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Abstract In this paper, for homogeneous diffusion processes, the approach of
Y. Li and X. Zhou [Statist. Probab. Lett., 2014, 94: 48-55| is adopted to find
expressions of potential measures that are discounted by their joint occupation
times over semi-infinite intervals (—o0, a) and (a, 00). The results are expressed
in terms of solutions to the differential equations associated with the
diffusions generator. Applying these results, we obtain more explicit expressions
for Brownian motion with drift, skew Brownian motion, and Brownian motion
with two-valued drift, respectively.
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1 Introduction

The goal of this paper is to study a joint Laplace transform of occupation
times over disjoint intervals for one-dimensional time homogeneous diffusion
processes. In the following, we first give a brief review on the related previous
results and their approaches.

Using the classical approach of solving the associated differential equation,
Linetsky [26] and Davydov et al. [7] studied the Laplace transform of
occupation time over semi-infinite intervals (—oo,0) or (0,00) and over finite
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interval (a,b) of a geometric Brownian motion model, respectively. Cai et al.
[5] generalized the previous results to the jump-diffusion process with double
exponential jumps. They also derived a closed-form Laplace transform of the
joint distribution of the occupation time and the terminal value of the
jump-diffusion process. Applying excursion theory, Pitman and Yor [30,31]
also obtained similar Laplace transforms for one-dimensional diffusions. In
particular, they found a formula for the joint Laplace transform of the
occupation times spent by the process either above or below a level up to a
suitable random time.

Landriault et al. [18] proposed a perturbation approach to study the Laplace
transform of occupation time for spectrally negative Lévy processes (SNLP).
In [18], the occupation time is, respectively, over and under estimated by the
approximating occupation times whose Laplace transforms can be computed
via solutions to the exit problems for SNLP. The desired Laplace transform
of the occupation time then follows by taking a limit. With the strategy of
Landriault et al. [18] and for diffusion processes, Li and Zhou [22] studied
the joint Laplace transforms of occupation times up to an independent
exponential time. The results were expressed in terms of solutions to the
differential equation associated to the diffusion generator. More recently, using
the same approach, Li et al. [23] found expressions of double Laplace transform
for diffusion processes. They also obtained the explicit Laplace transforms of
the corresponding occupation time and the occupation density for Brownian
motion with two-valued drift and that of occupation time for skew Ornstein-
Uhlenbeck process.

In [27], the occupation time Laplace transforms were first considered for
SNLP with sample paths of bounded variation, and then for general SNLP
that can be approximated by SNLP of bounded variation. As a result, the
Laplace transform of occupation time over a finite interval before certain first
passage time was obtained. The above approximation method is similar to one
that was used previously by Kyprianou et al. [17] to study the occupation time
of the so called spectrally negative refracted Lévy processes. Similarly, Yin
et al. [34] determined the joint laws for some occupation time related quantities
for SNLP which are useful in risk theory. Recently, for SNLP and using the
approximation scheme of [27], Guérin and Renaud [14] identified the expression
of a quantity which determines the joint distribution of the occupation time over
finite interval (a,b) up to time t and the value of the process at time ¢. Renaud
[33] derived identities for the distribution of occupation times of refracted Lévy
processes. More recently, Pérez and Yamazaki [28] studied the occupation times
of the so called refracted-reflected SNLP, which was used in [29] to consider the
occupation times of dual model.

In order to get around the approximation arguments in the aforementioned
work, Li and Zhou [24] first studied the Laplace transforms of pre-exit joint
occupation times for SNLP, where they proposed an alternative approach that
identified the joint Laplace transform of the occupation time with the
probability that two independent sequences of Poisson arrival times avoids their



An occupation time related potential measure for diffusion processes 561

respective regions. Using formulas of potential measures, solutions to the exit
problems, and identities on scale functions for SNLP, they found expressions
for the desired probabilities. Li et al. [25] adopted the Poisson approach in [24]
to obtain expressions of potential measures that are discounted by their joint
occupation times over semi-infinite intervals (—oo, 0) and (0, c0). Recently, with
the Poisson approach, Li and Palmowski [21] obtained fluctuations identities for
Omega-killed SNLP.

The Poisson approach also works well for diffusion processes. Chen et al. [6]
used this approach to express the joint Laplace transform for pre-exit diffusion
of occupation times in terms of solutions to the associated differential equation.
The direct approach of [24] allows us to handle more complex quantities
involving Laplace transforms of occupation times. It thus has some advantages
over the previous approaches.

Similar to [24], these expressions in [25] are in terms of the associated
scale functions and the inverse functions of Laplace exponents. The problems
considered in [25] and [14] are along the same line. But the methods of [25]
and [14] are different. More fluctuation identities on SNLP observed at Poisson
arrive times have been studied in Albrecher et al. [1].

Occupation times have be found many applications in mathematical finance
and risk theory for insurance. In mathematical finance, the occupation times
can be used to define and price options such as step options (e.g., Linetsky [26],
Guérin et al. [14]) and corridor options (e.g., Fusai [13]). In risk theory, the
occupation times can be utilized as a useful tool to manage insurable risks.
Egidio dos Reis [10], Dickson and Egidio dos Reis [8], and Kolkovska et al. [16]
studied different Laplace transform of occupation times of the classical
compound Poisson risk model. Occupation times for other risk models were
also studied, such as the SNLP risk model (e.g., Landriault et al. [18], Loeffen
et al. [27], Yin et al. [34]), the Erlang-2 risk model (e.g., Dickson and Li
[9]), the Markov additive risk model (e.g., Albrecher et al. [1]), the Markovian
arrival process (e.g., Landriault et al. [19]), and the Markov-modulated
Brownian motion (e.g., Breuer [4]).

Many explicit results on Laplace transforms for occupation times have been
obtained for some well-known examples of diffusion processes; see, e.g., Borodin
and Salminen [3] for a collection of such results. Potential measures are also
interesting topics for stochastic processes. But for general diffusion processes,
the potential measure discounted by their joint occupation times over disjoint
intervals (a,00) and (—o0, a) have not been studied systematically.

In this paper, we adopt the Poisson approach of Li and Zhou [24] to consider
the two-sided discounted potential measures for diffusion processes, the
expressions are in terms of solutions to the associated differential equations.
Moreover, the results can be applied to find more explicit Laplace transforms of
the occupation times up to an independent exponential time for skew Brownian
motion and for Brownian motion with two-valued drift. To our best knowledge,
such results have not been known before. In addition, our results can also be
applied to study option pricing.
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The rest of this paper is arranged as follows. In Section 2, we review the
basic facts we need for time-homogeneous diffusion processes. In Section 3, we
first show a lemma which we need later. Then the desired results on two-sided
discounted potential measures for diffusion processes are obtained. In Section
4, we find explicit expressions on two-sided discounted potential measures for
several examples of diffusion processes, such as Brownian motion with drift,
skew Brownian motion, and Brownian motion with two-valued drift.

2 Preliminaries

In this paper, we consider a one-dimensional diffusion process X = (X;)i>0
defined on a filtered probability space (£2,P, (%#;)i>0). The law of X such that
Xop = x is denoted by P, and the corresponding expectation by E,, and we
write P and E when z = 0. Process X takes values in interval [ with end points
—o0 < 11 < la < oo, which is specified by the following stochastic differential
equation:

dXt == /J,(Xt)dt + O'(Xt)th, (1)

where Xy = x¢ is the initial value and W = {W, t > 0} is a one-dimensional
standard Brownian motion. Throughout the paper, we assume that equation
(1) allows a unique weak solution, which is guaranteed if there exists a constant
K > 0 such that, for all z,y € I,

(@) — p@)| + lo(z) —o(y)| < Klz—y|, p*(2) +o*(z) < KX(1+27%); (2)

see Evans [11].
Two basic characteristics of diffusion processes X, the speed measure m and
the scale function s, are given by

2¢B()

m(dz) = m(z)dx := o2(x)

dz, s(z) ::/ e BWAy, 1| <z <y,

respectively, where

B(x) == /m Zggz; dy.

Let p(-;-,-) be the transition density of X with respect to the speed measure
for diffusion processes, i.e.,

P, {X; € dy} = p(t; z,y)m(dy).

For ¢ > 0, let g 4(-) and g4 4(-) be two independent positive solutions to
the (generalized) differential equation associated to the generator of X,

1

o 0 (@)g" (@) + p(2)g () = ag(2), (3)
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with g_ 4(-) decreasing and gy 4(-) increasing, respectively. For some examples
of diffusion processes, equation (3) yields explicit expressions for g_ ,(-) and
g+ .4(+); see Borodin and Salminen [3]. Here, a solution g(x) to equation (3)
satisfies

’ /[a’b) g(2)m(dz) = g~ (b) — g~ (a), (4)

where

The Green function for X is

Gq(z,y) :2/0 e Up(t;z,y)dt.

Then

where

Wy 1= gi,q(x)gaq(f) — g q()g” o) = 95 ¢ (@)9- (%) — g94.4(x)g 4(2)

) ) )

is the so-called Wronskian with

t(z) := lim gl +h) = g(x)

h—0+ s(x +h) —s(z)

It is known that w, is independent of x.

We refer to [3, Chapter II] for the above facts and more details about
diffusion processes.

Furthermore, for ¢ > 0, define

fo(y,2) = 9- q(¥)9+.4(2) = 9-4(2)9+.4()-

We have the following well-known solutions to the exit problems. Let
Ty = 1inf{t > 0: X; =z}

be the first passage time of X at level x with the convention inf ¢ = oc. For
any z € (a,b) and g > 0,

fq(z,0)
fqla,b)

Eple %70 < 1) =

(5)

and

fQ(avx) .
fq(a,b)’

E.le @ m < 74] =
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see, e.g., Borodin and Salminen [3] and Feller [12]. Moreover, for ¢ > 0, we
have
lim g_4(z) = lim gy 4(x) =00
r——00 Tr— 00

and
lim g_,(x) = lm g4 4(x) =0;
Tr—0Q0 r——00

see, e.g., Li and Zhou [22]. Therefore, let b — oo in (5) and a — —oo in (6),
for x € (a,b), we have

E.e 9T — g—#l(x) E.e 9 — 9+7q(37)
9- 9+,q4(b)

3 Main results

Throughout this section, we always take e, to be an independent exponential
random variable with rate ¢, and write X (e,) for X, . We first prove a lemma
which will be used later.

Lemma 1 For any y € R,
/000 Py{t < 74, X € dz}e” 7dt
Gy = 1) Gyfa2) | mida). g € (a.00)
Gq(a,aﬁ)] m(dz), y € (—o0,a).

The proof of Lemma 1 is given in Appendix.
We now consider the potential measure denoted by

7Y (dz)

(—00,a)U(a,00)

:_/ efnty[e*A—fﬁl(foom(Xs)dS*Mfotl(a,ow(Xs)ds;X(t)eda:]dt.
0

Theorem 1 For any A_, Ay > 0, with A\_ # Ay, we have
forx <a <y,

Y _ 9—q+y (y)A(a, dx) .
7 = 49 gir, (@)B(0) @

(—00,a)U(a,00)

(dx)

forx,y < a,

jy

(—00,a)U(a,00)

(dz)

9tar-(y)Ala, dz)

g+,q+)\7(y)
- 1o (@)B(@) * D

Goix_(a,x)|m(de) +
I air (a) q+A ( ) ( )

= Gq+>\7 (y> LU)
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for x,y > a,

jy

(—00,a)U(a,00)

(dx)

_ o) _ It (y) w2 () 4 I—atA (y)A'(a,dz)
= [Gorn i) = 1 ) Cany ) i) 7 0 By ¢ )
fory <a<x,
7Y (dx) _ 9+,q+X_ (y)A,(aa dx) (10)

(—00,a)U(a,00)

49+.q+x_(a)B(a)

where

Ala,dz) == qGgir +a, (a,z)m(dz) + >\+CI/ Gotr_+rs(a,2)

_ Ytata- (2)

X |:Gq+)\7 (2, 2)m(dz) Irqra_ (@)

Goir (a,)m(da) | m(d2),

Al(a,dz) == qGgir_ 4, (a,z)m(dz) + )\_q/ Garr_+a.(a, 2)

X [Gq+>\+(z,a;)m(dx) _ s (®) Gq+)\+(a,aj)m(dx)}m(dz),

gf7q+>‘+(a)
oo g Py
B(a) :=1-— )\/ Gora_+x, (a, z)g q+>\+g )

o (a m(dz)
—a+As

a g+, (2
—)\+/ Gir_a, (a,2)” 70 ( )m(dz)-
-0 It.g+r(a)

Proof For x,y € R, because

j(zioo a)U(a,00) (dx) = ; Ey[e_A* foeq 1(*oo,a)(X$)d3_>‘+ foeq 1(a,<>o)(X$)d3; X(€q) c dx]’

let
f(y) = Ey[e_A* foeq 1(—o0,a)(Xs)ds—Ay foeq 1(a,<>0>(X3)ds; X(eq) S dx].

Write
0<Ty <Ty <+, 0<Ty <Tyf <---,

for the arrived times of two independent Poisson processes with rate A\_ and
A4, respectively. In particular, we denote

T_=T;, Ty=1,.

We also assume that these Poisson processes are independent of process X.
Using a property of Poisson process that

PUT }N B =0} =)
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for any Borel set B C [0,00) and Lebesgue measure m on R, by conditioning
on X and e4, we observe that

f)
=P,{D, X(eq) € dz}

=P, {T7 I n{s<epXs<a}=0={T"}N{s <eq X5 > a}, X(e,) € dz}.
For z,y < a,

f(y) - Ey[eiAie%Ta > eq7X(€q) € d.’L‘] + Ey[eiAiTa;Ta < eq]f(a)
=q /0 P, {t < 7o, X (t) € da}e™ @A)dt 4 e (@A) £ (q)

gt (y)

It.g+xr_(Y)
Gt,q+xr_(a) G- (@, x)] m(dz) + f(a),

=q|G , T
q [ q+A— (y ) Gt gin (a)

where in the third equation, we used Lemma 1.
For x < a <y,

F) =Bl < el (0) =By 0 ) = T O ),

It follows that for x < a,

fla) =Puleg <T-NTy, X(eq) € da} + P {T- < e, ATy, D, X(eq) € da}
+P AT} <eq ANT-,D,X(eq) € da}

= Eq[e”A-FA+)eq, X(eq) € da] +/ Eole~ @A )T=: X e dz]

X E.[f(a);Tq < eqNT4] +/ Hzﬂa[e_(‘ﬁ'/\*)T*;XT+ € dz|

— 00

X (PAeg <o NT_; X(eq) € da} +P{7q < eg ANT_}f(a))

= B e~ A=A X (e,) € da] + / Eyle™ @ )T X0 e dz

X Ez[e_(q“*)mf(a)] + / Ea[e_(q“*)ﬂ; Xr, € d7]

— 00

X (P{eq <o NT-; X (eq) € da} + P {7, < e ANT_}f(a)).

With some calculations, we have

/ Eole™ @)= X0 € dz]E,[e" 0T M) £(q)]

gf7q+)‘+ (Z)

= )\/ Goin_ a,z
. q+A +)\+( )g—,q+)\+ ((I)

m(dz)f(a)
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and "
/ Eafe~ @A )T; X7 € dzP. {70 < ey AT_}f(a)

= At /a Gair i, (a,2)m(d2)E.[e” @A) f(q)

J+,g+2- (2)
9+.q+2— (a)

By Lemma 1, the following result can be deduced:

=\ /_a G+, (a,2) m(dz)f(a).

/ IECL[e_(q‘w‘*)rﬂ;XT+ € dz]P.{e; < 1o NT-; X(eq) € da}
= )\+/ Ggr_+. (a, z)m(dz)/o qge P {t < 7, NT_; X(t) € dw}dt

= )\+/ Garr+2s (a,z)m(dz)/ qe AP {1 < 7 X (t) € da}dt
—00 0

— 2 [ G (02) G (zr0)m(da)

_ Itata- (2)

sor(a) Coer- (@ aIm(do)|m(dz).

So we can get

g_7Q+>\+ (Z)
gf7q+)‘+ (a)

F(a) = 4Gyin_in, (a,2)m(dz) + A / T Gy, (0,2) m(dz)f(a)

i [ G (02) Gy (5 0)m(d)

9+,q+2— (Z)
g (a) Gga_(a, x)m(d$)] m(dz)

J+,g+2- (2)
9+.q+r_(a)

+ Ay /_a Garr_+2.(a,2) m(dz)f(a).

After some calculations, we have

Similarly, for x > a,

fla) =Puleg <T-NTy, X(eq) € da} +Po{T- < e, ATy, D, X(eq) € da}
+P{Ty <e, ANT-,D,X(eq) € da}

= B e~ A=A X (e,) € da] + / E,[e~(@A)T4: Xp € d2]

— 00



568 Ye CHEN et al.

X P {1, <eg NT_}f(a) + / Ea[e_(q+)‘+)T*;XT7 € dz]

X (P.{eq < 1o NT4; X(eq) € da} +E;[f(a);7q < eq ATY4])
= B, e~ P-4 X (e,) € dz]

+ / E,le~@AT: X € d2]P, {7 < eg AT} f(a)

—00

—{—/ Eole™ @)1= X0 € dz]P.{eq < 7o NT}; X (eq) € da}
4 [T Bl X € daBLfe TP f(a),

where

/ Eole™ @)1= X € d2|P.{e; < 7o ATy; X(e,) € da}
= A / Garr_+a, (a, z)m(dz)/ qe TP {t < 7, NTy; X(t) € da}dt
a 0

= )\/ Garr_+, (a, z)m(dz)/ qe” AP (1 < 7 X (1) € da}dt
a 0

= A_ /Oo Gq+>\,+)\+ (a,z) [QGq+)\+ (z,x)m(dz)
_ qz:’z:::i* EZ; Gains (a, l’)m(d$)] m(dz).

So we can get

@) = a6 (@) £ [ G a0 )T i (o
A [ Gaa @ 2) [aG i (e nmlan)
9—.q+2¢ (Z) e
9—.q+2¢ (a)

x [ G ) m(d)f (@,

e+ (a, a:)m(dx)} m(dz)

After some calculations, we have

fla) = A/éa(’;;x) .

Now, we prove expressions (7)—(10).
Given x < a, for y > a,
9—.q+2+ (y) 9—q+2+ (y) A(a,dz)

o e—)\+7—a,7_ e a) = a) = ;
fo) =Byle ™ ma < elfla) = 0 @O =" ) Bla)
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for y < a,

f()
= Ey[e_)‘*eq;Ta > eq, X(eq) € dz] + Eye A-Tas < eqlf(a)

= CI/O Py{t < 74, Xt € dw}e_(‘ﬁ')‘*)tdt + Eye_(q+)‘* e f(a)

_ x)m(dx) — g+’q+>\7(y) a,x)m(dx Thata (y) a
= qGger_ (y, x)m(dz) g () Ggia_(a,z)m(d )+g+q+A () f(a)

_ z) — It.g+x_ (V) G+.qg+x_(y) A(a,dx)
7q[Gq+L(y’ ) 9+,q+r-(a) 9+.qtr_(a) Ba)

Given z > a, for y > a,

()
= Ey[ef)‘”q;Ta > eq, X(eg) € da] + Eyle “MTar < eqlf(a)

Gy (a,x)|m(dx) +

<

= q/O Py{t < 7o, X; € da}e @At 4 B e~ @A) f(q)
9—q+)+ (y) 9—q+)+ (y)
= qGyix, (y,x)m(dx) — q Gyix, (a,x)m(dx) +
A 9— q+X2+ (CL) A 7q+>\+( )

9 qirs (V) g- ,q+>\+( ) A'(a,dx)
9—q+r. (@) Gq+>\+(a’$)] m{de) + 9—qtr (@)  Bla)

A
\_/

7

=q [Gq+)\+ (y,7) —

for y < a,

Fratr-(W) v graer-(y) Ao, dx)
Jt.q+x_(a) 9i.qtr_(a)  Bla)

Remark 1 From the proof of Theorem 1, we have

fly) =Eyle ™7, < egf(a) = O

Eqle - Jo 7 Lcoo,) (Xs)ds—Ay [o* Laoe) (Xe)ds: X (e,) € da]
1 A(a,dz), =z <a,
~ B(a) | A(a,dz), z>a.
Some corollaries then follow from Theorem 1.

Corollary 1 For A\_, A1 > 0, we have

e Jo! Li—oo,0)(Xa)ds=A4 [5? 1(0,00) (Xa)ds _ Al,
B

where

q g*,q+)\+ (y)
A = G 0 d
S S q+ A+ / a2 y)< g,q+>\+(0))m( y)

q>\+ / 9+.q+x(Y)
+ G 0 m(dy),
a+r g ( y)( Grgin 0)) (dy)
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By:=1-A / Gara_+a, (0, y) Zi;\:%; m(dy)

I+,q+X- (y)
- A / G 0, dy).
") ara— y)g-l—,q—i—)\ (0) m{dy)

In general,

E e - Jo " L= 00,0y (Xa)ds At [5 10,00 (Xs)ds

A
q <1 9+,q+X- (y)> It.q+x_(Y) <0,
_Ja+t A 9+ a+a_(0) 9+ g+ (0)
I (1 _ G-ty (y)) gogre () A1
¢+ At 92 (0)/ " g— 442, (0)

Proof For y € R, let

Ly, := Eye_L Jo T L(“00,0) (Xs)ds =24 f57 L0,00) (Xs)ds

Similar to the proof of Theorem 1, we denote 0 < T}, < T, < --- and 0 <
Tfr < T2+ < - .- for the arrived times of two independent Poisson processes with
rate A_ and A, respectively, and they are both independent of process X. We
have

L, =P {D}=P,{{T; }N{s<ep$ Xs <0} =0={T,"} N {s < ey, X5 > 0}}.

For y < 0,
L,= Ey[e)‘*eq; eq < o] + Ey[e)‘*m; T < €q)Lo
= Eye* 1 — B [’ %71 < eg] + Eyei(q“\f)m[’@
g +q/\7 g +in Eje 1A 4 By (0T L,
_ g (1 B 9+,q+>\(y)) L Irann-) (1)
q+ A 9t.q+r_(0) 9+.q+x_(0)
and for y > 0,

L,= Ey[e’\+€q;eq < 10] +Eyle MO0 1 < eq)Lo
q ( _ 9—g+rs (y)) L G-t (y

)
= L 12
q+ A+ 9—q+X2¢ (O) 9—q+X2+ (0) o ( )

Now, we consider L.

Ly =P{D}
=Pleg <T_ ATy} +P{T_ < e, ATy, D} +P{T}, < e, AT_,D}

= Ele~A-+A+)eq] +/ E[e~ (@A )T-. X dy] L,
0
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0
+ / Ele~ @t )T+ X € dy]L,

_ q
q+)\7+>\+

0
A, / Gairr, (0,y)m(dy) L.

Combining (11)—(13), we have

+ A /0 Gaia_a (0,y)m(dy) Ly

q o0
= q + )\_ + )\+ + )\_ A GQ+>\7+>\+ (07 y)m(dy)

X[ q ( _g,q+x+(y)) L I—are(¥)
q+ At 9—q+2+(0)/ g— g4, (0)

Ly
Lo}

0
+ >\+ / Gq—l—)\f-l—)uﬁ (07 y)m(dy)

" [ q ( _ Ghgtas (y)) L Gt (v)
q+ A 9+.q+1-(0) 9+.q+1-(0)
q -

2

o0 9—q+)+ (y)
+ A / (e 0, m(dy)L
0 g+ A+ ( y) 9ogin, (0) ( y) 0

q+ A gr,q+x_(0)
0
I+,q+2- (y)
+ A / G A+ O,y m dy LQ.
- —0 AT +( )g+,q+>\7 (0) ( )

o g*,q+>\+ (y)
= + Gairr, (0,9) (1
g+A-+A g+ Ay /o a2 (0:9) 9—q+2+(0)

o+ /_0 Gq+x,+x+(0,y)(l— 9+,q+>\(y))m(dy)

571

(13)

Jm(dy)

After some algebras, we can obtain B;Lg = Ay with A; and Bj as desired. [

Corollary 2 For any A\, we have
E, e Jo" Loy Xa)ds o < 75 X (e,) € da]

9— g+ (y)
g g (0) Gq-l-)\ (07 l’)} m(dx),

]Ey[e_)\foeq 1(*00,0)(X3)ds; €q < 7o, X(eq) € d(lf]

= q|Goaly) -

N ()
 Giqia(0) Corl0; x)} m{dz)

Proof Given x,y > 0, we have

= q|Gonr(y2)

Ey[e_k-/gq Lo (Xa)ds o < 7 X (e) € da]
=P,{e; < exATo,X(eg) €da}

= q/ P,{t < ex ATy, X(t) € dz}e ?dt
0
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o
= q/ e NP {t < 19, X (1) € drye %dt
0

= a[Gyoatyna) = TN Gy 0.2) ().

With similar arguments, we can get the result of case z,y < 0. O

Letting A_ — 04 and Ay — 04, respectively, in Corollary 1, we obtain the
following corollary.

Corollary 3 When A_ — 04, AL = A, we have

A 0
e Ao Lo,00)(Xe)ds — q _ atA _0)‘ Jooo Gaa(0,y)m(dy) ’
L= A [0 Gain(0,9) 454 m(dy)
Bye o 10,00 (Xs)ds

| ) | iix = Ml Gaia(0,y)m(dy)

y <0,
I AU PV GqH(o,yA)grEog m(dy)’
¢ . 9-gA(y) < A — M2 Gyia(0,9)m(dy) ) Y>>0
a+A g-qa(0) \qg+ A )\f Gyin 0, y)9+ qE 3 m(dy) ’
when Ay — 04, A_ = A, we have
]Ee_)‘foeq 1(700,0)(Xs)d5 —-1— q+>\ )\fo qJF)‘ O y( : (dy)
1- )‘fo G (0 y)g q(y) (dy)
EyeiA‘fOeq 1(700,()) (Xs)ds
A
4 | 9rara(y) ( A AN Gera0,y)m(dy) > )0
- A g+’q“(0) IHEA 1A 5 Gnl0,y) ) Eog m(dy)/
L 9-aly) i — AT Gaa(0,y)m(dy) I
9-a(0) 1=\ J5¥ Gyia(0,) 28 m(dy)’

,4(0)
4 Examples

In this section, we apply the results in Section 3 to some examples to find more
explicit expressions.

4.1 Brownian motion with drift
Let Xy = ut + Wy be a Brownian motion with drift. The corresponding
differential equation (3) is

1
5 g"(x) + pg' (x) = qg(x), ¢ >0,



An occupation time related potential measure for diffusion processes 573
with two independent solutions
gy o(x) = e(—u+\/u2+2q)w’ g_q(x) = e(—u—\/u2+2q)fv;
see [3, pp. 127,128]. We also have
m(dz) = 2e**dz, Wy = 2\/2q +u?, Gy(z,y) = wqflefu(m+y)ef\/“2+2q ly—=l,

By Theorem 1, for x < 0, with some computing, we have

B0)=1- = /OO o~ (VH2H2(aHA-+04) +y/1242(a+21) )z g
Vi +2(q+ A+ A1) Jo
_ At /0 o(VIH2(a+A- A1) +1/1242(a+1-) )z g
\/,u2+2(q+>\,+)\+) -0

VR 20+ M) + ViR 200+ A0)
20/ +2(qg+ A+ Ay) ’
A(0,dx)
VIZ+20+ A+ A1) 242+ A 00 V2 +2(g+A)

0
« [/ eufv+zx/u2+2(q+/\f+>\+) e—\/u2+2(q+>\7)lfv—2\dz

— 00

0
_e(u+\/u2+2(q+A))m/ o(VH2H2(4HA=+21) +/124+2(0+3-))2 5 | 4

qelBH VIR H2(a A +A) )z . q
VIEH20+ A +A0) 22200+ A+ A0 V2 +2(g+ M)
w20/ + 2(q + A_) o/ 2 +2(g+A2) o
— 22 4 2(q + ML) e FVIPHRaEA A )2 g
qe(u+\/u2+2(q+/\f) )Ty

V2 A+ Ay

By Remark 1, we have

Efe- o Li-oo0) (Xa)ds=At [5* 10,000 (X)ds, X () € da]
A(0,dx)
B(0)
9gelrt VI +2(a+A))z g

T V24 2q 4 A 2+ 2g 4+ A)

(14)
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For x > 0, we have
A'(0,dx)
B qe(u*\/u2+2(q+/\7+k+))wd$ N gh_
VIZH2+ A+ A1) VP20 + A+ A ViR +2(g+ M)

0o
% [/ e,umfZ\/,u2+2(q+)\,+>\+) ef\/,u2+2(q+)\+) lz—z]q,
0

_ et/ 42(a+24) )z /OO o~ (VI H2(aH A +04) +/1242(a+230))2 4 | d e
0
qe(u—\/u2+2(q+/\7+/\+))wdx q

VIZ 200 A+ A0) 202+ 2(g+ A+ A) V2 2(g + As)
% [20/12 + 2(q + Ay ) o=/ B H2(gFA-+21) )o
— 2/ 4 2(q + Ay) e VIPHRaEAD)) 7] g
B gelh=V/ 2+ 4))z g
V220 + A+ Ap)]

and thus,
Efe=- /o 1(-o0.0)(Xa)ds=A+ [ 1(0,00) (Xa)ds, X (eq) € dz]

~ A(0,dx)

~ B(0)

2qe(u_\/u2+2(q+)\+) )xdx
V2 2(q+ M) + V2 2(g + M)

Expressions (14) and (15) agree with [3, Expression 1.6.5, p. 260] for r = 0.

(15)

4.2 Skew Brownian motion

Skew Brownian motion, proposed by It6 and McKean [15], is a natural
generalization of the Brownian motion. We now briefly introduce the skew
Brownian motion. Let X be a skew Brownian motion of parameter 5 with
B € (0,1). Process X is specified by the following stochastic differential
equation

dX; = dW; + (26 — 1)dLY(X), (16)

where W; is a one-dimensional standard Brownian motion and LY(X) is the
local time at 0 for X. Equation (16) has a unique strong solution; see Lejay
[20]. In addition, from [3, p.126], we have

- 206dx, x> 0, ) B
m(d$)_{2(1—ﬁ)dx, 2 <0, s(z) = x
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and
e~ lz=ylv2a _ o—(lz|+|y))v2q e—(zl+ly)v2q

ST g1+ - Dsmeny) T v
In addition, wy, = /2¢. We refer to Borodin and Salminen [3] and Lejay [20]
for more details about skew Brownian motion and Appuhamillage et al. [2] for
an occupation time related results on skew Brownian motion.

Then for a < 0 < b, the corresponding differential equation (4) of skew
Brownian motion is

2(1 - ) /[a’o) g(x)dz + 248 /[0 |, 9@ =30 0) ~ (1= P’ @)

G

where ¢’ denotes the usual left derivative, and it has two independent positive
solutions

g—q(x) = {

and

1-283

15 sh(z/2q) + e_x\/2q} 1 oo0)(@) + e_x\/2q1[0700)(x)

1-28

gral@) =V g @) + [

For x < 0, we obtain

0
| G n 021Gz opm(d)
/1’ o2V 2(a+HA-+24) 0?V/2(a+A-)
—oo V/2(g + A=+ A1) 2(1 = B)v/2(g +A-)
x [em VI (1 —98)e V2@ |2(1 — B)dz
0 oV/2(a+HA—+A4) oV 2(a+A-)
x 200+ -+ A1) 201 = B)v/2(g + A-)
x [em2 V2R 4 (1 - 9B)er VI [o(1 — B)dz
1
= _ A ) e®V/2(aFA-+A%)
2A 1200+ A+ Ay) /2(g + A2) [—2/2a+ e
F(V20g 4 Ao+ A) + V/2(q + M) JerV2aHA)

+ (1= 20)(V/2(g+ A+ As) = V/2(g + A-) JemVHI)]

sh(x\/2q) + ex\/2q] 1(0,00) ().

and

0
g A_(z
/ Gair i (0,2)7 719 iz
-0 I+,q+2-(0)

_ 2(1 - ﬁ) /0 ez(\/2(q+)\,+)\+) +\/2(q+)\,))dz
\/2(q+ A + )\+) —00
_ (=020 + A +2) —V2(g +A0))
AeV/2(g+ A+ Ay) .
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Therefore,

20(1 = BV dr ¢(1 - f)de
V2(q+ A=+ A) V2(q+ A+ M) V2(q + A
x [—2v/2(q+ )\,)ez\/2(q+)‘*+>‘+) +2¢/2(q + Ai)ez\/z(qu,\,)]
2g(1 — B)e™V2(a+A-) 4z
V20g+A+ Ay

Similarly, for > 0, we have the following results through some algebras:

A(0,dx) =

| Gotror 090Gy, (e
1
T V2(a+ A+ A) V200 M)
+ (V200 + Az +As) +1/2(g + Ap) JemmVHE)

— (28 = D(V2(q+ M) = V2(q+ A+ Ap) Je BV ],

[_ 2\/2(q+)\+)e—z\/2(q+>\7+)\+)

o0 9— q+2i (2
| G0 i
0

9—,q+21(0)
_ 26 / % ot (V2 A A +v/2(aHA ) g
V2@ +2-+21) Jo

_ B(V2(g+ A+ ) —V2(g+Ay))
AV2(g+ A= +Ay)

So,
A0, dz) = 297 e VAN do + 29Pda
V2(a+ A=+ Ay 21/2(q + A= + A1) V/2(a + Ay)
x [ = 20/2(q + Ay) e mV2OTAA) Lo fo(g 4 A ) e VAT ]
2qﬁe—z\/2(q+)\+) d
- V20 +A+Xy)
Then

BO)=1— 2\ /°° o (V2@ TA-+05) T/2(a+24))z g
V2(g+ M-+ 24) Jo

204 (1=p) /0 (V22 1) +/2(a+A ) )z,
\/2(q + A + )\+) —00
_ BV2(a+ A0 + (1= B)V2(g +A)
V20 + A+ 2y)
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By Theorem 1 and Remark 1, we have
Efe /o 1000 (X)ds =2 [ 10,00 (Xe)ds, (¢ ) € da]
A(0,dz) 2q(1 — B)ex\/Z(quA*) o
BO) — BvV2q+r)+1-AV2Aa+A)
A'(0,dx) 2qﬁe*‘”\/2(q+>‘+) d
= ;U’
B(0)  Bv2(g+ M)+ (1= B2+ A0)

z <0,
x> 0;
j(y—oq())U(O,oo) (dx)
2(1 — B)esV2atA-) o=yv/2a+As) .
x
Bv/2(a +A4) + (1= B)v/2(g +A-)
[e—lw—ylx/2(q+>\) _ ol@+y)y/2(a+2-)

V2(g+ )
2(1 — ﬁ)e(w+y)\/2(q+>\f) ]

+ d
Bv2(g+2) + (1 B)v2g+r))
{euwz(qug _ o (@tu)y/2atAr)

V2(g+Ay)
286~ @YV 2(a+)+) ]

dz
TBy/2(g £ M)+ (1— B)v/2(g + A)
256—1’\/2(11+/\+) ovV/2(a+A-)
By2(q+ M) + (1= B)v/2(g+ A)

Letting 8 = 1/2, one can recover the well-known results for Brownian motion.

r <0<y,

z,y <0,

z,y >0,

dx, y<0<uz.

4.3 Brownian motion with two-valued drift

Let X be a Brownian motion with two-valued drift, specified by the following
stochastic differential equation:

dXy = (1Ll(—00,0)(Xt) = BR1(0,00) (X¢))dE + AW, (17)

where pr,ur € R and W, is a standard one-dimensional Brownian motion.
The Brownian motion with two-valued drift, referred as a refracted Brownian
motion, is also interested to risk theory.

Although the Lipschitz assumption (2) for drift function

p(-) = prl(—00,0) (") = #rR1(0,00) (")

fails, equation (17) still has a unique strong solution, see Prokhorov and Shiryaev
[32].
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In this two-valued drift model, for ¢ > 0, two independent, positive, and
convex solutions of the differential equation

1
5 9" (@) + (11 (~00.0)(®) = 1RL(0,00) ()9 () — gg(x) =0,
with g_ 4(-) strictly decreasing and g4 4(-) strictly increasing are given by

g-q(@) = elhr—V/ih+20 150

[ etV 20 | (1 Yo rVid 208
and

J+q(x) = [cie(“RJr\/M%Jr?q)w +(1- ci)e(uR—\/u%Jrzq)z] 1

>0
_ 2
+ e ML+\/ML+2‘1)$1:E<O’

respectively, where

. uR—\/u?g+2q+uL+\/u%+2q

C_ = )
2\/u2L+2q

—uL+\/M%+2q—uR+\/u?g+2q

2\/,u%-€~|—2q

q
1

see [22, Section 5.2]. In addition,

B($) = —2prrlyso + 2purrlseco,

m(x) = 2(672“Rm1z>0 + e2“L$1x<0),

eZHRT _
= 1 1
3($) 2,U/R z>0 T 2,UL <0,

1 — e 2uL®

wq = —uL—uR+\/M%+2q+\/u?%+2q.
We can also get the Green function of this process

)
wq—le(fuLJr\/u%Jr?q)y

x [ (~pLty/ii +20)T | (1- Cq_)e(fuw\/uiwq )],

wq—le(fuLJr\/u%Jr?q W o(r—/ 1% +24 e

o
WV
8

WV

S

w(jle(#R - \/;U'2R+2q )(E

% [c‘ie(uR-F\/u%Jr?q v 4 (1- c‘i)e(uR—\/u%-F?q)yL

8
WV
<
WV
o
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For x < 0,

0
| G on 020G (zoym(dz)

2(1 — Cq_+>‘*)e(*#L+\/P«%+2((I+)‘7+>‘+) Jo 4 9pdt A= o(—urt/iy +2(a+A-) )z

WatA_+Ap WA (\/M% +2(g+ A+ Ap) + \/ﬂ% +2(g+A))

2(1 — C‘i+>‘*)(e(—uL+\/u%+2(q+/\—) )z _ (=t B 2(aHA -+ ) )w)
WatA— Ay WaA_ (\/ﬂ% +2(g+ A+ Ay) — \/M% +2(g+ X))

1 A
= —2(1 -t )\/,u2+2(q+)\,)
AfWgt A 42 Wath_ L

x el VI AN (2 a(g A+ Ay)

£ J12 4+ 20g 4+ A0) = 26T\ 2 4 2(g 4 AL el Vi H e ))e],
0 9+.,9+1-(2)
Gata_ (0,z) Gq+>\,+>\+ (0,2) m(dz)
—00 9+,q+21-(0)
\/u% +2(q+ A+ Ap) — \/M% +2(q+A-)
B A4 Wat A +A; Wt a_
qe(uL+\/u%+2(q+A,) ) 4

(1= ) i+ 200 + 2 +0)

o(—nrLHV/13 +2(g+A-) )z

A(0,dz) =

Similarly, for x > 0,

/ Gair i, (0,2)Gqin (5 2)m(dz)
0
_ 1
A—Wat A a3 Wat,

w MRV IR A2aHA- A (\/u%% Y2+ A+ Ay)

- \//ﬁ% +2(g 4 Ap) + 268 \//ﬁ;z +2(q + Ay) JeWn—ViRt2atA)e ]

[— AR \/,u%% +2(g+Ap)

o g*, +A1(z
Gq+)\+ (071')/ Gq+)\7+)\+ (0, Z) A+ (2) m(dz)

V%420 A+ A0 = i+ 20+ A

ohR=V/ 13 +2(g+24) )z
A—Wqth 2 WatAy

So
gel—HR= VIR +2a A1) )7 4

A'(0,dz) = N .
AP i 2(g 4 A+ )
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Then
BO)=1- / % o (VIBA2(aHA 0 /i34 2(a+00) )z g
We+x_+A1 Jo

0
2 / (VR H2(aHA=+21) /0] +2(a+A-) )z g,
Wa+A_+2t J—o0o
—up — pr+ \/;@__i +2(q+ M) + \/u% +2(g+A-)

WatA—+A+

By Theorem 1 and Remark 1, we have

Ele - Jo® L —oo,0)(Xs)ds =2y [57 1(0,00) (Xs)ds, X (e,) € dz]

A(0,dx) 9qelhL TV i +2(a+A-) ede
Béo) = s xr < 0,
—HL — MR+ \/MZR +2(q+Ay) + \/M% +2(q+A-)
N A'(0,dx) 2qe(—ﬂR—\/M%+2(q+)\+) Yedz
B(’0) - , x>0
—pL — pr+ \/,U«%{ +2(q+ M)+ \/MQL +2(q+ A=)
j(y—oq())U(O,oo) (dx)
9e(hR =/ +2(a+A4) Jy o (L ++/B3 +2(a+A-) )2 4
, r <0<y,

—pL — pr + \/ﬂ?{+2(Q+)‘+)+ \/M%+2(q+>\—)

2(6‘1_"")‘* —1)err@=y) [e\/u%+2(q+>\7)(w+y) — o~V H2(a+A0) \w*y\]dx

—pL — PR+ \/N%{+2(Q+)‘—) + \/M%+2(q+>\—)

96t (@) o/ 13 +2(a+2-) (2+Y) 4
+ ) $’ y < 0?

—pr — PR+ \/u?.—g +2(q+Ay) + \/u% +2(q+A-)
Qc‘fM ehR(y—2) [e—\/u%+2(q+>\+) o=yl _ o= V/ih+2(a+rs) (“y)]dx

—pL — BR + \/N%{+2(Q+)‘+) + \/u%+2(q+k+)

9ehR (=) o=V 1R F+2(a+A+) (T4Y) 4
+ , x,y >0,

—pL — PR+ \/N%{+2(Q+)‘+) + \/M%+2(q+>\—)

9e(—1R =\ +2aHA1) )2 o (—pr /1342002 ) )y g
, y<0<ua.

—pL — pr+ \/ﬂ?{+2(Q+)‘+)+ \/M%+2(q+>\—)

Letting pr = —pur = p, we can recover the results for Brownian motion with
drift, see [3, Expression 1.6.5, p. 260] for r = 0.
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Appendix Proof of Lemma 1

Proof of Lemma 1 Note that

Since

o
1
/ P, {t < 74, X; € dz}e Udt =  Py{e, < 74, X(eg) € dz}.
0 q

Py{eq < 74, X (eq) € da}

=P, {X(eg) € dz} —Py{eq > 74, X (eq) € dz}
=P, {X(eg) € da} — Py{7s < eg}Pa{X(eq) € dz}

= q/ e p(t; y,x)m(da:)dt—que_qT“/ e p(t; a, x)m(dx)dt
0 0

= qGq(y, z)m(dz) — gE,e™ 7 Gy(a, x)m(dx)

9-.q(y)
Gqly,z) — Gq(a,z)|m(dx), € (a,00),
) q[ q(y; ) g (a) a )] (dz), y € (a,00)
9+.q(Y)
q|Gqly, x) — Gy(a,x)|m(dz), € (—o0,a),
[ q(y; ) g1.0(a) o )] (dz), e )
the result of Lemma 1 then follows. O
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