1) + f2(xk

2) +
(
f3(xk

3) − 1
4L

‖∇f3(xk
3)‖2

)
+

( 1
4L

− 1
2β

)
‖λk‖2

+
β

2

∥∥∥A1x
k
1 + A2x

k
2 + xk

3 − b − 1
β

λk
∥∥∥

2

� f1(xk
1) + f2(xk

2) + f3 +
( 1

4L
− 1

2β

)
‖λk‖2

+
β

2

∥∥∥A1x
k
1 + A2x

k
2 + xk

3 − b − 1
β

λk
∥∥∥

2
.
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Observe that, (38) implies that

inf
x1

f1(x1) > −∞, inf
x2

f2(x2) > −∞.

It follows from these and β > 2L that

{xk
1}, {xk

2}, {λk},
{β

2

∥∥∥A1x
k
1 + A2x

k
2 + xk

3 − b − 1
β

λk
∥∥∥

2}
,

are bounded. Therefore, {xk
3} is bounded, and hence, {wk} is bounded. �

4 Convergence rate

In this section, we establish the convergence rate for the ADMM procedure (2).
Similar to the last section, we only consider the case m = 3. The main result is
summarized in the following theorem.

Theorem 2 Let {wk := (xk
1 , x

k
2 , x

k
3 , λ

k)} be the sequence generated by
algorithm (5) and converges to {w∗ := (x∗

1, x
∗
2, x

∗
3, λ

∗)}. Assume that Lβ(·) has
the KL property at (x∗

1, x
∗
2, x

∗
3, λ

∗) with ϕ(s) = cs1−θ, θ ∈ [0, 1), c > 0. Then the
following estimations hold:

(i) if θ = 0, then the sequence {wk} converges in a finite number of steps;
(ii) if θ ∈ (0, 1/2], then there exist c > 0 and τ ∈ [0, 1) such that

‖(xk
1 , x

k
2 , x

k
3 , λ

k) − (x∗
1, x

∗
2, x

∗
3, λ

∗)‖ � cτk;

(iii) if θ ∈ (1/2, 1), then there exists c > 0 such that

‖(xk
1 , x

k
2 , x

k
3 , λ

k) − (x∗
1, x

∗
2, x

∗
3, λ

∗)‖ � ck(θ−1)/(2θ−1).

Proof We first consider the case that θ = 0; then ϕ(s) = cs and ϕ′(s) = c.
If {wk} does not converge in a finite number of steps, then the KL property
at (x∗

1, x
∗
2, x

∗
3, λ

∗) yields for any k sufficiently large, c · d(0, ∂Lβ(wk)) � 1, a
contradiction to Lemma 5.

Now, suppose that θ > 0 and set

Δk :=
+∞∑

i=k

‖vi+1 − vi‖, k � 0.

The triangle inequality yields Δk � ‖vk − v∗‖, and it is therefore sufficient to
estimate Δk. With these notations, it follows from (36) that

Δ
k̃+1

� (Δ
k̃
− Δ

k̃+1
) +

ζ

δ
ϕ(Lβ(wk̃+1) − Lβ(w∗)).
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Again, by the KL property at (x∗, y∗, z∗, λ∗), we have

ϕ′(Lβ(wk̃+1) − Lβ(w∗))d(0, ∂Lβ(wk̃+1)) � 1,

which is equivalent to

(Lβ(wk̃+1) − Lβ(w∗))θ � c · (1 − θ)d(0, ∂Lβ(wk̃+1)). (39)

Using Lemma 5, we get

d(0, ∂Lβ(wk̃+1)) � ζ · ‖vk̃+1 − vk̃‖ = ζ(Δ
k̃
− Δ

k̃+1
). (40)

Combining (39) and (40), we obtain that there exists γ > 0 such that

ϕ(Lβ(wk̃+1)−Lβ(w∗)) = c · (Lβ(wk̃+1)−Lβ(w∗))1−θ � γ(Δ
k̃
−Δ

k̃+1
)(1−θ)/θ ,

and hence,

Δ
k̃+1

� (Δ
k̃
− Δ

k̃+1
) +

ζ

δ
γ(Δ

k̃
− Δ

k̃+1
)(1−θ)/θ .

Sequences satisfying such inequalities have been studied by Attouch and Bolte
[1]. It follows that

• if θ ∈ (0, 1/2], then there exists c1 > 0 and τ ∈ [0, 1) such that

‖vk − v∗‖ � c1τ
k,

and
• if θ ∈ (1/2, 1), then there exists c2 > 0 such that

‖vk − v∗‖ � c2k
(θ−1)/(2θ−1).

Thus, we have
• if θ ∈ (0, 1/2], then there exists c1 > 0 and τ ∈ [0, 1) such that

‖xk
2 − x∗

2‖ � c1τ
k, ‖xk

3 − x∗
3‖ � c1τ

k, (41)

and
• if θ ∈ (1/2, 1), then there exists c2 > 0 such that

‖xk
2 − x∗

2‖ � c2k
(θ−1)/(2θ−1), ‖xk

3 − x∗
3‖ � c2k

(θ−1)/(2θ−1). (42)

Recall that ∇f3 is Lipschitz continuous with modulus L3 � L. It follows from
(8) and (11) that

‖λk − λ∗‖ = ‖∇f3(xk
3) −∇f3(x∗

3)‖ � L‖xk
3 − x∗

3‖. (43)

Furthermore, from the relations

λk = λk−1 − β(A1x
k
1 + A2x

k
2 + xk

3 − b)
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and
A1x

∗
1 + A2x

∗
2 + x∗

3 = b,

it follows that

β(A1x
k
1 − A1x

∗
1) = β(A2x

∗
2 − A2x

k
2) + β(x∗

3 − xk
3) + (λk−1 − λ∗) + (λ∗ − λk).

Therefore, there exists γ > 0 such that

‖xk
1 − x∗

1‖ � γ
(
‖A2‖ ‖xk

2 − x∗
2‖ + ‖xk

3 − x∗
3‖ +

1
β
‖λk−1 − λ∗‖ +

1
β
‖λ∗ − λk‖

)

� γ
[
‖A2‖ ‖xk

2 − x∗
2‖ +

(
1 +

L

β

)
‖xk

3 − x∗
3‖ +

L

β
‖xk−1

3 − x∗
3‖

]
, (44)

where the second inequality follows from (43). Combining (41)–(44), we get
the desired inequalities immediately. �

5 Conclusions

In this paper, we analyzed the convergence of alternating direction method
of multipliers (ADMM) for solving multi-block linearly constrained nonconvex
minimization model without coupled variables where none of the involving
functions are convex. Under the assumption that the associated function
satisfies the Kurdyka-�Lojasiewicz (KL) inequality, we proved that any cluster
point of the iterative sequence generated by the algorithm is a critical point,
provided that the penalty parameter is sufficiently large. Particularly, when
the data functions f1, f2, and f3 are semi-algebraic, the convergence rate of the
algorithm was also established.

Furthermore, we prove Lemma 3 holds under the assumption that one of
the objective functions is convex. In this case, under the assumption that
the associated function satisfies the KL inequality, we can similarly prove that
any cluster point of the iterative sequence generated by ADMM is a critical
point, provided that the penalty parameter is greater than 2L, where L is
the Lipschitz constant of the gradient of one of the involving function. When
the data functions f1, f2, and f3 are semi-algebraic, we can also show the
convergence rate of the algorithm.

As we have mentioned in the introduction, the nonconvex separable
optimization model (1) finds many interesting application and ADMM exhibits
great success in solving the model. One of our future research topic is using the
model and algorithm to some other application field such as traffic assignment
problem [10,31].
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Appendix Proof of Remark 5

Proof of Remark 5 Similar to the proof of Lemma 3, we can show

Lβ(xk+1
1 , xk+1

2 , xk+1
3 , λk+1)

� Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k) −
(β − L

2
− L2

β

)
‖xk+1

3 − xk
3‖2. (A.1)

Recall that

Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) − Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k)

= f2(xk
2) − f2(xk+1

2 ) + 〈λk, A2x
k+1
2 − A2x

k
2〉

+
β

2
‖A1x

k+1
1 + A2x

k
2 + xk

3 − b‖2 − β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk

3 − b‖2. (A.2)

Since f2 is a convex function, it follows from the second equality of (10) that

f2(xk
2)−f2(xk+1

2 ) � 〈AT
2 λk−βAT

2 (A1x
k+1
1 +A2x

k+1
2 +xk

3−b), xk
2−xk+1

2 〉. (A.3)

Inserting (A.3) into (A.2) and by means of (ii) of Remark 5, we have

Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) − Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k)

� − β〈A1x
k+1
1 + A2x

k+1
2 + xk

3 − b,A2x
k
2 − A2x

k+1
2 〉

+
β

2
‖A1x

k+1
1 + A2x

k
2 + xk

3 − b‖2 − β

2
‖A1x

k+1
1 + A2x

k+1
2 + xk

3 − b‖2

� βμ

2
‖xk+1

2 − xk
2‖2. (A.4)

Thus, it follows from (A.1) and (A.4) that

Lβ(xk+1
1 , xk+1

2 , xk+1
3 , λk+1)

� Lβ(xk+1
1 , xk+1

2 , xk
3 , λ

k) −
(β − L

2
− L2

β

)
‖xk+1

3 − xk
3‖2

� Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) −
(β − L

2
− L2

β

)
‖xk+1

3 − xk
3‖2 − βμ

2
‖xk+1

2 − xk
2‖2

� Lβ(xk
1 , x

k
2 , x

k
3 , λ

k) − δ‖vk+1 − vk‖2,

where the third inequality follows from (i) of Remark 5 and the fact that xk+1
1

is the global minimizer of Lβ(x1, x
k
2 , x

k
3 , λ

k) with respect to variable x1, i.e.,

Lβ(xk+1
1 , xk

2 , x
k
3 , λ

k) � Lβ(xk
1 , x

k
2 , x

k
3 , λ

k).

The proof is complete. �



Convergence of ADMM for multi-block nonconvex separable optimization models 1161

References

1. Attouch H, Bolte J. On the convergence of the proximal algorithm for nonsmooth
functions involving analytic features. Math Program, 2009, 116: 5–16

2. Attouch H, Bolte J, Redont P, Soubeyran A. Proximal alternating minimization and
projection methods for nonconvex problems: an approach based on the Kurdyka-
Lojasiewicz inequality. Math Oper Res, 2010, 35: 438–457

3. Attouch H, Bolte J, Svaiter B F. Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward-backward splitting, and regularized
Gauss-Seidel methods. Math Program, 2013, 137: 91–129

4. Boley D. Local linear convergence of ADMM on quadratic or linear programs. SIAM
J Optim, 2013, 23: 2183–2207

5. Bolte J, Daniilidis A, Lewis A. The Lojasiewicz inequality for nonsmooth subanalytic
functions with applications to subgradient dynamical systems. SIAM J Optim, 2007,
17: 1205–1223

6. Bolte J, Daniilidis A, Lewis A, Shiota M. Clarke subgradients of stratifiable functions.
SIAM J Optim, 2007, 18: 556–572

7. Bolte J, Sabach S, Teboulle M. Proximal alternating linearized minimization for non-
convex and nonsmooth problem. Math Program, 2014, 146: 459–494

8. Cai X J, Han D R, Yuan X M. The direct extension of ADMM for three-block
separable convex minimization models is convergent when one function is strongly
convex. Comput Optim Appl, 2017, 66: 39–73

9. Chen C H, He B S, Ye Y Y, Yuan X M. The direct extension of ADMM for multi-block
convex minimization problems is not necessarily convergent. Math Program, 2016, 155:
57–79

10. Du B, Wang D Z W. Continuum modeling of park-and-ride services considering travel
time reliability and heterogeneous commuters—A linear complementarity system
approach. Transportation Research Part E: Logistics and Transportation Review, 2014,
71: 58–81

11. Gabay D. Applications of the method of multipliers to variational inequalities. In:
Fortin M, Glowinski R, eds. Augmented Lagrangian Methods: Applications to the
Numerical Solution of Boundary-Value Problems. Amsterdam: North-Holland, 1983,
299–331

12. Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational
problems via finite element approximations. Comput Math Appl, 1976, 2: 17–40

13. Glowinski R, Marrocco A. Approximation par éléments finis d’ordre un et résolution
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