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Abstract For solving minimization problems whose objective function is the
sum of two functions without coupled variables and the constrained function is
linear, the alternating direction method of multipliers (ADMM) has exhibited
its efficiency and its convergence is well understood. When either the involved
number of separable functions is more than two, or there is a nonconvex
function, ADMM or its direct extended version may not converge. In this
paper, we consider the multi-block separable optimization problems with linear
constraints and absence of convexity of the involved component functions.
Under the assumption that the associated function satisfies the Kurdyka-
Lojasiewicz inequality, we prove that any cluster point of the iterative
sequence generated by ADMM is a critical point, under the mild condition
that the penalty parameter is sufficiently large. We also present some sufficient
conditions guaranteeing the sublinear and linear rate of convergence of the
algorithm.
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1 Introduction

In this paper, we consider the following nonconvex optimization problem:
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min i fi(x;)
i=1

st. Aixg +Asxo+ -+ Ap—1Tm—1 + T = b,

(1)

where
f1: R™M - RU {+o0}

is a proper lower semicontinuous function,
firR" =R i=23,....m—1, fn:R* =R,

are continuous differentiable functions with V f; being Lipschitz continuous with
modulus L; > 0, A; € R*™ 4§ =12 ...,m — 1, is a given matrix, and b € R?
is a vector.

The direct extension of the classic alternating direction method of
multipliers (ADMM) (initiated from [11-13]) for solving problem (1) reads as

xlfﬂ € arg n%iln{fﬁ(wl, ak o xk AR
a;é“ € argngn{fﬁ(xlfﬂ,xg,x’g, I AAPUIS

. (2)
il ¢ arg r;l;n{fﬁ(xlfﬂ,xgﬂ, LA L I

(AL = NE = (A2 Agah ™ A, 2R ek ),

m—1

which can be viewed as a Gauss-Seidel implementation of the well-known
augmented Lagrangian algorithm for linear constraint optimization problems.
Here and throughout the paper, .Z3(-) denotes the augmented Lagrangian
function for (1):

m m—1

.,5,”5(3:1,3:2, ey T, )\) = Z f,(xz) — <)\, Z Az + 2 — b>
=1 =1

2

ﬁ m—1
+2“;Aixi+xm—b‘ 3)

where A is the Lagrange multiplier associated with the linear constraints and
(£ > 0 is the penalty parameter.

When m = 2 and the involved component functions f; and fo are both
convex and some very mild conditions are satisfied, ADMM is proved to
converge to a solution of (1) globally. Under some further conditions (for
special problems where strong convexity or some error bound conditions hold),
ADMM can achieve linear convergence [4,16,20,34]. For the case either there are
three or more separable blocks in model (1), or there are nonconvex component
functions (even for the two-block case), ADMM may not converge [9]. On the
other hand, there are many applications that can naturally be modeled or
reformulated as a multi-block linearly constrained minimization model whose
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objective function is the sum of more than two functions without coupled
variables, such as phase retrieval [32], nonconvex background/foreground
extraction problem [33]. In fact, heuristic applications of ADMM in solving
these problems result in very well numerical results. Such a gap between the
high efficiency of ADMM in numerical experiments and lack of convergence
result attracts the researchers’ more and more attentions on it, and there have
been a few developments. Here, we summarize the progress from two aspects.

(i) The multi-block case. Han and Yuan [15] first theoretically considered
this problem and they proved that when all the objective functions are strongly
convex, the direct extension ADMM scheme is globally (linear) convergent,
provided that the penalty parameter is smaller than a threshold. Then, this
condition was relaxed and only one or more functions in the objective are
required to be strongly convex to ensure the convergence [8,25]. On the other
hand, some researchers suggested twisting the ADMM scheme slightly. For
examples, in [18,19], it was suggested to correct the output of ADMM scheme
to generate a new iterate and the resulting prediction-correction schemes are
guaranteed to be convergent. Numerically, the original ADMM scheme usually
performs better than all the twisted variants with provable convergence (see,
e.g., [17]); and it is the most convenient scheme to be implemented compared
with its variants. Hong and Luo [21] suggested attaching a shrinkage factor to
the Lagrange multiplier updating step and it was shown that the convergence
of ADMM is guaranteed when this factor is small enough to satisfy some error
bound conditions.

(ii) The case that there is at least one nonconvex component function. For
two block nonconvex separable optimization problem, under the assumption
that the associated function satisfies the Kurdyka-Lojasiewicz (KL) inequality,
Guo et al. [14] proved that any cluster point of the iterative sequence generated
by the alternating direction method is a critical point provided that the penalty
parameter is greater than 2L, where L is the Lipschitz constant of the gradient
of one of the involving function. Under some further conditions on the
problem’s data, they also analyzed the rate of convergence of the algorithm. Li
and Pong [24] showed that if the penalty parameter in the augmented
Lagrangian function associated to the problem is chosen sufficiently large and
the sequence generated by the algorithm has a cluster point, then it gives a
critical point of the nonconvex problem when one of the component objective
functions is twice continuously differentiable with bounded Hessian, and the
other one is a proper closed function. Hong et al. [22] analyzed the convergence
of the ADMM for solving certain special nonconvex problems, i.e., the
consensus and sharing problems. They proved that the sequence generated by
ADMM converges to the set of stationary solutions, provided that the penalty
parameter in the augmented Lagrangian function is chosen to be sufficiently
large.

The purpose of this paper is to prove the convergence of the classic ADMM
for multi-block nonconvex optimization problems (1). Using the important KL
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inequality (see Definition 3 below), we prove that if the augmented Lagrangian
function is a KL function, then the sequence generated by ADMM converges
to a critical point of the augmented Lagrangian function. If some further
conditions on the problem’s data hold, we then prove the sublinear and
linear rate of convergence of the algorithm. The importance of KL inequality
is due to the fact that many functions emerged in the modern application
models satisfy this inequality. Especially, when the function belongs to some
functional classes, e.g., semi-algebraic, subanalytic, and log-exp (see [2,3,5,6]
and references therein). These facts originate in the pioneering and fundamental
work of Lojasiewicz [26] and Kurdyka [23]; work which was recently extended
to nonsmooth functions is in [5,6].

The rest of this paper is organized as follows. In Section 2, we present some
preliminary materials that will be used in our next analysis. In Section 3, we
prove the convergence of scheme (2). Then, we establish the convergence rate
for scheme (2) in Section 4. Finally, we draw some conclusions.

2 Preliminaries

In this section, we summarized some notations and preliminaries to be used for
further analysis.

The following notation and definitions are quite standard and can be found
in, e.g., [27,29,30]. Let F': R™ = R™ be a point-to-set mapping. Then its graph
is defined by

Graph F := {(z,y) e R" x R™: y € F(z)}.

For any subset S C R™ and any point € R", the distance from x to S, denoted
by d(z,5), is defined as

d(z,S) = ;Ielg lly — ||

When S = (), we set d(x,S) := +oo for all z. Let x € R", y € R™. We denote
vi=(z,y) €R" xR, ||v]|* := [lz]* + ||y[*.

Definition 1 Given a function f: R” — RU {400}, the effective domain and
the epigraph of f are defined by

dom f:={x € R" | f(x) < 400}, epif:={(z,a) e R" xR: f(x) < a},

respectively. We say that the function f is proper (resp., lower semicontinuous)
if dom f (resp., epi f) is nonempty (resp., closed).

Definition 2 Let f: R" — R U {400} be a proper lower semicontinuous
function.
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(i) The Fréchet subdifferential, or regular subdifferential, of f at x € dom f,
written as Jf(x), is the set of vectors x* € R™ satisfying

liming @)~ f@) =@ty — )

> 0.
y£T, y—z ly — ||

When z ¢ dom f, we set f (z) := 0.

(ii) The limiting-subdifferential, or simply the subdifferential, of f at x €
dom f, written as df(x), is defined as

Of (z) :={2" e R": Jz,, — x, f(x,) — f(z), ), € éf(xn), x, — x*}.

Remark 1 In view of Definition 2, the following conclusions hold.

(i) The above definition implies df (x) C df (z) for each = € R™, where the
first set is closed convex while the second one is only closed.

(ii) Let (z*, &%) € Graphdf be a sequence that converges to (z,z*). By
the very definition of df(x), if f(x*) converges to f(z) as k — oo, then
(z,z*) € Graph0f.

(iii) If f: R™ — RU{+o0} is a proper lower semicontinuous and h: R" — R
is continuous differentiable, then

I(h+ f)(x) = Vh(z)+0f(x), Ve domf.

The Kurdyka-Lojasiewicz property plays a central role in our analysis.
Below, we recall the essential elements.

Definition 3 ([2], Kurdyka-Lojasiewicz inequality) Let f: R™ — R U {400}
be a proper lower semicontinuous function. For —oco < 11 < 19 < +00, set

m < f<m]={zeR":m < f(z) <mn}.

We say that the function f has the KL property at z* € domdf, if there
exist € (0,4+o0], a neighborhood U of x*, and a continuous concave function
¢: [0,m) — R4, such that

() ¢(0) = 0;

(ii) ¢ is C! on (0,7m) and continuous at 0;

(iii) ¢'(s) >0, Vs € (0,n);

(iv) for all  in U N [f(z*) < f < f(a*) + n], the following Kurdyka-
Lojasiewicz inequality holds:

¢ (f(x) = f(27))d(0,0f (x)) > 1.

Definition 4 ([3], Kurdyka-Lojasiewicz function) Denote &, the set of
functions which satisfy (i)—(iii) in Definition 3. If f satisfies the KL property
at each point of dom df, then f is called a KL function.
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Remark 2 One can easily check that the Kurdyka-Lojasiewicz property is
automatically satisfied at any noncritical point 2* € dom f; see, e.g., [2, Lemma
2.1, Remark 3.2 (b)].

Lemma 1 ([7], Uniformized KL property) Let Q be a compact set, and let
f:R" — RU {+o0} be a proper and lower semicontinuous function. Assume
that f is constant on  and satisfies the KL property at each point of Q). Then
there exist e, > 0 and ¢ € ®, such that for all x € 2 and for all x in the
intersection

{z eR": d(2,Q) <e}N[f(x) < f < flx)+n],
one has
¢'(f(x) = f(2))d(0,0f (x)) > 1.
Lemma 2 [28] Let h: R"” — R be a continuous differentiable function with

gradient Vh is Lipschitz continuous with the modulus Ly > 0. Then, for any
x,y € R we have

h(y) — h(x) — (Vh(a),y — ) < 2y — o

3 Convergence

In this section, we prove the convergence of the ADMM procedure (2). However,
in the following, we only consider the case m = 3 because in the convergence
analysis, the proof for m > 3 follows the same roadmap as m = 3. When m = 3,
problem (1) reduces to

min f1(z1) + fa(x2) + f3(x3)

B (4)
s.t. Ajxy + Aswo + 13 = b.

The corresponding algorithm (2) becomes

oyt € argmin{Zy(wy, 25, 25, A)},
x§+1 € arg H;in{fg(xlfﬂ,xg,x’?f, MY,
ah € arg Hgn{fﬁ(xlfﬂwgﬂ,xg,, LS

AL = \E — B2 T + Apaltt 2T —b),

where the augmented Lagrangian function (3) reduces to

3
Ly(w1, w9, 3,0) = filwi) — (\, Ayzy + Apwg + 23 — b)
i=1

+ g ||A1x1 + Asxg + 23 — bH2 (6)
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First, we make some assumptions.

Assumption 1 Let f;: R™ — R U {400} be a proper lower semicontinuous
function, and let fs: R™ — R and f3: R® — R be continuously differentiable
functions with V fo and V f3 being Lipschitz continuous with modulus Ls > 0
and Ls > 0, respectively. Set L := max{Lg, L3}. Furthermore, assume the
following holds:

() 6> max{2L, L/p};
(i) ATA;y = pul, AT Ay = pul for some p > 0.

Let

5::min{5;L—I;,BM2_L}. (7)

Then it follows from (i) of Assumption 1 that 6 > 0.
Definition 5 We say that (z7, 23, 25, \*) is a critical point of the augmented
Lagrangian function Z3(-) in (6), if it satisfies
AT € 0y (%),
Vfa(x3) = AT,
V fa(xh) = A,
Arx* + Agal + 25 — b= 0.
The set of critical points of £3(-) is denoted by crit Zj3.

Remark 3 Actually, if (z7, 25, 2%) is a local minimizer of problem (4), then
(x7, %) is a local minimizer of the following problem:

min f (xl) + fg(afg) + fg(b — Az — Agajg).

T1,T2

By [30, Theorem 8.15], it follows from (iii) of Remark 1 that

0 € dfi(x}) — ATV f3(b — Az} — Aga),
0= Vfg(a:;) — Agig(b — Ala:’{ — Agﬂ?;)

Since
Arxy + Agxy + a5 =0,

setting
N =V fa(xy),

we know that system (8) holds in view of (9). Hence, system (8) is indeed the
first-order necessary condition of (4).
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Before the proof, let us present the variational characterization of scheme
(5). Invoking the optimality condition for (5), we have

0 € afy (28t — ATNF + BAT (A2 ™ + Agah + 2k — ),
0= Vfa(ah™) — ATNF + BAT (A1ah™! + Agah™ + 2k — 1),

10
0=Vfs(ah™) = A\ + B(A1ah T + Agah™ + 254! — ), (10
AT = Nk — B(Ay T 4 Agaf ™ + T —b).
Using the last equality and rearranging terms, we obtain
ATNFL 4 BAT (Agah*! — Agal) + BAT (a5 — 2f) € Ofi (211,
Vhalayth) = AFNF 4 BAT (a5 — af), )
Vf3(x§+1) — )\k—i—l’
ML= \F — B(A 28T 4 Agah T 4 2kt —p),
In the sequel, for convenience, we often use the notation {v* := (zk, 25)}.

We begin our analysis with the following lemma.

Lemma 3 Let {w* := (af, 25, 25 \¥)} be the sequence generated by algorithm

(5). Then we have
L) < Lp(w) = 5[l — b2 (12)

Proof From the definition of the augmented Lagrangian function Z3(-) in (6),
it follows that

gﬁ(xlerl x12€+1 k+1 )\k—i—l)

= Ly, k+1, Z ) + <)\k — ML At Agait + 2l —0)

= Z5(a LGN A - AP (13)

and
gﬁ(xllc—i—l xé‘-‘rl xlg )\k)_gﬂ(xk—i—l xk-ﬁ-l k+1 )\k)
= fa(a}) — fa(egt) + (A", 25Tt —af) + HA i+ Age 4 2 — )

—g Ayt 4 Agaktt gkt g2, (14)

Since V f3 is Lipschitz continuous with modulus Lg < L, it follows from Lemma
2 and the third equality of (11) that

L
Fa(ag) = fo(ag™h) = (N2 — 2™ = ey — a5 (15)
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Inserting (15) into (14) yields
Ly(ak b, V) — 2y, 2 N

> <Ak+1 - x’§+1> + g HAlx’f“ R - )

L
R e e Al 1)

From the fourth equation of (11)7 we know

1
3 (A" = N 4 (af — 257

Alx]f'H + Agxlgﬂ + a2k b=
Thus,
(BT 3k g $l§+1> HA 2 gty gk )2
= (NFFL Nk gk x’§“> + g HB (AP — Ny (o — x’§+1)H

B
= lley — 257 + 25 LN 2 (17)

Substituting (17) into (16), we obtain

k k k \k k k k oo B=L g
fﬁ(flﬂ x2+1 x5, A )—gﬁ(xlﬂ l’zﬂa 3+1 ) = 9 ||903—x3+1||2- (18)

On the other hand, since V f3(z**1) = \¥*! and V f3 is Lipschitz continuous,
we get
IXFE = M| < Lf|25 ™ — 25 (19)

Consequently, it follows from (13), (18), and (19) that

k+1 k+1 k+1 k+1
gﬁ( Lo T3 A )

B—L L2
< Lyl abt ek 20 = (7L 7 = )T - o)

Similarly,
Loy, wg, 25, NF) = Lp(ai ™ 25 2, AY)
= fol@h) — fola ™) + (N, Aga ™ — A 275)
0 vt A b — bl = At ek a2 (1)

Since V fo is Lipschitz continuous with modulus Lo < L, it follows from Lemma
2 and the second equality of (10) that

Faah) = fa(a5™) = (AZ N — BAG (A1 + Agaf™ + o — b), o} — 23 ™)

L
— 5 ok — a2 (22
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Inserting (22) into (21) and by (ii) of Assumption 1 yield

)
k+1 _k k k+1 k41 k
fﬁ(x + ,$2,$3,)\ )_"%ﬁ(xl—'— $2+ ) 3a>‘ )

> — ﬁ(Ala:kH + Agak T gk b Agah — Agahth

HA a4 Agah + 2k — b2
L
k+1 k+1 k 2 k k 12
y ”Alﬁtﬁ+ + Agwy ™ 4 a5 — bl|” — 9 ot — x5t |

0 L
=, [14aay — Apaf™H* = [l — 257
—L
> ﬁu2 ”xlg—l—l
Thus, it follows from (20) and (23) that

gﬁ(xlerl $l2f+1 k+1 )\k—i—l)

— % (23)

B-L L?
PG B R U [ e

L L? L
< Zalattab b3 - (75 1 = Y lab - b - P ol - ol

< jﬁ(xllc’ $]2€> x]?f’ Ak) - 5||Uk+1 - UkHQa
where the third inequality follows from (7) and the fact that x]f"H is the global
minimizer of Z3(x1, ok A\F) with respect to variable 1, i.e.,
"g’ﬂﬁ( e xé? xlg’ )‘k) < gﬂ(xlf’ xé? xlg’ )‘k)
The proof is complete. O

Remark 4 Since 6 > 0, in view of Lemma 3, we know that Zj(-) is
monotonicity nonincreasing.

Remark 5 In fact, if we assume that f is a convex function instead of a
smooth function, then we can also prove Lemma 3 holds. In this situation,
L := L3 and we assume

(i) B > 2L, then the corresponding
_(B—-L L? Bu
= { -, } 0;
min 9 37 2 >
(i) ATA;y = pul, AT Ay = pul for some p > 0.
Since the proof can go in a similar way as Lemma 3 and for the sake of

clarity, we move the corresponding proof to Appendix.

Lemma 4 Let {w® := (zF, 25, 25 \*)} be the sequence generated by algorithm

(5) which is assumed to be bounded. Then

+o00
D lwh T — wF)? < foo. (24)
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Proof Since {w*} is bounded, there exists a subsequence {w*i} such that
wk — w*. Due to the continuity of f» and f3 and lower semicontinuity of fi,
Z3(-) is lower semicontinuous, and hence,

Ls(w*) < liminf Z5(w").

oo

Consequently, fﬁ(wkﬂ') is bounded from below, which, together with the fact
that Z3(+) is nonincreasing, means that fﬁ(wkﬂ') is convergent. Moreover, we
have Z3(w") is convergent and Z5(w¥) > Zj(w*). Rearranging terms of (12)
yields

Bl — oF2 < Zy(wh) — Ly,

Summing up the above inequality for all £ > 0, we get

—+00 “+oo
DSl =P < (L (wh) = L) < L) — Ls(w?) < e
k=0 k=0

Since d > 0, we have
+o00
Z [oFH — %12 < +o0.
k=0

Thus,

+00 too
D o llas Tt —af|P < 400, D[kt — 2f|” < +oo.
k=0 k=0

Consequently, it follows from (19) that

—+o0
DI = M? < oo
k=0

Recall that
AL = Ak — B(Ay 2T+ Apaf T 4 2T — 1),
M= NP1 B(A 2k + Agah + 2k — 1),
and hence,
AN = (P20 4 B(Ara = Aray ™) + B( A — Ay ™) + 8o — a5 ™).
Then it follows that
IB(Ar} — Ay |2
= = A = (AF = N1 — B(af — 28TT) — B(Aoah — Asay ™)
AN = M2 I = NP 4 B2 — 2
+ 0% Az |)? (|25 — 25)). (25)
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Using (ii) of Assumption 1, we have
18(Ar} — AP = Bplla) ! — |, (26)

Substituting (26) into (25) implies
+00
Z lefH — 22 < +o0.
k=1

Therefore, we obtain (24). O

Remark 6 If Zj3(-) is bounded from below, it is easy to deduce (24) without
using the boundedness of {w*}.

Lemma 5 Let {w* := (2%, 25 25 \¥)} be the sequence generated by algorithm
(5). Then there exists ¢ > 0 such that

d(0,0.L5(w*H1)) < (o™ — 0",

Proof From the definition of the augmented Lagrangian function Z3(-) in (6),
it follows that

Oo, Lo(wF 1) = 1 (af 1) — ATAMHY 4 BAT (Ayaf™ + Apah ™ 4 25+ —b),
0y L5 (k1) = V fo(ab ™) — AFNHL 4 BAT (A}t + Apaf ™ 4 25t — ),
Oy Lp(WEHY) = V fa(ah 1) — A+ 4 B( A2 T + Agab ™ 4+ 24! —b),
nLp(whth) = —(Ala:’f“ + AQ.’L‘IQH—l + x’g“ —b).

This, together with (11), yields

ATOF = N+ 4 BAT (Agaf ! — Agah) + BAT (@§H — af) € 04, L(wh 1),
AT = X 4 BAT (25 — af) € 05, Lp(whH),
)\k o )\kJrl c axggﬁ(warl),

; ()\k—I—l _ )\k) e a}\zﬁ(wkﬁ-l)‘

Define

(@]{;—}—1’ a}é‘-{-l’ i,]g;—}—l’ 5\]6-{-1)
= (ATOF — A1) 1 AT (Agah ™ — Ay + pAT (2} — ),

1
AT (N = AT 4 AT (a7 — o), NF = AFFL (T X)),

g

Then we have
~k4+1 Ak+1 ~k4+1 Jk+1 k+1
(YT, &5, 2 L AT € 0L (w ).
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Moreover, there exist (1, (2,3 > 0 such that
k41 ~k+1 Ak+1 Yk k+1 k k+1 k k k
@7 25t et AT < Gllag ! = 23]+ Glles™ — 28]+ G = N8
By setting (4 := (s + L3, it follows from (19) that
d(o’agﬁ(wlﬁ—l)) ||( k+1 AkJrl Ak+1 )\k—i—l)H
Cl\l$k+1 - fﬂzH + it - 2f)

\/Cl + C4 k+1 k”?

where the third inequality follows from the Cauchy inequality. By setting

<
<

C=y/G+ ¢
we complete the proof. O

In the following result, we summarize several properties of the limit point
set. Let {w*} be a sequence generated by the ADMM procedure (5) from a
starting point w’. The set of all limit points is denoted by S(w?), i.e.,

S(w?) := {w*: 3 subsequence {w"i} of {w*} converges to w*}.
Lemma 6 Let {w* := (af, 25, 25 \¥)} be the sequence generated by algorithm
(5) which is assumed to be bounded. Let S(w®) denote the set of its limit points.
Then

(i) S(w®) is a nonempty compact set, and

d(w*, S(w’)) =0, k — +oo;
(i) S(w®) C crit Zp;
(iii) Z(-) is finite and constant on S(w"), equal to

inf Zp(w ") = S Zg(w ") (27)

Proof We prove the results item by item.

(i) Obviously, S(w”) is a nonempty bounded set and d(w*, S(w®)) — 0 as
k — +o0o. Thus, we only need to show that S(w°) is a closed set. To see this,
let p” € S(w) and p" — 0, we just need to prove w € S(w®). Indeed, since
p™ — w, for any fixed i > 0, we can find n; such that

1
2

uz

lp™ — ]l < (28)

For any n, p" € S(w’), then there exits a subsequence {ij} of {w*} that
converges to p". That is, for any n,

Wi, — ", j— +oo. (20)
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Since p™ € S(w®), for fixed n;, it follows from (29) that there exits j,, such

that
1

” (30)

s, 9l <
Thus, it follows from (28) and (30) that

s =l <l

)+ ™ - ) <

Therefore, {wZ; '} is a subsequence of {w*} that converges to . Hence, & €
S(w?).

(ii) Let w* = (x%,23,25,A*) € S(w”). Then there exists a subsequence
(wlfj,ng,xgj, M) of (ak 2k 2k AF) converges to (x%, x5, x5, A\*). Note that
Lemma 4 implies

Wt — k|| =0, k— +oo. (31)
Then we know that (xlfjﬂ, xlgﬁl, x?“, AFi+L) also converges to (x5, 23, 75, \¥).
Since a;]fH is a global minimizer of Zj(x1, xlg, a:’?f, AF) for the variable z1, it holds

Lyt af, 2h ) < Ly(at, 2, 25, W), (32)

It follows from (31), (32), and the continuity of .Z3(-) with respect to 2, x3,
and A, we have

. ki+1 k4l kil g . kj+1 ki ki ok
llmsupfﬁ(x1”+ ,a;2”+ ,a;3”+ ,)\kJH) :hmsup.i”ﬁ(xlﬁ ,xgj,x?f,)\kﬂ)
j—+o0o Jj—+oo

< L, a5, 25, A7) (33)

On the other hand, from the lower semicontinuity of .Z3(-), we have

o kil kj+1 k4l (ks
llmlnfgg(xlj+ ,a;23+ ,a;33+ AT > @t ah, 1, AT, (34)
j—+o0o

The above two relations (33) and (34) show that
. k; *
lim fi(zy ") = fi(e)).

oo

Because of the continuity of V fo and V f3 and the closedness of df1, taking
limit in (11) along the subsequence (wlfj+1,$§j+l,$§j+l,)\kﬁ"H) and using (31)
again, we obtain

AT € 0f1(x7),

V fa(x3) = AT,

V fa(xh) = A,

Ala:’{ + Agﬂ?; + .’L‘§ —b=0.

Then, (z7, x5, 23§, \*) satisfies system (8), and hence, w* € crit Zj.
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k(iii?ﬁ Flg)r any point (x},x3, 235, A*) € S(w"), there exists a subsequence
($1J,$2J,x3],)\kﬂ') converges to (z7, 3,25, A\*). By means of (33), (34), and
{Z5(w*) }ren is nonincreasing, we obtain

——400

Therefore, Z5(+) is constant on S(w”). Moreover, (27) holds. O

Remark 7 Based on [7, Remark 5|, we can also show that S(uw") is a
connected set; for more details, see [7].

We are now ready for proving the main result of this paper.

Theorem 1 Let {wF = (aF 2 25 \¥)} be the sequence generated by

algorithm (5) which is assumed to be bounded. Suppose that Z3(-) is a KL
function. Then {w*} has finite length, that is,

+00
Z [wkH — w|| < 400,
k=0

and as a consequence, we have {wk} converges to a critical point of Z3(-).

Proof From the proof of Lemma 6, it follows that Z3(w*) — Z5(w*) for all
w* € S(w”). We consider two possible cases.

(i) The first case is that there exists an integer ko such that
Ly(w') = Ls(w").
Rearranging terms of (12) and by Remark 4, for any k > ko, we have
oo™t = oF|* < Zp(w®) - Lot < L(w') — Ls(w") =0,

and so, for any k > kg, we have v*T! = v¥. Associated with (19), (25), and
(26), for any k > ko + 1, it follows that w**! = w* and the assertion holds.

(ii) The second case is that Zp(w") > L(w*) for all k. Since d(w*, S(w"))
— 0, it follows that for any € > 0, there exists k; > 0 such that for any k > ky,
d(w, S(w?)) < e. Again, since Zp(w*) — L3(w*), it follows for all n > 0,
there exists ko > 0 such that for any k > ko,

fﬁ(wk) < ZLp(w*) + .
Consequently, for all ;7 > 0, when k& > k= max{ki, ka},
d(w®, S(w?)) < e, La(w*) < fﬁ(wk) < ZLp(w*) + .

Since S(w) is a nonempty compact set and Z3(-) is constant on S(wP),
applying Lemma 1 with Q := S(w?), we deduce that for any k > k,

o (Ls(wh) — Ls(w*))d(0,0.L5(w")) > 1.
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Since
Ls(wh) = Ls(w) = (Ls(wh) — Ls(w*)) — (L) = Ly(w")),
using the concavity of ¢, we get
P(Ls(wh) — Ly(w")) = p( L™t = Ls(w"))
> ¢ (Lp(wh) — Lp(w")(Ls(w") = Ls(whH)).
Thus, associating with
d(0,0Z5(w")) < ([l ="Ml @ (Lp(w) — ZLs(w*)) >0,
we know

Ls(w*) — Ls(w™ )
p(Ls(w") — Ls(w")) — p(Lp(wh!) — ZLs(w"))

S & (Ls(wh) — Ly(w))

For convenience, we set
Apg = p(ZLp(wh) = Zs(w?)) — p(Lp(w?) = Zs(w?)).
Combining Lemma 3 and the above inequality yields that for all k£ > %,
Sl = oM |P < ¢l = oM Ag s
and hence,
[oF+L — k|| < \/g N o — kalul/2.

By using the fact
Wab<a+p, Ya,3>0,

we obtain

2h* — o) < o — o5 € A (33)

Summing up (35) for k = k+1,k+2,....m yields

m m C
k k k k—
A e (I N R 5Ag+17m+1-
k=k-+1 k=k+1

Notice that
ALy = Zy(w?)) > 0.
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Rearranging terms and letting m — +oco yield

+o0 _ _ _
S IR = oF < = oF S () - L)), (36)
k=k+1

which means

+o00
Z Hkarl o Uk” < +00.
k=0

Thus, we can deduce
+00 +oo
Do llastt = af) < +oo, Y |la5T — 2| < +oo.
k=0 k=0

Moreover, it follows from (19) that

+o00

Z H)\k—I—l _ )\kH < +00.

k=0
On the other hand, it follows from (25) and (26) that
k+1 K
1

|z Ty

4 _
< \/ o (ST X2 % = N2 2 —
T B2 Ag|? kT — k)12

4 _
< \/ﬂ2u (IAEFE = NF - NS = X+ Bl — 25|+ B Azl |25 — 23

Hence,

+00
Z |2 — 2| < +o0.
k=1

Moreover, we note that
k k k k k k k k k k
[t — || < eyt =[] 4 (lay T = @5+ e T - 2] AR = AFL

Therefore,

“+o00
Dkt — k)| < oo,
k=0

{w*} is a Cauchy sequence (see [7, p.482] for a simple proof), and thus is
convergent. The assertion then follows immediately from Lemma 6. U

Remark 8 Actually, [2,3] proved an abstract convergence result for descent
methods satisfying a sufficient decrease assumption, and allowing a relative
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error tolerance. However, as stated in [24], their results cannot be applied
directly to our algorithm. In fact, their sufficient descent property in our case
reads, there exits 6 > 0 such that

Zy(w) < Ly(wh) — 0w — w2, (37)
while we only have
Lok 1) < Ly(wh) - 5ot — oF |2,

which is not sufficient for (37) holding.

Next, we give some sufficient conditions to guarantee the sequence {wk =

(zh, x5, 2% A\F)} generated by the ADMM (5) is bounded.

Lemma 7 Let {w* := (af, 25, 25 \¥)} be the sequence generated by algorithm

(5). Suppose that
int { fo(es) — 1 IV Falas)|?} = fa > —oo.

If
liminf f(z1) = 400, liminf fo(zg) = 400, (38)

[l [ —+o00 (|2 —+o0
then {w*} is bounded.
Proof From Lemma 3, we know that
Ly(ah, a5, 2§, \°) < Lp(ai, a3, 25, A1),
Then, combining with \¥ = V f3(z%), we get
Ls(al, w3, 05, \)
> fi(@}) + fo(ah) + fa(ah) — (A", Ava} + Agal + 2§ — b)
0 drak + Aok 4 af b2
k K Lok B k koo k Lk
= Fueh) + o) + ) — o IV 4 [ Aveh + gl af b — X

= A+ 1aah) + (aah) = | IVBEDIE) + ([ = 5 ) INIE

1 2
+§HAla;’f+A2x§+x’§—b—ﬁ)\kH
1 1
> )+ )+ Fat (= o )INTP
1 2
+ g HAlxlf—i—Agxlg—i—xlg—b— B)\kH .
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Observe that, (38) implies that
inf f1(xz1) > —o0, inf fo(zg) > —o0.
1 x2
It follows from these and 3 > 2L that
k k k B k ko, ok Lk]?
{1}, A{z3}, {A"} 9 Ayx] + Agws + a3 — b 5)‘ ;

are bounded. Therefore, {z%} is bounded, and hence, {w*} is bounded. O

4 Convergence rate

In this section, we establish the convergence rate for the ADMM procedure (2).
Similar to the last section, we only consider the case m = 3. The main result is
summarized in the following theorem.

Theorem 2 Let {wF := (af 2k 25 M)} be the sequence generated by
algorithm (5) and converges to {w* := (a7, 23,23, \*)}. Assume that Z3(-) has
the KL property at (23, 2%, 25, \*) with ¢(s) = cs'=%, 0 € [0,1), ¢ > 0. Then the
following estimations hold:
(i) if @ =0, then the sequence {w*} converges in a finite number of steps;
(i) if 6 € (0,1/2], then there exist ¢ >0 and T € [0,1) such that

H(xllca$l2€¢x§a>‘k) - ($T,l’§,l’§,)\*)” < CTk;
(iii) o 0 € (1/2,1), then there exists ¢ > 0 such that
Proof We first consider the case that 6 = 0; then ¢(s) = ¢s and ¢/(s) = c.
If {w*} does not converge in a finite number of steps, then the KL property
at (xf, x5, 2%, \*) yields for any k sufficiently large, ¢ - d(0,0Lg(w*)) > 1, a

contradiction to Lemma 5.
Now, suppose that 8 > 0 and set

+o0 4 4
A=Y [ =2, k=0
i=k

The triangle inequality yields Ay > |[v* — v*||, and it is therefore sufficient to
estimate Ag. With these notations, it follows from (36) that

By < (B = Bp )+ S o) — Zy(w)),
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Again, by the KL property at (z*,y*, 2*, \*), we have
@ (L) — L") d(0,0L5 (1)) > 1.
which is equivalent to
(L) = ZLy(w))’ < e (1= 0)d(0,0L5 (). (39)
Using Lemma 5, we get

d(0,0.25(wM 1)) < - o — oF|| = ¢(A; - A, ) (40)

Combining (39) and (40), we obtain that there exists v > 0 such that

@(gg(w%Jrl) — fﬁ(u}*)) —c- (Diﬂﬁ(wEJrl) - gﬂ(w*))lfﬁ < "Y(A']; o A%Jrl)(lfe)/@’

and hence,

¢ —6)/6
Ay (A=A )+ S (A — A%H)(l e,

Sequences satisfying such inequalities have been studied by Attouch and Bolte
[1]. It follows that

e if § € (0,1/2], then there exists ¢; > 0 and 7 € [0,1) such that
lo* =¥l < err®,

and
e if § €(1/2,1), then there exists co > 0 such that

||Uk _,U*H < CZk(Gfl)/(2971).

Thus, we have
e if € (0,1/2], then there exists ¢; > 0 and 7 € [0,1) such that

25 — 23| < err®,  [|l2f — 23] < et (41)

and
e if § €(1/2,1), then there exists co > 0 such that

25 — @3|| < ek @D/ jah — ) < ek @D/, (42)

Recall that V f3 is Lipschitz continuous with modulus Ls < L. It follows from
(8) and (11) that

INF = N[ = [V f3(25) — V fa(@3)]| < Ll — 5]]. (43)
Furthermore, from the relations

M= 2 B(Aah + Agak + 2k —b)
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and
Arxy + Agxy + a5 =0,

it follows that
BlArf — Ava}) = B(Azxs — Aga§) + Bl — 28) + (A1 = A) + (A = AF).

Therefore, there exists v > 0 such that

1 1
k * k * k * k— * * k
laf =1l < (14l l§ = a3l + i = gl + 5 I =X+ A = 2%)

* L * L - *
<[l = a3+ (14 ek = a3l e s, (aa)
where the second inequality follows from (43). Combining (41)—(44), we get
the desired inequalities immediately. U

5 Conclusions

In this paper, we analyzed the convergence of alternating direction method
of multipliers (ADMM) for solving multi-block linearly constrained nonconvex
minimization model without coupled variables where none of the involving
functions are convex. Under the assumption that the associated function
satisfies the Kurdyka-Lojasiewicz (KL) inequality, we proved that any cluster
point of the iterative sequence generated by the algorithm is a critical point,
provided that the penalty parameter is sufficiently large. Particularly, when
the data functions f1, fo, and f3 are semi-algebraic, the convergence rate of the
algorithm was also established.

Furthermore, we prove Lemma 3 holds under the assumption that one of
the objective functions is convex. In this case, under the assumption that
the associated function satisfies the KL inequality, we can similarly prove that
any cluster point of the iterative sequence generated by ADMM is a critical
point, provided that the penalty parameter is greater than 2L, where L is
the Lipschitz constant of the gradient of one of the involving function. When
the data functions f1, fo, and f3 are semi-algebraic, we can also show the
convergence rate of the algorithm.

As we have mentioned in the introduction, the nonconvex separable
optimization model (1) finds many interesting application and ADMM exhibits
great success in solving the model. One of our future research topic is using the
model and algorithm to some other application field such as traffic assignment
problem [10,31].
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Appendix Proof of Remark 5

Proof of Remark 5 Similar to the proof of Lemma 3, we can show
Lkt 2§ kA

B—L L?

2 g

< Lpafthabtt b 2h) — ( Nkt —akIP. (A
Recall that
fﬁ(wlfﬂ, ok ak k) — fﬁ(xlfﬂ, ah T 2k k)
= fa(5) — fa(z5 ) + (NF, Apai™ — Apaf)
0 vt 4 A 4 — bl = [ Aiaft + Ak o b (A2)
Since fo is a convex function, it follows from the second equality of (10) that
Fa(ah) = fa(as™) > (AN BAG (Aray ™ + Apa ™ 4 af—b), af — a5t (A3)
Inserting (A.3) into (A.2) and by means of (i) of Remark 5, we have
Ly(ay ™ 2l af, AF) — L2 2y o, )
> — ﬁ(Alxlf'H + A2$§+1 + xlg — b, A2x’§ - A2x§+1>
0 st 4 A+ o — b At Aprk 4 b
B
> W g — o). (A4)
Thus, it follows from (A.1) and (A.4) that

Ly 2k, a1 N
2
k41 _k+1 _k vk f—L L k+1 k2
< Lyttt ah ) — (7,7 = )l
2
k+1 .k .k \k f—-L L k+1 ki2  PEO ks k12
< -Xﬁ(ﬁ’ﬁ+ s Ty, Ty, AY) — ( 2 8 )Haz3+ — 5" - 9 H%Jr — 5|
< Zﬁ(xlfa$§¢x§a )‘k) - 5||Uk+1 - UkHZa
where the third inequality follows from (i) of Remark 5 and the fact that a;]fH
is the global minimizer of (x4, 3:12“ , xlg, )\k) with respect to variable x1, i.e.,

k+1 _k k \k k _k .k \k
-Xﬁ(ﬁ’ﬁ+ s Ty, T3, A )giﬂﬂ(xhﬂ?z’x:’,a)\ )-

The proof is complete. (|
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