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Abstract We consider whether the tilting properties of a tilting A-module T
and a tilting B-module T ′ can convey to their tensor product T ⊗T ′. The main
result is that T ⊗ T ′ turns out to be an (n + m)-tilting A ⊗ B-module, where
T is an m-tilting A-module and T ′ is an n-tilting B-module.
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1 Introduction

The classical notion of tilting modules was first considered by Brenner and
Bulter [4] and by Happel and Ringel [10] in the 1980s. Since then it has played
a very important role in the development of representation theory of finite
dimensional algebras. First, given a tilting module TA, the endomorphism
algebra B = EndA(T ) (it is called as a tilted algebra, if A is a finite-dimensional
hereditary algebra) provides an interesting example of algebras in the represen-
tation theory, which is close to that of the original ones. Second, each tilting
module TA gives to a torsion theory in mod-A (the category of finitely generated
right A-modules). The notion of tilting was further generalized by Bazzoni [3],
Miyashita [12], Happel [9], and Hügel and Coelho [11]. Happel showed that, for
finite-dimensional algebras, generalized tilting induces a derived equivalence
between the corresponding module categories which inspired Rickard [13] to
develop his Morita theory for derived categories.

Several authors have been interested in the following question: which
properties of an A-module M and a B-module N are conveyed to the A ⊗k B-
module M ⊗k N?” (see, e.g., [6–8,15,16]). Chen et al. have studied the tensor
products of indecomposable, projective, injective, and flat modules, respectively
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(see, e.g., [6]). Recently, Yang [15] studied strongly graded vertex algebras and
their strong graded modules, obtained that a tensor product of strongly graded
irreducible modules for a tensor product of strongly graded vertex algebras is
irreducible. The aim of this note is to investigate what will be with respect to
the tensor product of an m-tilting A-module and an n-tilting B-module. In fact,
we first find the tensor product of 1-tilting A-module and 1-tilting B-module is
not 1-tilting again, then it is natural to consider what it is? Our main result is
the following theorem.

Theorem 1.1 Let T be an n-tilting A-module, and let T ′ be an m-tilting
B-module. Then T ⊗ T ′ is an (n + m)-tilting A ⊗ B-module.

Throughout this note, unless otherwise stated, all algebras considered are
finite-dimensional algebras (with an identity) over a field k. For a k-algebra A,
every A-module can be regarded as a k-module, a left A-module M is denoted
by AM, and the right A-module N is denoted by NA. The tensor product ⊗k

will be denoted by ⊗ briefly. add T denotes the class of modules isomorphic to
direct summands of finite direct sums of copies of T.

2 Preliminaries

In order to prove the main theorem, we collect some definitions and some basic
properties of tensor products of modules in this section. First, We recall the
following definition of an n-tilting module.

Definition 2.1 [3] An A-module T is said to be n-tilting provided it satisfies
the following three conditions:

(T1) PdAT � n;
(T2) Exti

A(T, T (λ)) = 0 for every 0 � i � n and every cardinal λ;
(T3) there exists a long exact sequence

0 → A → T0 → T1 → · · · → Tn → 0,

with Ti ∈ add T for every 0 � i � n.

If n = 1, it coincides with the tilting module introduced by Happel and
Ringel [10]. Here, we call it as a 1-tilting module. It is clear that any pro-
generator P is tilting (the trivial case n = 0). Miyashita [12] also called the
n-tilting module as a tilting module of projective dimension � n.

For completeness, we also recall the concept of projective dimension of an
A-module M.

Definition 2.2 [14, p. 233] If M is an A-module, then PdA(M) � m if there
is a projective resolution

0 → Pm → Pm−1 → · · · → P1 → P0 → M → 0.
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If no such finite resolution exists, define PdAM = ∞; otherwise, the least such
an integer n is called the projective dimension of M and denoted by PdAM,
sometimes abbreviate it as Pd M. And the complex

0 → Pm → Pm−1 → · · · → P1 → P0 → 0

is called as the deleted projective resolution of M (see, e.g., [1]).

Before giving the proof of main theorem, we need some preparations.

Lemma 2.3 [6, Proposition 4] Let MA and BN be projective (resp., injective,
flat). Then M ⊗ N is projective (resp., injective, flat) (as a A ⊗ B-module).

Definition 2.4 [14] Let (X ·, ∂) be a complex of right A-modules, and let
(Y ·, δ) be a complex of left B-modules, that is,

X · : · · · → Xn
∂n−→ Xn−1 → · · · , Y · : · · · → Yn

δn−→ Yn−1 → · · · .

Then the total complex Hom(X ·, Y ·) is a complex defined by

Hom(X ·, Y ·)n =
∏

p∈Z

Hom(Xp, Yn+p),

and

τn : Hom(X ·, Y ·)n → Hom(X ·, Y ·)n−1,

{fp,n+p} �→{(−1)n+1fp,n+p∂p+1 + δn+p+1fp+1,n+p+1, p ∈ Z};
and the total complex X · ⊗ Y · is usually called the tensor product of the
complexes X · and Y ·, that is,

(X · ⊗ Y ·)n =
⊕

p+q=n

Xp ⊗ Yq,

and

dn : (X · ⊗ Y ·)n → (X · ⊗ Y ·)n−1,

{mpq ∈ Xp ⊗ Yq}p+q=n �→ {(∂p ⊗ εq)(mpq) + (−1)p−1(εp−1 ⊗ δq+1)(mp−1,q+1)}.
Lemma 2.5 ([17, p. 303], Künneth Theorem for ⊗) Let (X ·, ∂) be a complex
of right A-modules, and let (Y ·, δ) be a complex of left B-modules with all Im ∂p

and ker ∂p are flat. Then, for any n, there is a natural exact sequence

0 →
⊕

p+q=n

Hp(X ·) ⊗ Hq(Y ·) → Hn(X · ⊗ Y ·)

→
⊕

p+q=n−1

Tor1(Hp(X ·),Hq(Y ·)) → 0.

Similar to [5, Corollary 2.7], we have the following result.
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Proposition 2.6 If (P ·, ∂), (Q·, δ) are deleted projective resolutions of MA

and BN, respectively, then (P · ⊗ Q·, d) is the deleted projective resolution of
M ⊗ N.

Proof First, we denote projective resolutions of M and N as

X · : · · · → Pn
∂n−→ Pn−1 → · · · → P0 → M → 0,

Y · : · · · → Qn
δn−→ Qn−1 → · · · → Q0 → N → 0,

where Pi, Qj are projective. Then we consider their deleted complexes:

P · : · · · → Pn
∂n−→ Pn−1 → · · · → P0 → 0, Hp(P ·) =

{
M, p = 0,

0, p �= 0,

Q· : · · · → Qn
δn−→ Qn−1 → · · · → Q0 → 0, Hq(Q·) =

{
N, q = 0,

0, q �= 0.

Consequently, by Definition 2.4, we have the total complex

(P · ⊗ Q·)l =
⊕

p+q=l

Pp ⊗ Qq, l = 0, 1, 2, . . . ,

here, it follows from Lemma 2.3 that Pp ⊗ Qq is a projective A ⊗ B-module,
and thus, (P · ⊗ Q·)l is projective as well.

Second, since k is a field, every k-module is flat, and then Tor1(-, -) = 0. By
Lemma 2.5, it has

Hn(P · ⊗ Q·) ∼=
⊕

p+q=n

(Hp(P ·) ⊗ Hq(Q·))

=

{
0, n �= 0,

H0(P ·) ⊗ H0(Q·) ∼= M ⊗ N, n = 0.

Consequently, P · ⊗ Q· is the deleted projective resolution of M ⊗ N. This
completes the proof. �

By Definition 2.2 and Proposition 2.6, we are led to the conclusion as follows.

Corollary 2.7 For a right A-module M and a left B-module N, the projective
dimension of M ⊗ N as an A ⊗ B-module is at most PdAM + PdBN.

Proposition 2.8 Let

0 → C0 → C1 → · · · → Cn → 0

be an exact sequence of right A-modules, and let

0 → D0 → D1 → · · · → Dm → 0
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be an exact sequence of left B-modules. Then

0 → C0 ⊗ D0 → C0 ⊗ D1 ⊕ C1 ⊗ D0 → C2 ⊗ D0 ⊕ C1 ⊗ D1 ⊕ C0 ⊗ D2

→ · · · →
⊕

p+q=l

Cp ⊕ Dq → · · ·

is an exact sequence of A ⊗ B-modules.

Proof Denote
C · : 0 → C0 → C1 → · · · → Cn → 0,

D· : 0 → D0 → D1 → · · · → Dm → 0.

The following tensor product of complexes will make C · ⊗ D· clear:

0 0 0 0 0
� � � � �

0 � C0 ⊗ Dm
�C1 ⊗ Dm

�C2 ⊗ Dm
� · · · � Cn−1 ⊗ Dm

�Cn ⊗ Dm
� 0

� � � � �

0 �C0 ⊗ Dm−1
�C1 ⊗ Dm−1

�C2 ⊗ Dm−1
� · · · �Cn−1 ⊗ Dm−1

�
Cn ⊗ Dm−1

� 0
� � � � �

0 �C0 ⊗ Dm−2
�C1 ⊗ Dm−2

�C2 ⊗ Dm−2
� · · · �Cn−1 ⊗ Dm−2

�
Cn ⊗ Dm−2

� 0
� � � � �

...
...

...
...

...
� � � � �

0 �C0 ⊗ D2
� C1 ⊗ D2

� C2 ⊗ D2
� · · · �Cn−1 ⊗ D2

�Cn ⊗ D2
� 0

� � � � �

0 � C0 ⊗ D1
�C1 ⊗ D1

� C2 ⊗ D1
� · · · �Cn−1 ⊗ D1

�Cn ⊗ D1
� 0

� � � � �

0 � C0 ⊗ D0
�C1 ⊗ D0

� C2 ⊗ D0
� · · · �Cn−1 ⊗ D0

�Cn ⊗ D0
� 0

� � � � �

0 0 0 0 0

For every 0 � i � n + m, (C · ⊗D·)i could be regarded as the direct sum of
modules on the i-th diagonal dotted line, for example,

(C · ⊗ D·)0 = C0 ⊗ D0, (C · ⊗ D·)1 = C0 ⊗ D1 ⊕ C1 ⊗ D0, . . . ,

(X · ⊗ Y ·)i =
⊕

p+q=i

Xp ⊗ Yq.

Since C · and D· are exact sequences, namely, they are acyclic, by [14, p. 170],
Hi(C ·) = 0 and Hj(D·) = 0 for every 0 � i � n, 0 � j � m. From the fact that
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every module over a field is flat, it follows from Lemma 2.5 that

Hi(C · ⊗ D·) ∼=
⊕

p+q=i

Hp(C ·) ⊗ Hq(D·) = 0.

Then we obtain the desired result. �
Proposition 2.9 For module pairs (MA, BN ; XA, BY ), there is a natural
isomorphism

ExtnA⊗B(M ⊗k N,X ⊗k Y ) ∼=
∏

p+q=n

ExtpA(M,X) ⊗k ExtqB(N,Y ).

Proof First, for module pairs (MA, BN ; XA, BY ), from [14, Lemma 3.83] and
[14, Theorem 2.11, Adjoint Isomorphism], we have

HomA(M,X) ⊗k HomB(N,Y ) ∼= HomA(M,X ⊗k HomB(N,Y ))
∼= HomA(M,HomB(N,X ⊗k Y ))
∼= HomA⊗B(M ⊗k N,X ⊗k Y ). (1)

Let P · and Q· be projective resolutions of M and N, respectively. Then

Hom·
A⊗B(P · ⊗k Q·,X ⊗k Y ) ∼= HomA(P ·,X) ⊗k HomB(Q·, Y ).

By Lemma 2.5, we have

Hn(HomA(P ·,X) ⊗ HomB(Q·, Y ))
∼=

⊕

p+q=n

Hp(HomA(P ·,X)) ⊗ Hq(HomB(Q·, Y )),

that is,
Hn(Hom·

A⊗B(P · ⊗k Q·,X ⊗k Y ))
∼=

⊕

p+q=n

Hp(HomA(P ·,X)) ⊗ Hq(HomB(Q·, Y )).

Consequently, in view of [14, Theorem 10.85, Künneth Formula for Comology],
it yields

ExtnA⊗B(M ⊗k N,X ⊗k Y ) ∼=
∏

p+q=n

ExtpA(M,X) ⊗k ExtqB(N,Y ). �

Remark 2.10 If i = 0, then

Ext0A⊗B(M ⊗k N,X ⊗k Y ) ∼= Ext0A(M,X) ⊗k Ext0B(N,Y ),

that is,

HomA⊗B(M ⊗k N,X ⊗k Y ) ∼= HomA(M,X) ⊗k HomB(N,Y ),
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which just was proved in the proof process of Proposition 2.9. It has also been
shown in the proof of [6, Proposition 7].

Proposition 2.11 add(AT ) ⊗ add(BT ′) ⊆ add(T ⊗ T ′).

Proof Let

AT =
n⊕

i=1

Ti, BT ′ =
m⊕

j=1

T ′
j.

Then

T ⊗ T ′ =
n⊕

i=1

m⊕

j=1

Ti ⊗ T ′
j (Ti ⊗ T ′

j ∈ add(T ⊗ T ′)),

T
(n)
i ⊗ Tj

∼= (Ti ⊗ Tj)(n), Ti ⊗ T
(m)
j

∼= (Ti ⊗ Tj)(m),

which gives the result. �

3 Proof of main theorem and an example

Now, let us complete the proof of Theorem 1.1.

Proof of Theorem 1.1 First, by Definition 2.1, we see PdAT � n, PdBT ′ � m.
Then, from Corollary 2.7,

PdA⊗B(T ⊗ T ′) � n + m,

so (T1) follows.
In view of Definition 2.1,

ExtpA(T, T ) = 0, ExtqB(T ′, T ′) = 0, ∀ p, q > 0.

Combining with Proposition 2.9, we see

Exti
A⊗B(T ⊗ T ′, T ⊗ T ′) =

⊕

p+q=i

ExtpA(T, T ) ⊗ Extq
B(T ′, T ′) = 0, ∀ i > 0.

Thus, we get (T2).
As for (T3), since T is an n-tilting A-module and T ′ is an m-tilting B-

module, there are exact sequences

0 → AA → T0 → · · · → Tn → 0,

0 → BB → T ′
0 → · · · → T ′

m → 0,

where Ti ∈ add(T ), T ′
j ∈ add(T ′), i = 0, 1, . . . , n, j = 0, 1, . . . ,m. From

Proposition 2.8,

0 → A ⊗ B → (X · ⊗ Y ·)0 → · · · → (X · ⊗ Y ·)m+n → 0



58 Meixiang CHEN, Qinghua CHEN

is exact. And it follows from Proposition 2.11 that (X · ⊗ Y ·)l ∈ add(T ⊗ T ′)
for l = 0, 1, . . . , n + m.

Consequently, X · ⊗ Y · is an (n + m)-tilting (A ⊗ B)-module. �

At the end of this note, we illustrate our main theorem by the following
example in details.

Example 3.1 Let A = k �Q, where �Q : ◦ α1−→ ◦ α2−→ ◦, I = 〈α1α2〉, and let
B = k �Q′, where �Q′ : ◦ −→ ◦. Then A ⊗k B = k(�Q × �Q′)/I, where

� �◦ ◦ ◦

� � �
� �◦ ◦ ◦

and the dotted lines mean the zero relations.
First, all tilting A-modules are

P1 ⊕ P2 ⊕ P3 = 011 ⊕ 1 1 0 ⊕ 0 0 1 (0-tilting),

P1 ⊕ P2 ⊕ S2 = 011 ⊕ 1 1 0 ⊕ 0 1 0 (1-tilting),

P1 ⊕ P2 ⊕ I1 = 011 ⊕ 1 1 0 ⊕ 1 0 0 (2-tilting).

Second, all tilting B-modules are

P ′
2 ⊕ P ′

1 = 11 ⊕ 0 1 (0-tilting), P ′
2 ⊕ I ′2 = 11 ⊕ 1 0 (1-tilting).

Now, we consider their tensor products.
(i) If

AT = 011 ⊕ 1 1 0 ⊕ 0 0 1 = AA, BT ′ = 01 ⊕ 1 1 = BB,

then T ⊗ T ′ = A ⊗ B, which is trivial—a 0-tilting module.
(ii) If AT = AA and BT ′ = 10 ⊕ 1 1, then

T ⊗ T ′ = 0 1 1
0 0 0 ⊕ 0 1 1

0 1 1 ⊕ 1 1 0
0 0 0 ⊕ 1 1 0

1 1 0 ⊕ 0 0 1
0 0 0 ⊕ 0 0 1

0 0 1 .

(T1)

Pd0 1 1
0 1 1 = 0 = Pd1 1 0

1 1 0 = Pd0 0 1
0 0 1 , Pd0 1 1

0 0 0 = 1 = Pd1 1 0
0 0 0 = Pd0 0 1

0 0 0 ;

hence, PdT ⊗ T ′ = 1.
(T2) By the Auslander-Reiten formulas (see [2, IV.2, Theorem 2.13]), we
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see that

Ext1A⊗B(T ⊗ T ′, T ⊗ T ′) = Ext1A⊗B

(0 1 1
0 0 0 ⊕ 1 1 0

0 0 0 ⊕ 0 0 1
0 0 0 ,

0 0 1
0 0 0 ⊕ 0 0 1

0 0 1

)

= DHom
(0 0 1

0 0 0 ⊕ 0 0 1
0 0 1 , τ

(0 1 1
0 0 0 ⊕ 1 1 0

0 0 0 ⊕ 0 0 1
0 0 0

))

= DHom
(0 0 1

0 0 0 ⊕ 0 0 1
0 0 1 ,

0 0 0
1 1 0 ⊕ 0 0 0

1 0 0 ⊕ 0 0 0
0 1 1

)

= 0,

where τ denotes the Auslander-Reiten transition.
(T3)

0 −→ A ⊗ B −→ 1 1 0
1 1 0 ⊕ 0 1 1

0 1 1 ⊕ 0 1 1
0 1 1 ⊕ 1 1 0

1 1 0 ⊕ 0 0 1
0 0 1 ⊕ 0 0 1

0 0 1

−→ 1 1 0
0 0 0 ⊕ 0 1 1

0 0 0 ⊕ 0 0 1
0 0 0 −→ 0;

hence, AT ⊗B T ′ is 1-tilting.
(iii) Similar to (ii), if AT = 011 ⊕ 1 1 0 ⊕ 0 1 0 (1-tilting), BT ′ = BB, then

T ⊗ T ′ = 000
0 1 1 ⊕ 0 1 1

0 1 1 ⊕ 0 0 0
1 1 0 ⊕ 1 1 0

1 1 0 ⊕ 0 0 0
0 1 0 ⊕ 0 1 0

0 1 0

is 1-tilting.
(iv) If AT = 011 ⊕ 1 1 0 ⊕ 0 1 0 (1-tilting), BT ′ = 10 ⊕ 1 1 (1-tilting), then

T ⊗ T ′ = 011
0 0 0 ⊕ 0 1 1

0 1 1 ⊕ 1 1 0
0 0 0 ⊕ 1 1 0

1 1 0 ⊕ 0 1 0
0 0 0 ⊕ 0 1 0

0 1 0 .

(T1)

Pd0 1 1
0 1 1 = 0 = Pd1 1 0

1 1 0 , Pd0 1 1
0 0 0 = 1 = Pd1 1 0

0 0 0 = Pd0 1 0
0 1 0 ,

so PdT ⊗ T ′ = 2.
(T2) By the Auslander-Reiten formulas,

Ext1A⊗B(T ⊗ T ′, T ⊗ T ′)

= Ext1A⊗B

(0 1 1
0 0 0 ⊕ 1 1 0

0 0 0 ⊕ 0 1 0
0 0 0 ⊕ 0 1 0

0 1 0 ,
0 1 0
0 1 0 ⊕ 0 1 0

0 0 0

)

= DHom
(0 1 0

0 0 0 ⊕ 0 1 0
0 1 0 , τ

(0 1 1
0 0 0 ⊕ 1 1 0

0 0 0 ⊕ 0 1 0
0 0 0 ⊕ 0 1 0

0 1 0

))

= DHom
(0 1 0

0 0 0 ⊕ 0 1 0
0 1 0 ,

0 0 0
1 1 0 ⊕ 0 0 0

1 0 0 ⊕ 0 1 1
1 1 0 ⊕ 0 0 1

0 0 0

)

= 0.
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In view of [9, p. 30], we obtain that

Ext2A⊗B(T ⊗ T ′, T ⊗ T ′)

= Ext2A⊗B

(0 1 1
0 0 0 ⊕ 1 1 0

0 0 0 ⊕ 0 1 0
0 0 0 ⊕ 0 1 0

0 1 0 ,
0 1 0
0 1 0 ⊕ 0 1 0

0 0 0

)

= HomDb(A⊗B)

(0 1 1
0 0 0 ⊕ 1 1 0

0 0 0 ⊕ 0 1 0
0 0 0 ⊕ 0 1 0

0 1 0 ,
∑

2
(0 1 0

0 1 0 ⊕ 0 1 0
0 0 0

))

= 0,

where
∑

is a shift functor.
(T3)

0 −→ A ⊗ B −→ 1 1 0
1 1 0 ⊕ 0 1 1

0 1 1 ⊕ 0 1 1
0 1 1 ⊕ 1 1 0

1 1 0 ⊕ 0 1 1
0 1 1 ⊕ 0 1 1

0 1 1

−→ 1 1 0
0 0 0 ⊕ 0 1 1

0 0 0 ⊕ 0 1 1
0 0 0 ⊕ 0 1 0

0 1 0 ⊕ 0 1 0
0 1 0 −→ 0 1 0

0 0 0 −→ 0;

consequently, T ⊗ T ′ is 2-tilting.
(v) Similar to (iv), T ⊗T ′ is 2-tilting, if AT = 011 ⊕1 1 0 ⊕1 0 0 (2-tilting)

and BT ′ = BB.

(vi) If AT = 011 ⊕ 1 1 0 ⊕ 1 0 0 (2-tilting), BT ′ = 10 ⊕ 1 1 (1-tilting), then

T ⊗ T ′ = 011
0 0 0 ⊕ 0 1 1

0 1 1 ⊕ 1 1 0
0 0 0 ⊕ 1 1 0

1 1 0 ⊕ 1 0 0
0 0 0 ⊕ 1 0 0

1 0 0 = D(A).

(T1)

Pd0 1 1
0 1 1 = Pd1 1 0

1 1 0 = 0, Pd0 1 1
0 0 0 = Pd1 1 0

0 0 0 = 1, Pd1 0 0
1 0 0 = 2, Pd1 0 0

0 0 0 = 3,

these are due to

0 �� 0 0 1
0 0 1

�� 0 1 1
0 1 1

���
��

��
��

�� 1 1 0
1 1 0

�� 1 0 0
1 0 0

�� 0,

0 1 0
0 1 0

���������

0 �� 0 0 0
0 0 1

�� 0 0 1
0 0 1 ⊕ 0 0 0

0 1 1

�����
��

�� 0 1 1
0 1 1 ⊕ 0 0 0

1 1 0

�����
��

�� 1 1 0
1 1 0

�� 1 0 0
0 0 0

�� 0.

0 0 1
0 1 1

������� 0 1 0
1 1 0

�����
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Thus, Pd T ⊗ T ′ = 3.
(T2)

Ext3A⊗B(T ⊗ T ′, T ⊗ T ′) = Ext2A⊗B(T ⊗ T ′, T ⊗ T ′)

= Ext1A⊗B(T ⊗ T ′, T ⊗ T ′)
= 0.

(T3)

0 −→ A ⊗ B −→ 1 1 0
1 1 0 ⊕ 0 1 1

0 1 1 ⊕ 0 1 1
0 1 1 ⊕ 1 1 0

1 1 0 ⊕ 0 1 1
0 1 1 ⊕ 0 1 1

0 1 1

−→ 1 1 0
1 1 0 ⊕ 1 1 0

0 0 0 ⊕ 0 1 1
0 0 0 ⊕ 1 1 0

1 1 0 ⊕ 0 1 1
0 0 0

−→ 1 0 0
1 0 0 ⊕ 1 1 0

0 0 0 ⊕ 1 0 0
1 0 0 −→ 1 0 0

0 0 0 −→ 0;

so T ⊗ T ′ is 3-tilting. �
By seeking into Example 3.1, we find that tensor products of indecomposable

modules are also indecomposable, since it follows from (1) in Proposition 2.9
that

EndA⊗B(M ⊗ N) = EndA(M) ⊗ EndB(N)

(see [6, Proposition 7]). Conversely, it does not work, i.e., an indecomposable
A ⊗ B-module do not always be decomposed into the tensor product of an
indecomposable A-module and an indecomposable B-module. From Example
3.1, there are 5 indecomposable A-modules, 3 indecomposable B-modules,
the number of the tensor product of indecomposable A-modules and inde-
composable B-modules should be 15. However, there are 20 indecomposable
A⊗B-modules, so there are still 5 indecomposable A⊗B-modules, which could
not presented as the tensor products of an indecomposable A-modules and an
indecomposable B-module, they are

0 0 1
0 1 1

0 1 1
0 1 0

0 1 1
1 1 0

0 1 0
1 1 0

1 1 0
1 0 0

From our main result, for the classical (1-)tilting module AT and BT ′, T⊗T ′
turns out to be 2-tilting. In this case, if A is hereditary, then

C = End(AT ), D = End(BT ),

are tilted algebras. But EndA⊗B(M ⊗N) = EndA(M)⊗EndB(N) may not be
tilted, in which T ⊗ T ′ is 2-tilting. There is a natural question: when does the
tensor products of tilted algebras will be tilted? So does the problem of the
tensor products of torsion theories. We will discuss them in another paper.



62 Meixiang CHEN, Qinghua CHEN

Acknowledgements This work was supported by the National Natural Science

Foundation of China (Grant Nos. 11471269, 61373140), the Natural Science Foundation of

Fujian Province (2016J01002), and 2016 Incubation Program for Scientific Research Talent of

Distinguished Young of Colledges and Universities in Fujian Province.

References

1. Anderson F W, Fuller K R. Ring and Categories of Modules. 2nd ed. New York:
Springer-Verlag, 1992

2. Assem I, Simson D, Skowronski A. Elements of the Representation Theory of
Associative Algebras I: Techniques of Representation Theory. Cambridge: Cambridge
Univ Press, 2006

3. Bazzoni S. A characterization of n-cotilting and n-tilting modules. J Algebra, 2004,
273(1): 359–372

4. Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Ponomarev
reflection functors. In: Representation Theory II. Lecture Notes in Math, Vol 832.
New York: Springer-Verlag, 1980, 103–169

5. Cartan H, Eilenberg S. Homological Algebra. Princeton: Princeton Univ Press, 1956

6. Chen M X, Chen Q H. Tensor products of triangular monomial algebras. J Fujian
Normal Univ Nat Sci, 2007, 23(6): 19–23

7. Christopher C G. Tensor products of Young modules. J Algebra, 2012, 366: 12–34

8. Eilenberg S, Rosenberg A, Zalinsky D. On the dimension of modules and algebras VIII.
Nagoya Math J, 1957, 12: 71–93

9. Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional
Algebras. London Math Soc Lecture Note Ser, 119. Cambridge: Cambridge Univ Press,
1988

10. Happel D, Ringel C. Tilted algebras. Trans Amer Math Soc, 1982, 274: 399–443
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