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Abstract In this short note, we suggest a definition of almost nonnegativ-
ity for orthogonal bisectional curvature and quadratic orthogonal bisectional
curvature. Moreover we obtain the differential structure of universal covering
of a compact Kähler manifold with almost nonnegative orthogonal bisectional
curvature, which implies one of Fang’s conjecture under an additional scalar
curvature upper bound condition.
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1 Introduction

In the past several decades, a great deal of mathematical effort has been devot-
ed to the study of differential and holomorphic structures of manifolds under
certain curvature conditions. Our story dates back to the classic uniformiza-
tion theorem of Riemannian surfaces. During recent years, a lot of progress has
been made to generalizations of uniformization theorem in higher dimension-
s. There are two major lines. The first is Mori’s work about the Hartshorne
conjecture. And later on, Demailly–Peternell–Schneider [5] gave the structure
of a compact Kähler manifold with nef tangent bundle. The second line is
Siu and Yau’s solution to the Frankel conjecture, and then some generalized
results such as Mok’s famous work [11]. In [7], Gu and Zhang used Kähler–
Ricci flow combining Chen’s result [4] to study the holomorphic structure of
closed Kähler manifolds with nonnegative holomorphic orthogonal bisection-
al curvature, which extended Mok’s result. Recall the notion of nonnegative
holomorphic orthogonal bisectional curvature, which means that at any point

Received September 30, 2017; accepted January 14, 2022
E-mail: hongliangshao@foxmail.com



744 Hongliang SHAO

p ∈ X, for any unitary frame {eα}nα=1 of T 1,0
p X,

Rαᾱββ̄ ≥ 0 for any α 6= β.

Furthermore, Chau and Tam studied the complex structure of compact
Kähler manifolds with nonnegative quadratic orthogonal bisectional curvature
(denoted by QB ≥ 0) in [2]. The definition of QB ≥ 0 is that for any unitary
frame {eα}nα=1 of T 1,0

p X, and any real numbers {ξα}nα=1,∑
α6=β

Rαᾱββ̄(ξα − ξβ)2 ≥ 0.

Obviously, this is a weaker condition than nonnegative orthogonal bisectional
curvature. For Kähler surfaces, the condition of nonnegative quadratic orthog-
onal bisectional curvature is equivalent to nonnegative orthogonal bisectional
curvature. For n > 2, in [10], the authors constructed an example of compact
Kähler manifold with nonnegative quadratic orthogonal bisectional curvature
which does not admit any Kähler metrics with nonnegative orthogonal bisec-
tional curvature.

For almost nonnegative curvatures, there also are some structure results.
In [6], Fang studied the structure of compact Kähler manifolds with almost
nonnegative bisectional curvature. He conjectured that there exists a constant
ε(n) > 0 such that if a simply connected compact Kähler manifold has holo-
morphic bisectional curvature satisfying B · diam(Xn)2 ≥ −ε(n), then X is
diffeomorphic to X1 × · · · ×Xk, where each Xj (1 ≤ j ≤ k) is either a complex
projective space or an irreducible Kähler symmetric space of rank ≥ 2. Huang
solved this conjecture under an additional condition that the sectional curva-
ture is bounded from above [9], where he used the technique of Peterson and
Tao [13].

Now we suggest the notion of almost nonnegativity for orthogonal bisec-
tional curvature and quadratic orthogonal bisectional curvature.

Definition 1.1. We say (X,ω, J) is a Kähler manifold with quadratic orthogo-
nal bisectional curvature almost nonnegative with normalized coefficients, if the
diameter of the manifold is 1, for any sufficiently small ε > 0, at any p ∈ X, for
any unitary frame {eα}nα=1 of T 1,0

p X, and any real numbers {ξα}nα=1 satisfying∑
α6=β(ξα − ξβ)2 = 1, ∑

α6=β
Rαᾱββ̄(ξα − ξβ)2 ≥ −ε.

If Rαᾱββ̄ ≥ −ε for all α 6= β, then we say X has almost nonnegative orthog-
onal bisectional curvature.

Obviously, almost nonnegative bisectional curvature defined in [6] implies
almost nonnegative orthogonal bisectional curvature, which further indicates
quadratic orthogonal bisectional curvature is almost nonnegative. When n = 2,
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the three conditions are equivalent to each other. Some curvature inequalities
are developed in Section 2.

In this short note, we are going to use Chau–Tam’s result and Gu–Zhang’s
classification results to study the differential structure of closed Kähler man-
ifolds with almost nonnegative orthogonal bisectional curvature. Compare to
Huang’s paper, besides the bisectional curvature bound condition is weaken, we
only need the upper bound of scalar curvature instead of sectional curvature.
Our main result is

Theorem 1.1. For any Λ, D > 0, v > 0 there exists a constant ε(n,Λ, D, v) >
0, such that if X is an n-dim simply connected closed Kähler manifold with
scalar curvature bounded from above by Λ, diameter bounded from above by
D, volume bounded from below by v, and the orthogonal bisectional curvature
is larger than −ε. If n = 2, an additional condition of bounded holomorphic
sectional curvature is needed. Then the universal covering of X is diffeomorphic
to the product R2l ×CPk1 × · · · ×CPkj ×X1 × · · · ×Xk (l ≥ 0), where {Xp}kp=1

are irreducible compact Hermitian symmetric spaces of rank ≥ 2.

Remark 1.1. Under the additional condition of scalar curvature upper bound
and lower volume bound, Fang’s conjecture [6] of the structure of compact
manifolds with almost nonnegative bisectional curvature follows immediately.
It should be noted that this conjecture can be obtained by a recent work of
Bamler, Cabezas-Rivas and Wilking (cf. [1]).

2 Curvature Bounds

In this section, we derive some curvature inequalities for Kähler manifolds with
quadratic orthogonal bisectional curvature lower bounded.

Proposition 2.1. Let (X,ω, J) be a Kähler manifold of complex dimension
n ≥ 3. Assume the quadratic orthogonal bisectional curvature at some point
p ∈ X is bounded below by −ε. Then there exists a constant C(n) only depending
on the dimension, such that

|Rm|(p) ≤ C(n)(R+ ε),

here R is the scalar curvature.

Proof. Assume {eα}nα=1 is a unitary frame of T 1,0
p X. For any α 6= β, we know

that
eα+eβ√

2
and

eα−eβ√
2

are also orthogonal, so are
eα+
√
−1eβ√
2

and
eα−
√
−1eβ√
2

.

Fix α 6= β, let ξα = 0, ξβ = 2√
4n
, and let ξγ = 1√

4n
for γ 6= α, β, then almost

nonnegative quadratic orthogonal bisectional curvature suggests

4Rαᾱββ̄ +
∑
γ 6=α,β

(Rαᾱγγ̄ +Rββ̄γγ̄) ≥ −4nε.
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Similar to Niu did in [12], we can calculate the curvatures bounds as follows.
We consider

4R

(
eα + eβ√

2
,
ēα + ēβ√

2
,
eα − eβ√

2
,
ēα − ēβ√

2

)
+
∑
γ 6=α,β

[
R

(
eα + eβ√

2
,
ēα + ēβ√

2
, γ, γ̄

)
+R

(
eα − eβ√

2
,
ēα − ēβ√

2
, γ, γ̄

)]
= (Rαᾱαᾱ +Rββ̄ββ̄ −Rαβ̄αβ̄ −Rβᾱβᾱ) +

∑
γ 6=α,β

(Rαᾱγγ̄ +Rββ̄γγ̄)

≥ −4nε,

R

(
eα +

√
−1eβ√
2

,
ēα −

√
−1ēβ√
2

,
eα −

√
−1eβ√
2

,
ēα +

√
−1ēβ√
2

)
+
∑
γ 6=α,β

[
R

(
eα +

√
−1eβ√
2

,
ēα −

√
−1ēβ√
2

, γ, γ̄

)

+R

(
eα −

√
−1eβ√
2

,
ēα +

√
−1ēβ√
2

, γ, γ̄

)]
= (Rαᾱαᾱ +Rββ̄ββ̄ +Rαβ̄αβ̄ +Rβᾱβᾱ) +

∑
γ 6=α,β

(Rαᾱγγ̄ +Rββ̄γγ̄)

≥ −4nε.

From the above two inequalities we obtain

Rαᾱαᾱ +Rββ̄ββ̄ +
∑
γ 6=α,β

(
Rαᾱγγ̄ +Rββ̄γγ̄

)
≥ −4nε.

And then

Rαᾱ +Rββ̄ = Rαᾱαᾱ +Rββ̄ββ̄ + 2Rαᾱββ̄ +
∑
γ 6=α,β

(Rαᾱγγ̄ +Rββ̄γγ̄)

≥ −4nε+ 2Rαᾱββ̄.

Now we fix α. Letting ξα = 1√
n−1

and ξβ = 0 for any β 6= α, we know∑
β 6=α

Rαᾱββ̄ ≥ −(n− 1)ε.

Summing over β 6= α we get

(n− 1)Rαᾱ +
∑
β 6=α

Rββ̄ = (n− 2)Rαᾱ +R ≥ −C(n)ε,

(n− 2)Rαᾱ ≥ −R− C(n)ε.
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Summing over α, we have

(n− 2)R = (n− 2)
∑
α

Rαᾱ ≥ −C(n)(R+ ε).

Then we obtain

R ≥ −C(n)ε,

Rαᾱ = R−
∑
γ 6=α

Rγγ̄ ≤ C(n)(R+ ε),

2Rαᾱββ̄ = Rαᾱ +Rββ̄ − (Rαᾱαᾱ +Rββ̄ββ̄)−
∑
γ 6=α,β

(Rαᾱγγ̄ +Rββ̄γγ̄)

≤ C(n)(R+ ε),

− ε ≤ Rαᾱββ̄ +
∑
γ 6=α,β

Rαᾱγγ̄ ≤ Rαᾱββ̄ + C(n)(R+ ε),

Rαᾱββ̄ ≥ −C(n)(R+ ε).

From
Rαᾱ = Rαᾱαᾱ +

∑
β 6=α

Rαᾱββ̄,

we get

−C(n)(R+ ε) ≤ Rαᾱαᾱ ≤ C(n)(R+ ε).

From the above calculation we know that there exists a constant C(n) only
depending on the dimension n > 2, such that

− C(n)ε ≤ Rαᾱββ̄ ≤ C(n)(R+ ε),

− C(n)(R+ ε) ≤ Rαᾱαᾱ ≤ C(n)(R+ ε),

− C(n)(R+ ε) ≤ Rαβ̄αβ̄ +Rβᾱβᾱ ≤ C(n)(R+ ε).

Assume eα = 1√
2
(uα −

√
−1Juα), then

Rαᾱββ̄ = R(uα, Juβ, Juβ, uα) +R(uα, uβ, uβ, uα),

Rαβ̄αβ̄ +Rβᾱβᾱ = R(uα, Juβ, Juβ, uα)−R(uα, uβ, uβ, uα).

Then we have

|R(uα, Juβ, Juβ, uα)| ≤ C(n)(R+ ε), |R(uα, uβ, uβ, uα)| ≤ C(n)(R+ ε),

and
|Rαᾱαᾱ| = |R(uα, Juα, Juα, uα)| ≤ C(n)(R+ ε).

It is easy to derive that the curvature tensor is bounded by C(n)(R + ε) from
these inequalities.



748 Hongliang SHAO

This estimate is a pointwise result. If we assume the scalar curvature is
bounded from above, then the sectional curvature is bounded from both sides.

For n = 2, the above estimates may not be true. One can refer Example
1.2 in [7], which implies that a manifold may have nonnegative orthogonal
bisectional curvature and zero scalar curvature, yet sectional curvatures may be
arbitrarily large. In order to bound sectional curvature, we need some additional
condition. From the above we have

− 4ε ≤ R11̄11̄ +R22̄22̄ ≤ R+ 2ε,

− ε ≤ R11̄22̄ ≤
1

2
R+ 2ε.

If we assume the scalar curvature and the holomorphic sectional curvature are
bounded from above, then we can get the same conclusion as above of the n > 2
case.

3 Proof of the Main Theorem

We prove our main theorem by a contradiction argument. Assume (Xi, ωi, Ji) is
a sequence of n-dim closed Kähler manifolds with diam ≤ D and Vol ≥ v > 0,
scalar curvature is bounded from above by Λ, and the orthogonal bisectional
curvature OB ≥ −1

i . In addition, we assume all X̃i are not diffeomorphic to the
product R2l ×CP1 × · · · ×CP1 ×X1 × · · · ×Xk (l ≥ 0), as the theorem stated.

Now we consider Ricci flows starting with (Xi, ωi, Ji). From the discussion of
Section 2 we know that the curvature tensor of (Xi, ωi) are uniformly bounded,
say by K(n,Λ), then by the doubling time estimate of Ricci flow we know that
for 0 ≤ t ≤ 1

16K, the curvature tensor |Rm| ≤ 2K.
By

d

dt
Vol(gi(t)) = −

∫
Xi

R(gi)dµ ≥ −C(n)KVol(gi(t)),

we know the volume of (Xi, gi) is uniformly bounded from below by e−C(n)K2
v

for t ∈ [0, 1
16K]. Moreover, the curvature bound implies a uniform upper bound

of diameters. According to Corollary 2.2 of Cheeger [3], one can get a uniform
lower bound of injective radius for manifolds with uniformly bounded sectional
curvature, bounded diameter and lower bounded volume. Then by Hamiltion’s
Cheeger–Gromov compactness theorem, after passing to a subsequence, which
we still denote by (Xi, gi(t), Ji),

(Xi, gi(t), Ji)→ (X∞, g∞(t), J∞),

in Cheeger–Gromov sense, where gi is the Riemannian metric corresponding to
ωi. (X∞, g∞(t), J∞) is a solution to Kähler–Ricci flow. The convergence is C1,α

at time 0 and C∞ for 0 ≤ t ≤ 1
16K.
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Since it is claimed by Cao and Hamilton in one unpublished work (one can
also refer to Gu–Zhang’s paper [7]) that the cone of nonnegative of orthogonal
holomorphic bisectional curvature is invariant under the Ricci flow, thus the
orthogonal bisectional curvature of gi(t) is bounded below by −C(n)1

i exp(Ct)
due to the proof of Hamilton’s Theorem 4.3 in [8]. Let P denote the fiber
bundle with fibers orthogonal 2-vectors {ξ, η} ⊂ T 1,0

p (X), and define a function
u on P as

u({ξ, η}, t) = R(ξ, ξ̄, η, η̄).

Then Gu and Zhang [7] calculated

∂u

∂t
≥ Lu+ cmin

{
0, inf
ξ∈V,|ξ|=1

D2u(ξ, ξ)

}
− c sup

ξ∈V,|ξ|=1
Du(ξ)− cu

for some c > 0, where L is the horizontal Laplacian on P and V is the vertical
subspace of the bundle. Then by the proof of Hamilton’s maximum principle
(Theorem 4.3 in [8]) we obtain the lower bound for orthogonal bisectional cur-
vature. The curvature bounds imply that the orthogonal bisectional curvature
of g∞(t) is nonnegative for t > 0. Using Chau and Tam’s classification of Kähler
manifolds with almost nonnegative quadratic orthogonal bisectional curvature,
we know that (X∞, J∞) is biholomorphic to one of the followings:

(i) Cl × CP 1 × · · · × CP 1 × Y1 × · · · × Yk (l ≥ 0);
(ii) Bl × CP 1 × · · · × CP 1 × Y1 × · · · × Yk (l ≥ 0).
Because the differential structure of both Bl and Cl are R2l, we can obtain

that the universal covering of X∞, g∞(t) is diffemorphic to R2l × CP1 × · · · ×
CP1×Y1× · · ·×Yk (l ≥ 0), where {Yp}kp=1 are simply connected compact Fano
manifolds with nonnegative orthogonal bisectional curvature. Then by Gu and
Zhang’s result (cf. [7]), we know that {Yp}kp=1 are either CP k or symmetric
Hermitian space of rank ≥ 2.

From Cheeger–Colding theory, we know that for i large enough, Xi is dif-
feomorphic to X∞. Then we meet a contradiction.

Since the complex structure may vary when taking Cheeger–Gromov limit,
we do not know whether X∞ is biholomorphic to one of the above.
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