
Front. Math. China 2016, 11(6): 1379–1418
DOI 10.1007/s11464-016-0573-4

Efficient initials for computing
maximal eigenpair

Mu-Fa CHEN

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and
Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract This paper introduces some efficient initials for a well-known
algorithm (an inverse iteration) for computing the maximal eigenpair of a class
of real matrices. The initials not only avoid the collapse of the algorithm but
are also unexpectedly efficient. The initials presented here are based on our
analytic estimates of the maximal eigenvalue and a mimic of its eigenvector
for many years of accumulation in the study of stochastic stability speed. In
parallel, the same problem for computing the next to the maximal eigenpair is
also studied.

Keywords Perron-Frobenius theorem, power iteration, Rayleigh quotient
iteration, efficient initial, tridiagonal matrix, Q-matrix
MSC 15A18, 65F15, 93E15, 60J27

1 Introduction. Two algorithms and a typical example

Consider a nonnegative irreducible matrix A = (aij) on E := {0, 1, . . . , N},
N < ∞. By the well-known Perron-Frobenius theorem, the matrix has uniquely
a positive eigenvalue ρ(A) having positive left-eigenvector and positive right-
eigenvector. Moreover, both the left-eigenspace and the right-eigenspace of
ρ(A) have dimension one. This eigenvalue is maximal in the sense that for
every other eigenvalue λk, we have ρ(A) � |λk|. The last equality sign appears
only if A has a period p > 1. For instance, for

A =

⎛
⎝

0 0 1
0 0 1
1 1 0

⎞
⎠ ,

we have p = 2 and the eigenvalues of A are ±√
2 and 0. However, we may

Received October 22, 2015; accepted June 23, 2016
E-mail: mfchen@bnu.edu.cn

1380 Mu-Fa CHEN

assume that ρ(A) > |λk| for every other eigenvalue λk. Actually, if λ = ρeiθ with
θ �= kπ/2 for every odd k ∈ Z, then for every ε > 0, we have ρ + ε > |ρeiθ + ε|.
This means that the required assertion holds for the shifted pair ρ + ε and
λ+ ε. In other words, an analog of the Perron-Frobenius theorem is meaningful
for the matrices having nonnegative off-diagonal elements only, their diagonal
elements can be arbitrary but real. By a shift if necessary, such a matrix can be
transformed into a nonnegative one: the maximal eigenvector is kept but their
maximal eigenvalues are shifted from one to the other. In this paper, we are
interested in computing ρ(A) and its corresponding eigenvector. This is a very
important problem, we will come back to its motivation in the next section.

There are mainly two popular algorithms for this problem. Unless otherwise
stated, the eigenvector below means the right-eigenvector. Then, the maximal
eigenpair (the maximal eigenvalue and its eigenvector) is denoted by (ρ(A), g).

Power iteration Given an initial vector v0 ∈ R
N+1 having a nonzero

component in the direction of g with ‖v0‖ = 1, define

vk =
Avk−1

‖Avk−1‖ , zk = ‖Avk‖, k � 1, (1)

where ‖ · ‖ is an arbitrary but fixed vector norm. Then vk converges to the
eigenvector g of ρ(A) and zk converges to ρ(A) as k → ∞.

Even it is not necessary, in the next algorithm, we fix the vector norm to be
the Euclidean one (or equivalently, the �2-norm). Actually, a refined choice is
using the inner product and the norm in the space L2(μ) for a suitable measure
μ to be specified case by case, as illustrated by the improved algorithm given
at the end of Sections 3 and 4. See also Section 6.

Rayleigh quotient iteration (a variation of inverse iteration) Choose a pair
(z0, v0) as an approximation of (ρ(A), g) with v∗0v0 = 1, where v∗ is the transpose
of v. In particular, one may set z0 = v∗0Av0 for a given v0. At the kth (k � 1)
step, solve the linear equation in wk :

(A − zk−1I)wk = vk−1, (2)

where I is the identity matrix on E, and define

vk =
wk√
w∗

kwk

, zk = v∗kAvk.

If the pair (z0, v0) is close enough to (ρ(A), g), then (zk, vk) converges to (ρ(A), g)
as k → ∞.

In what follows, unless otherwise stated, we fix z0 to be the particular choice
just defined. We now use a typical example (which will be studied time by time
in the paper) to illustrate the effectiveness and their difference of the above two
algorithms.

Efficient initials for computing maximal eigenpair 1381

Example 1 Let E = {0, 1, . . . , 7} and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0
1 −5 22 0 0 0 0 0
0 22 −13 32 0 0 0 0
0 0 32 −25 42 0 0 0
0 0 0 42 −41 52 0 0
0 0 0 0 52 −61 62 0
0 0 0 0 0 62 −85 72

0 0 0 0 0 0 72 −113

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we have ρ(Q) ≈ −0.525268 with eigenvector

≈ (55.878, 26.5271, 15.7059, 9.97983, 6.43129, 4.0251, 2.2954, 1.0)∗.

Starting from v0 which is the normalized vector of

(1, 0.587624, 0.426178, 0.329975, 0.260701, 0.204394, 0.153593, 0.101142)∗ ,

the power iteration (applied to the nonnegative A := 113 I + Q) arrives at
−0.525268 ≈ ρ(Q) after 990 iterations. Here, we adopt the �1-norm:

‖v‖ =
∑
k∈E

|vk|.

We now give a little more details about the computations for this example.
Table 1 gives us partial outputs of (k,−zk). The corresponding figure below

shows that −zk decreases quickly for small k, but the convergence goes very
slow for large k.

Table 1 Partial outputs of (k,−zk)

k −zk k −zk k −zk

0 2.11289 14 0.877012 100 0.589332

1 1.42407 15 0.86311 120 0.574136
2 1.37537 16 0.850338 140 0.56279
3 1.22712 17 0.838548 160 0.554157
4 1.1711 18 0.827619 180 0.547529
5 1.10933 19 0.817449 200 0.542423
6 1.06711 20 0.807953 300 0.529909
7 1.02949 30 0.738257 400 0.526517
8 0.998685 40 0.694746 500 0.525603
9 0.971749 50 0.664453 600 0.525358

10 0.948331 60 0.641946 700 0.525292
11 0.927544 70 0.624473 800 0.525274
12 0.908975 80 0.610468 900 0.52527
13 0.892223 90 0.598963 � 990 0.525268

1382 Mu-Fa CHEN

200 400 600 800 1000

1.0

1.5

2.0

Fig. 1 Figure of −zk for k = 0, 1, . . . , 1000

The advantage of the first algorithm is that it allows us to use a quite
arbitrary positive initial vector v0. The reason why the convergence of the
example at the beginning steps goes quite fast is because we have used a very
good initial v0, as will be studied in Section 3. However, for larger k, the
convergence becomes very slow, that is the limitation of this algorithm. From
Fig. 1, it is clear that one may stop the computation at 300 iterations since
then the results are almost the same. However, we keep going on until the six
precisely significant digits as limited by a computer using Mathematica 9. The
reason for doing so is for the comparison with other algorithms to be studied
later.

Certainly, we expect the second algorithm to be more efficient. Now, what
can we expect? Since this problem is often used in practice, we would be very
happy if a new algorithm can reduce the number of iterations seriously, say, 500
for instance. Certainly, we would be very surprising if it can be reduced to 250.
Let us think this question more carefully. Suppose that we are now interested
in the maximal eigenvalue only, and suppose that we know it is located on
(0, 1) (actually, as we will see by Proposition 11 below, the maximal eigenvalue
of A := 113 I + Q is located in (0, 113)). We may use the Golden Section
Search (a famous method in optimization theory), its speed is about 0.618−1.
Then, to obtain the six precisely significant digits as in the last example, one
needs at least 24 iterations since 10−6 ≈ 0.61824. Suppose that we can adopt
a faster algorithm, the Bisection Method. Then it requires about 20 iterations
since 10−6 ≈ 2−20. Hence, it is reasonable if an algorithm uses more than 20
iterations to arrive at the same precise level. Having this analysis in mind, we
were shocked when the next result came to us.

Example 2 The matrix Q and the initial vector v0 are the same as in the
last example but we now adopt the �2-norm. The Rayleigh quotient iteration

Efficient initials for computing maximal eigenpair 1383

(applied to Q) starts at

z0 = v∗0Qv0 ≈ −0.78458

and then arrives at the same result as in the last example at the second step:

z1 ≈ −0.528215, z2 ≈ −0.525268.

Example 2 is the main illustrating example (which will be further improved
by Example 7 below) of this paper. It shows that the second algorithm can be
extremely powerful. The key to this result is that we have chosen an efficient
initial vector v0 and then the resulting z0 is also close to ρ(Q). It may be the
position to compare the use of �1-norm and �2-one. Let everything be the
same as in the last example but replacing the �2-norm by the �1-one. Then the
iteration starts at z0 ≈ −0.367937 and arrives at the same result at the third
step:

z1 ≈ −0.509272, z2 ≈ −0.52509, z3 ≈ −0.525268.

The result comes with no surprising: it is easier to use the �1-norm in the
computation but it is a little less efficient than using the �2-norm.

We have seen the power of the second algorithm. However, “too good” is
dangerous. Each eigenvalue λk �= ρ(A) can be a pitfall of the algorithm provided
either z0 is close enough to λk or v0 is close enough to the eigenvector gk of
λk. The next example illustrates the latter situation. For which a simpler v0

deduces its corresponding z0 to be more close to λ2 rather than λ3.
Here and in what follows, we often use the so-called Q-matrix

Q = (qij : i, j ∈ E),

which means that qij � 0 for every pair i �= j and
∑

j∈E qij � 0 for every i ∈ E.
This implies the intrinsic use of probabilistic idea. For convenience, we often
write by

0 < λ0 < |λ1| � |λ2| � · · · ,

where {λj} is the sequence of the eigenvalues of −Q. Then λ0 = −ρ(Q).

Example 3 The matrix Q is the same as the last example and we use again
the �2-norm. Replace Q by −Q (then the corresponding zk > 0). Choose the
initial vector v0 to be the normalized uniform vector:

v0 =
1√
8
{1, 1, 1, 1, 1, 1, 1, 1}.

Then with the particular choice given in the algorithm

z0 = v∗0(−Q)v0 = 8,

we obtain the following output at the first 4 steps of the iterations:

z1 ≈ 4.78557, z2 ≈ 5.67061, z3 ≈ 5.91766, z4 ≈ 5.91867 ≈ λ2.

1384 Mu-Fa CHEN

The first two eigenvalues of −Q are

λ0 ≈ 0.525268, λ1 ≈ 2.00758, λ3 ≈ 13.709,

respectively. Hence, the limit λ2 is quite away from what we are interested in.

By the way, let us mention that in practice, we can stop our computation
once the components of the first output v1 have different signs, and try to choose
a new initial pair (v0, z0). This is due to the fact that the maximal vector should
be positive/negative up to a constant. Here, in the last example,

v1 = (−0.26762, 0.242432, −0.522646, −0.579319,
− 0.423469, −0.253452,−0.124365, −0.0425044)∗ .

Each of the components is negative except the second one.
The next example shows that we can still arrive at the expected result for

a good initial z0 even if v0 is quite rough.

Example 4 Everything is the same as in the last example except

z0 = 2.05768−1 ≈ 0.485985.

Then {zk} approaches to λ0 at the second step:

z1 ≈ 0.525998, z2 ≈ 0.525268.

This paper is organized as follows. In the next section, we first review
the five sources of the motivation for our problem. Then we recall the known
convergence of these algorithms. From the above examples, we have seen that
the second algorithm is much more attractive. To which, we need a careful
design in choosing the initial pair (v0, z0). Clearly, an efficient initial pair is just
a good estimate of the pair in advance. This itself is a hard topic in the study
of eigenvalue problem and so it is understandable that the initial problem is
still largely open in the eigenvalue computation theory. A complete, analytic
(explicit) solution to this problem is presented in Section 3 first for tridiagonal
matrices (after a suitable relabeling if necessary), and then for a class of more
general matrices in terms of the so-called Lanczos tridiagonalization procedure.
The main extension to the general situation is presented in Section 4
which consists of two subsections. In the first one, we concentrated on the
construction of z0 for a fixed simplest v0. The second one in even more
technical, in which we are mainly working on the construction of v0. A number
of examples are illustrated, case by case, for the results in the paper. It is
remarkable that only the one-step iteration scheme, as illustrated by the two
algorithms used above, is used in the paper. In Section 5, we make either
additional proofs of some results in the main context, or additional remarks
on related problems. In particular, we prove a convergence result of our
approximating procedure for the principal eigenvalue of birth–death processes
which have been studied for a long period up to now. A summary for the use

Efficient initials for computing maximal eigenpair 1385

of the algorithms up to Section 4 is given at the end of Section 5. The study
on the next eigenpair is delayed to Section 6.

2 Motivation of problem and convergence of algorithms

In this section, for the reader’s convenience, we recall briefly the motivation of
our problem and the well-known convergence of the two algorithms introduced
in the first section.

2.1 Motivation

It seems not necessary to mention the value of the study on the problem since
the matrix eigenvalue computation is used almost everywhere. The next five
sources reflect more or less the road where we started and finally arrive here.
Google’s PageRank
When we search an expression from the network, a large number of webpages are
collected. The question is how to output them on the screen of our computer.
For this, we need to rank the pages. The procedure goes as follows. According
to the connections of the websites, we get a nonnegative matrix A. To which we
have the largest eigenvalue ρ(A) and its corresponding positive left-eigenvalue.
The normalized left-eigenvector gives us an order of the webpages, that is the
PageRank as we required. Nowadays, there are a large number of publications
on Google’s PageRank, see for instance [12], in which the power iteration is
studied but not the inverse iteration.
Global optimization of planned economy
Regarding the matrix A as a structure matrix in economy, Hua [11] proved
that the optimal input of the planned economy is the left-eigenvector u of ρ(A).
Surprisingly, Hua [11] also proved that if one uses a different input rather than
u, then the economy will go to collapse (i.e., some components of the product
in the economic system will become less or equal to zero). Mathematically, this
situation is very much the same as the last one, but in a completely different
context. As far as I know, the practical algorithms for (u, ρ(A)) were not studied
carefully during that period, except a formula was mentioned in [11]:

ρ(A) = lim
�→∞

(Trace (A�)
N + 1

)1/�
.

Stationary distribution of time-discrete Markov chain
If A itself is a transition probability matrix, then the left-eigenvector
corresponding to the largest eigenvalue one is nothing but the stationary
distribution of the corresponding Markov chain. This explains the stability
meaning in the two situations just discussed above. Based on this idea, we
obtained a probabilistic proof of Hua’s collapse theorem. Refer also to [4,
Chapter 10] for additional story and related references.

Computing the stationary distribution of a given Markov chain is very

1386 Mu-Fa CHEN

important in practice and so has been studied quite a lot in the past years,
including the so-called Markov Chain Monte Carlo (MCMC), perfect/backward
coupling, and so on.
Exponential decay of time-continuous Markov chain
The maximal eigenvalue ρ(Q) in Example 1 describes the exponential decay
rate of the Markov chain with semigroup (Pt = etQ : t � 0). The present paper
is based on our study on this topic, as will be seen from the subsequent sections.
Phase transitions
The last topic and the investigation on related stability speed are actually
motivated from the study on phase transitions in statistical mechanics (cf. [3,4]
for more references within). This is a challenge topic in mathematics since
it is mainly in infinite-dimensional setting. To which, the mathematical tools
are rather limited. Therefore, we have to look for new tools or develop some
known traditional tools. To this end, we have already visited several branches
of mathematics, including the computation theory. We are now glad to be able
to say something on the last field after a long trip of the study.

In the second part of this section, we review some well-known facts on the
convergence of the algorithms.

2.2 Convergence of algorithms

Here is the convergence of the power iteration. In this subsection, we suppose
that the given matrix A (not necessarily nonnegative) has the dominant
eigenvalue λ0 (i.e., |λ0| > |λj | for all other eigenvalues λj) which is simple.
The extension to the periodic situation is also possible, but is omitted here, one
simply replaces the convergence of the original sequence by a subsequence.

Lemma 5 Suppose that the initial vector v0 has a nonzero component in the
direction of the dominant eigenvector g. Then

vk =
Akv0

‖Akv0‖ → g, v∗kAvk → λ0, k → ∞.

Moreover,

lim
n→∞

Anv0

An−1v0
= λ0,

where for given vectors u and v, the ratio u/v is understood as the quotient
function of the functions u and v.

Proof Suppose that the eigenvalues are all different for simplicity. Otherwise,
one simply uses the Jordan representation of matrices. Write

v0 =
N∑

j=0

cjgj

Efficient initials for computing maximal eigenpair 1387

for some constants (cj) with g0 = g. Then c0 �= 0 by assumption and

Akv0 =
N∑

j=0

cjλ
k
j gj = c0λ

k
0

[
g +

N∑
j=1

cj

c0

(λj

λ0

)k
gj

]
.

Since |λj/λ0| < 1 for each j � 1 and ‖g‖ = 1, we have

Akv0

‖Akv0‖ → c0

|c0|g, k → ∞,

and then
v∗kAvk → g∗Ag = g∗λ0g = λ0, k → ∞.

We have thus proved the main assertion of the lemma. The proof of the last
assertion is similar. �

Clearly, the convergence speed in the lemma is
∣∣∣λ1

λ0

∣∣∣
k
, |λ1| := max{|λj | : j > 0}.

The next result is the convergence for the inverse iteration.

Lemma 6 Under the assumption of the last lemma, for each z close to λ0,
we have

vk =
(A − zI)−kv0

‖(A − zI)−kv0‖ → g, v∗kAvk → λ0, k → ∞.

Moreover,

lim
n→∞

(A − zI)−nv0

(A − zI)−n+1v0
=

1
λ0 − z

.

Proof Note that for z close to λ0, the dominant eigenvalue of the matrix
(A − zI)−1 is (λ0 − z)−1 with the same dominant eigenvector g as the one for
A. The proof is very much the same as the previous one. �

The iteration given in Lemma 6 is called the inverse iteration. It is
remarkable that the convergence speed in this lemma is

∣∣∣λ0 − z

λ1 − z

∣∣∣
k ∼

∣∣∣ λ0 − z

λ1 − λ0

∣∣∣
k

when z is sufficiently close to λ0. At the kth step, replacing z by the Rayleigh
quotient approximation zk = v∗kAvk, we obtain the Rayleigh quotient iteration
as described in the first section. Clearly, the last algorithm is an acceleration of
the inverse iteration. The price is that the initial z0 has to be chosen close to λ0

which is usually not explicitly known. Otherwise, if z0 is chosen close to some
λj �= λ0, then a similar proof of Lemma 6 shows that v∗kAvk converges to the
pitfall λj �= λ0. In practice, once z = z0 is chosen in a suitable neighborhood of
λ0, the sequence z = zk converges to λ0 rapidly, as illustrated by Examples 2

1388 Mu-Fa CHEN

and 4. More precisely, Example 1 applies the power iteration to A := 113I +Q,
its convergence speed is

∼
(113 − λ1

113 − λ0

)k ≈
(113 − 2.00758

113 − 0.525268

)k
, k → ∞.

Examples 2 and 4 use the Rayleight quotient iteration which has
the convergence speed

∼
k∏

j=0

λ0 − zj

λ1 − zj
, k → ∞.

Since zk → λ0, the last convergence is much fast than the previous one.
Honestly, this still does not answer the reason why the inverse algorithm in
Example 2 can achieve the six significant digits at the second iteration.

3 Efficient initials. Tridiagonal case

Again, assume that A = (aij) on E = {0, 1, . . . , N}, N < ∞, is irreducible
and having non-negative off-diagonal elements. Assume also that the matrix is
tridiagonal (after a suitable relabeling if necessary): aij = 0 unless |i − j| � 1.
By a shift Q := A − mI if necessary, where I is the identity matrix on E and

m = max
i∈E

∑
j∈E

aij,

one may assume that

Q =

⎛
⎜⎜⎜⎜⎜⎝

−(b0 + c0) b0 0 0 · · ·
a1 −(a1 + b1 + c1) b1 0 · · ·
0 a2 −(a2 + b2 + c2) b2 · · ·
...

...
.

0 0 0 aN −(aN + cN)

⎞
⎟⎟⎟⎟⎟⎠

,

where ai, bi > 0, ci � 0 but ci �≡ 0. Define

μ0 = 1, μn = μn−1
bn−1

an
=

b0b1 · · · bn−1

a1a2 · · · an
, 1 � n � N.

We now split our discussion into two cases.
Case 1 Let

c0 = c1 = · · · = cN−1 = 0.

Then we may assume that cN > 0. Otherwise, Q has the trivial maximal
eigenvalue 0 with eigenvector with components being one everywhere. In this
case, we rewrite cN as bN , ignoring the sequence (ci), and define

ϕn =
N∑

k=n

1
μkbk

, 0 � n � N. (3)

Efficient initials for computing maximal eigenpair 1389

Case 2 Let some of ci (i = 0, 1, . . . , N − 1) be positive. Then, we need more
work. Define

r0 = 1 +
c0

b0
, rn = 1 +

an + cn

bn
− an

bnrn−1
, 1 � n < N,

h0 = 1, hn = hn−1rn−1 =
n−1∏
k=0

rk, 1 � n � N,

and additionally,
hN+1 = cNhN + aN (hN−1 − hN).

Finally, define

ϕn =
N∑

k=n

1
hkhk+1μkbk

, 0 � n � N, (4)

with a convention that bN = 1 to save our notation.
We remark that in the special case that c0 = c1 = · · · = cN−1 = 0, by

induction, it is easy to check that

r0 = r1 = · · · = rN−1 = 1,

and hence,
h0 = h1 = · · · = hN = 1.

Furthermore, hN+1 = cN . Thus, once replacing cN by bN , we return to (3) from
(4).

To state our algorithm, we need one more quantity:

δ1 = max
0�n�N

[√
ϕn

n∑
k=0

μkh
2
k

√
ϕk +

1√
ϕn

N∑
j=n+1

μjh
2
jϕ

3/2
j

]
.

Rayleigh quotient iteration in tridiagonal case For given tridiagonal
matrix A, define m, (ai, bi, ci), (hi), (ϕi), and δ1 as above. Set

ṽ0(i) = hi
√

ϕi, 0 � i � N, v0 =
ṽ0√
ṽ∗0 ṽ0

, z0 =
1
δ1

.

At the kth step (k � 1), solve the linear equation in wk :

(−Q − zk−1I)wk = vk−1, (5)

and define
vk =

wk√
w∗

kwk

, zk = v∗k(−Q)vk.

Then vk converges to g and m − zk converges to ρ(A) as k → ∞.

It is an essential point that the choice of z0 avoids the collapse since we have
known that λ0(Q) = λmin(−Q) (the minimal eigenvalue of −Q) � δ−1

1 by [5,

1390 Mu-Fa CHEN

Corollary 3.3]. As an application of this result to Example 1, we have ci ≡ 0 but
b7 = 64 and then hi ≡ 1. We can define ϕ by (3) and then ṽ0 =

√
ϕ which is the

one, up to a free factor
√

ϕ0, used in Example 1. This is the meaning of “very
good” claimed in the first section. We now compute the minimal eigenvalue of
−Q using not only ṽ0 but also δ1.

Example 7 The matrix Q and the vector ṽ0 are the same as in Example 1:

(1, 0.587624, 0.426178, 0.329975, 0.260701, 0.204394, 0.153593, 0.101142)∗ .

We have δ1 = 2.05768. Then, with the new z0 := δ−1
1 ≈ 0.485985, the Rayleigh

quotient iteration arrives at the expected estimate at the second step:

z1 ≈ 0.525313, z2 ≈ 0.525268.

Comparing the approximation value of z1 here and that in Example 2, it is
clear that this result is sharper than Example 2 (see also the comment below
Corollary 12).

Now, let us discuss the effectiveness of our algorithm with respect to the size
N of the matrix. In computational mathematics, one often expects the number
of iterations M grows up no more than Nα for some α > 0. It is unusual if
M ≈ log N for large N. To this question, considering the basic Example 1 with
varying N, the answer given below is worked out by Yue-Shuang Li using the
algorithm introduced in this section and the software MatLab on a notebook.
In the first line of Table 2, the reason we use N + 1 rather than N is that the
space is labeled starting at 0 but not 1.

Table 2 For different N, eigenvalue λ0, its lower bound δ−1
1 , and z1, z2

N + 1 z0 = δ−1
1 z1 z2 = λ0

100 0.348549 0.376437 0.376383

500 0.310195 0.338402 0.338329
1000 0.299089 0.32732 0.32724
5000 0.281156 0.308623 0.308529
7500 0.277865 0.305016 0.304918

10000 0.275762 0.30266 0.302561

Is it believable? Yes, we have justified the outputs in two different ways: in
each case, first, the outputs starting from z2 become the same (which actually
coincides with the output of λ0). Second, by using v2, we can find upper/lower
estimates ξ/ξ of λ0 such that z2 ∈ (ξ, ξ), and moreover,

ξ

ξ
≈ 1 + 10−5.

The next example is due to Hua [11] in the study of economic optimization
(cf. [4, Chapter 10]). Note that here we are studying the right-eigenvector, the
matrix A used below is the transpose of the original one.

Efficient initials for computing maximal eigenpair 1391

Example 8 Let

A =
1

100

(
25 40
14 12

)
.

Then

ρ(A) =
37 +

√
2409

200
≈ 0.430408.

With the initials:

v0 ≈ (0.429166, 0.220573)∗ , z0 := δ−1
1 ≈ 0.212077,

the iteration arrives at the expected result at the second step (n = 2):

0.65 − z0 ≈ 0.437923; 0.65 − z1 ≈ 0.430603; 0.65 − z2 ≈ 0.430408.

Proof First, we have m = 65/100 and then

Q =

⎛
⎜⎝
−2

5
2
5

7
50

− 53
100

⎞
⎟⎠ .

In this case, we ignore (ci) but let b1 > 0. Actually, we have

b0 =
2
5
, b1 =

39
100

; a1 =
7
50

; μ0 = 1, μ1 =
20
7

; ϕ0 =
265
78

, ϕ1 =
35
39

.

Therefore,

v0 =
(√

53
67

,

√
14
67

)
, z−1

0 =
5(2809 + 40

√
742)

4134
.

The conclusion now follows by our algorithm. �
An additional example for the algorithm presented in this section is delayed

to Example 22.
Before moving further, let us introduce an algorithm for (and then

a representation of) the solution to equation (5). This is mainly used in
theoretic analysis rather than numerical computation. The idea is meaningful
in a more general setup and comes from [9, Theorem 1.1, Proposition 2.6] plus
a modification [6, Proposition 4.1]. Given a number z ∈ R and a vector v,
consider the equation for the vector w :

Qw + zw = −v. (6)

To do so, we need some notation. Fix i : 0 � i � N − 1, and set

α
(i)
� =

1
bi+�

{
ci+� − z + ai+�, 1 = � � N − i,

ci+� − z, 2 � � � N − i.

1392 Mu-Fa CHEN

Next, define the vector G
(i)
·,1 by G

(i)
�,1 = α

(i)
� for � = 1, 2, . . . , N − i and define

recursively in k = 2, 3, . . . , N − i, the vector G
(i)
·, k by

G
(i)
�,k = G

(i)
�, k−1 + α

(i+k−1)
�−k+1 G

(i)
k−1, k−1, � = k, k + 1, . . . , N − i. (7)

Note that here for computing G
(i)
·, k, we use only G

(i)
·, k−1 but not the others G

(i)
·, j

with j � k − 2.

Proposition 9 Let N � 1 and G
(·)
0,0 ≡ 1. Then the solution w = (wk : k ∈ E)

to equation (6) has the following representation:

wn =
vN + MN−1(v)

cN − z + MN−1(c· − z)
[1 + Nn−1(c· − z)] − Nn−1(v), 0 � n � N,

where for each vector h, N−1(h) = 0 and

MN−1(h) = cN

N−1∑
j=0

hj

bj
G

(j)
N−j,N−j,

Nn(h) =
n∑

j=0

hj

bj

n−j∑
k=0

G
(j)
k, k, 0 � n < N.

The proof of this result is delayed to Section 5.
From now on, we are going to treat general real matrices. This is a hard task

and will be the main goal of the next section. Here, we study a special case only.
In computational mathematics, there is a well-known Lanczos tridiagonalization
procedure making a matrix to be tridiagonal one. That is, for a given A,
constructing a nonsingular B such that B−1AB =: T becomes a tridiagonal
matrix. We will come back to the procedure soon. Here is an example (the
details are omitted).

Example 10 Let

A =

⎛
⎝

1 2 3
1 2 1
3 2 1

⎞
⎠ , B =

⎛
⎝

1 0 0
0 1/

√
10 3/

√
13

0 3/
√

10 −2/
√

13

⎞
⎠ .

Then

T = B−1AB =

⎛
⎝

1 11/
√

10 0√
10 25/11 20

√
130/143

0
√

130/11 8/11

⎞
⎠ .

We have
ρ(A) = ρ(T) = 3 +

√
5 ≈ 5.23607.

Our algorithm arrives at the same result at the second step of the iterations
(n = 2):

(n = 0) 5.43937; (n = 1) 5.23996; (n = 2) 5.23607.

Efficient initials for computing maximal eigenpair 1393

It is the position to recommend an improved algorithm as follows. The
point is to use the inner product (·, ·)μ and norm ‖ · ‖μ in the space L2(μ) since
(μk) may not be a constant as in Example 1.

Improved algorithm Given ṽ0 and δ1 as above, redefine v0 = ṽ0/‖ṽ0‖μ and

z0 = ξδ−1
1 + (1 − ξ)(v0,−Qv0)μ, ξ ∈ [0, 1].

For k � 1, define wk as before but redefine

vk =
wk

‖wk‖μ
, zk = (vk,−Qvk)μ.

With ξ = 7/8, Example 7 and Table 2 are improved as Table 2′.

Table 2′ Example 7 and Table 2 are improved using new z0 with ξ = 7/8

N + 1 z0 z1 z2 = λ0 upper/lower

8 0.523309 0.525268 0.525268 1 + 10−11

100 0.387333 0.376393 0.376383 1 + 10−8

500 0.349147 0.338342 0.338329 1 + 10−7

1000 0.338027 0.327254 0.32724 1 + 10−7

5000 0.319895 0.30855 0.308529 1 + 10−7

7500 0.316529 0.304942 0.304918 1 + 10−7

10000 0.31437 0.302586 0.302561 1 + 10−7

The last column is the order of the ratio of the upper and lower bounds of λ0

in terms of v2, as will be explained below, above Example 13.
Table 3 gives two more examples.

Table 3 Outputs using improved z0 with ξ = 7/8

Example z0 z1 z2 = λ0

8 0.436733 0.430407 0.430408

10 5.36161 5.23578 5.23607

Appendix of Section 3 Algorithm for Lanczos tridiagonalization

For a given A, the aim is choosing a nonsingular Q such that

Q−1AQ = T =

⎛
⎜⎜⎜⎜⎜⎜⎝

c1 b1 · · · · · · 0

a1 c2
. . .

...
...

.
...

...
. bn−1

0 · · · · · · an−1 cn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Note that the notation here is somehow different from the other part of the
paper. To do so, we use the following column partitionings:

Q = [q1 | q2 | · · · | qn], (Q−1)∗ = Q̃ = [q̃1 | q̃2 | · · · | q̃n].

1394 Mu-Fa CHEN

Let
q0 = 0, q̃0 = 0, b0 = 0, a0 = 0.

Choose unit vectors q1 and q̃1 such that q̃∗1q1 = 1. Define

ck = q̃∗kAqk, k � 1,

rk = (A − ckI)qk − ak−1qk−1, k � 1,

r̃k = (A − ckI)∗q̃k − bk−1q̃k−1, k � 1,

bk = ‖rk‖2, ak =
r̃∗krk

bk
, k � 1,

qk =
rk−1

bk−1
, q̃k =

r̃k−1

ak−1
, k � 2.

For Example 10, we simply choose

q = (1, 0, 0)∗ , q̃ = (1, 0, 0)∗.

Generally speaking, there is a question in choosing initial q0 and q̃0. More
generally, it should be meaningful to know for what A, the resulting matrix
have positive ak and bk for every k.

4 Efficient initials. General case

A general algorithm for the efficient initials will be introduced later in the
second subsection. The algorithm introduced in the next subsection is easier
and quite general, but may be less efficient.

4.1 Fix uniformly distributed initial vector v0v0v0

In this subsection, we fix the uniformly distributed initial vector

v0 =
(1, 1, . . . , 1)√

N + 1
.

This is the easiest choice of v0 since it does not use any information from the
eigenvector g of ρ(A) except its positivity property. On the other hand, this
means that the choice is less efficient and it can be even broken as shown by
Example 3. The effectiveness of this v0 depends heavily on the choice of z0. For
which, here we introduce three effective choices.

Choice I Let A = (aij : i, j ∈ E) be nonnegative and set z0 = supi∈E Ai,
where Ai =

∑
j∈E aij . This universal choice comes from the fact that supi∈E Ai

is an upper bound of ρ(A), which can be seen by setting xi ≡ 1 in the next
result.

Proposition 11 For a nonnegative irreducible matrix A with maximal
eigenvalue ρ(A), the Collatz–Wielandt formula holds:

sup
x>0

min
i∈E

(Ax)i
xi

= ρ(A) = inf
x>0

max
i∈E

(Ax)i
xi

.

Efficient initials for computing maximal eigenpair 1395

For the present (v0, z0), even though it is not necessary, one may replace (2)
by

(zk−1I − A)wk = vk−1. (8)

This choice of z0 avoids the collapse of the algorithm since

0 < z0 − ρ(A) < |z0 − λ|
for every eigenvalue λ �= ρ(A) of A.

Let us now introduce an important application of Proposition 11. First, if
we replace A and ρ(A) with −Q and λ0, respectively, the same conclusion holds,
as shown in the next corollary (the proof is delayed to Section 5). Actually, the
corollary holds in a much more general setup. Refer to [3, Theorem 9.5].

Corollary 12 For Q-matrix, the Collatz–Wielandt formula becomes

sup
x>0

min
i∈E

(−Qx)i
xi

= λ0(Q) = inf
x>0

max
i∈E

(−Qx)i
xi

.

Thus, instead of the mean estimate given in these algorithm, we can produce
pointwise estimates. To do so, we need only to compute the ratio (−Q)vk/vk.
For instance, in Example 2, the ratio (−Q)v2/v2 is as follows:

0.525197, 0.5254, 0.52553, 0.525623, 0.525693, 0.525747, 0.525787, 0.525816.

Therefore, we obtain
0.525197 � λ0 � 0.525816

and the ratio of the upper/lower bounds is ≈ 1.00118. Next, for Example 7, the
ratio (−Q)v2/v2 is as follows:

0.525268, 0.525268, 0.525267, 0.525267, 0.525267, 0.525267, 0.525267, 0.525267.

Hence, we have
0.525267 � λ0 � 0.525268

and the ratio of the upper/lower bounds is ≈ 1 + 10−6. Actually, if we apply
the estimates given in [5, Theorem 2.4 (3)] (with supp (f) = E)

z2 ∧ sup
i∈E

fi

gi
� λ0 � inf

i∈E

fi

gi
,

gi :=
∑
k∈E

μkfkϕi∨k = ϕi

i∑
k=0

μkfk +
N∑

k=i+1

μkϕkfk,

ϕi :=
N∑

k=i

1
μkbk

(for this example, μk ≡ 1, bi = (i + 1)2),

to the test function f = v2 with a more precise output, the upper/lower bounds
can be improved as ≈ 1 + 10−7. Hence, the estimate λ0 ≈ 0.525268 is indeed

1396 Mu-Fa CHEN

sharp up to the six precisely significant digits. This shows that the estimates
in the latter example are much better than the former one.

Example 13 Let A be the same as in Example 10. Then ρ(A) ≈ 5.23607 and
z0 = 6. The Rayleigh quotient iteration gives us

z1 ≈ 5.27273, z2 ≈ 5.23639, z3 ≈ 5.23607.

Example 14 Let

A =

⎛
⎜⎜⎝

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎞
⎟⎟⎠ .

Then ρ(A) ≈ 36.2094 and z0 = 58. The Rayleigh quotient iteration gives us

z1 ≈ 37.3442, z2 ≈ 36.2674, z3 ≈ 36.2095, z4 ≈ 36.2094.

Example 15 Let

A =

⎛
⎜⎜⎝

1 2 0 0
3 14 11 0
9 10 11 1
5 6 7 8

⎞
⎟⎟⎠ .

This matrix has complex eigenvalues:

24.0293, 7.72254, 1.1241 + 2.40522 i, 1.1241 − 2.40522 i.

Hence, ρ(A) ≈ 24.0293 and z0 = 31. The Rayleigh quotient iteration gives us

z1 ≈ 24.4393, z2 ≈ 24.0385, z3 ≈ 24.0293.

Example 16 Let Q be the same as in Example 1 and let

A = 113 I + Q.

Then z0 = 113. Recall that λmin(−Q) ≈ 0.525268. For k = 1, 2, 3, the Rayleigh
quotient iteration gives us 113 − zk as follows:

113 − z1 ≈ 0.602312, 113 − z2 ≈ 0.525463, 113 − z3 ≈ 0.525268.

Alternatively, one may apply the algorithm directly to −Q with z0 = 0.

We remark that the algorithm is meaningful for any

z0 � sup
i∈E

∑
j∈E

aij.

For instance, if we choose z0 = 200 rather than z0 = 6 used in Example 13,
then the successive results of the iterations are as follows:

z1 ≈ 5.33546, z2 ≈ 5.24182, z3 ≈ 5.23608, z4 ≈ 5.23607.

Efficient initials for computing maximal eigenpair 1397

The convergence becomes slower as we can imagine. In other words, a larger
initial z0 is less efficient. In view of Proposition 11, we have

0 < ρ(A) � 113.

It seems that there is a large room for us to choose z0. Yes or no? It is yes,
since the last estimates are rather rough, each choice z0 ∈ [111.7, 113] is also
available. The answer is also no, since if we choose z0 = 111.6, then we will go
to the pitfall λ1 (> λ0). Hence, it is rather sensitive to find a useful z0 except
Choice I. Noting that

ρ(A) ≈ 113 − 0.525268,

the reason why the rough Choice I is still efficient for this model should be
clear.

We have thus studied the model introduced in Example 1 six times with
different initials. The results are collected in Table 4. Among them, the worst
one is Example 3 and the best one is Example 7 which uses the whole power of
the algorithm introduced in Section 3. The “Uniform” is the present Choice I
and the “Auto” means automatic one given by the algorithm, as we will come
back in Choice II below.

Table 4 Comparison of examples with different initials

same Q v0 z0 # of iterations

Example 1 ṽ0 power 103

Example 2 ṽ0 auto 2
Example 3 uniform auto collapse
Example 4 uniform δ−1

1 2
Example 7 ṽ0 δ−1

1 2
Example 16 uniform 113 3

In conclusion, even though the present choice (v0, z0) may not be very
efficient, but it works in a very general setup. This algorithm works even for
a more general class of matrices, without assuming the nonnegative property,
once you have an upper estimate of the largest eigenvalue of A. Clearly, for
large-scale matrix, Choice I is meaningful only for the sparse ones.

Choice II Simply use the particular choice given in the Rayleigh quotient
iteration: z0 = v∗0Av0. This simple choice is quite natural and so is often used
in practice. However, there is a dangerous here since v0 is chosen roughly, the
algorithm may lead to an incorrect limit, as illustrated by Example 3.

With the present z0, the computation results for Examples 13–15 are listed
in Table 5.

Table 5 Output (z1, z2, z3) of Examples 13–15

Example z1 z2 z3 = λ0

13 5.24183 5.23608 5.23607

14 35.8428 36.2127 36.2094
15 23.7316 24.0317 24.0293

1398 Mu-Fa CHEN

Combining (z1, z2) here with those given in the last part, it is clear that the
present choice of z0, once works, is better than Choice I.

Choice III This is based on a comparison technique. For given A = (aij)
having the property ai,i+1 + ai+1,i > 0 for every i, we introduce the
symmetrized matrix (A + A∗)/2. (This symmetrizing procedure may be
omitted if both ai,i+1 > 0 and ai+1,i > 0 for every i.) Denote by (αi, βi, γi) the
tridiagonal part (where γi are the diagonal elements) taken from the
symmetrized matrix. By assumption, we have αi > 0 and βi > 0. We can
then follow the last section to choose a z0 first for the tridiagonal matrix and
then regarding it as an approximation of z0 for the original A. One may worry
that we have lost too much in the last step. Yes, it may be so. However, the
key is to avoid the collapse. The smaller estimate z0 of λmin(−Q) is not really
serious since the algorithm can repair it rapidly, as shown by the next example.

Example 17 Let A be the same as in Example 15. Then

1
2

(A + A∗) =

⎛
⎜⎜⎝

1 5/2 9/2 5/2
5/2 14 21/2 3
9/2 21/2 11 4
5/2 3 4 8

⎞
⎟⎟⎠ .

From this, we obtain a tridiagonal matrix

T =

⎛
⎜⎜⎝

1 5/2 0 0
5/2 14 21/2 0
0 21/2 11 4
0 0 4 8

⎞
⎟⎟⎠ ,

and then

Q = T − 27I =

⎛
⎜⎜⎝
−26 5/2 0 0
5/2 −13 21/2 0
0 21/2 −16 4
0 0 4 −19

⎞
⎟⎟⎠ .

According to what we did in Section 3, we have z0 ≈ 1/0.321526 for −Q. Then,
we have

z0 ≈ 27 − 1
0.321526

for T. This is regarded as an approximation of z0 for A. Starting from here and
using the Rayleigh quotient iteration, we obtain the successive approximation
of ρ(A) as follows:

z1 ≈ 24.0125, z2 ≈ 24.0293,

as we expected. Picking up the tridiagonal part directly from A (without using
the symmetrizing procedure), the same approach leads to the following output:

z0 ≈ 28 − 1
0.23307

≈ 23.7094, z1 ≈ 23.9901, z2 ≈ 24.0293.

Efficient initials for computing maximal eigenpair 1399

Let us remark that the three choices of z0 in this subsection are independent
of the initial v0 used here and so can be also used in the next subsection.
Certainly, there are other approaches can be used to deduce an approximation of
the required z0. For instance, Cheeger’s approach [3, §9.5], which is meaningful
in a very general setup. Since it takes account of all subset of E (except the
emptyset), the number of computations is of order 2N . This approach as well as
the capacitary one (cf. [4, Chapter 7]) needs to be simplified to fit the present
setup. In practice, one often uses Proposition 11 or Corollary 12 to get an
upper/lower bound in terms of a suitable test sequence (xi). Refer also to [4,
Theorem 3.6] which uses test weights. These approaches depend heavily on the
working models.

4.2 Efficient initial vector v0v0v0

In general, it is much more difficult to choose an efficient initial v0 than z0.
Here is our algorithm.

A general algorithm
Let A = (aij : i, j ∈ E) be a given irreducible matrix having nonnegative off-
diagonal elements. Once again, denote by ρ(A) the maximal eigenvalue of A. If
Ai :=

∑
j∈E aij is a constant (independent of i ∈ E), then we have ρ(A) ≡ Ai

with right-eigenvector � (its components are all equal to 1). From now on, we
assume that Ai are not a constant.

We introduce our algorithm in four steps.
Step 1 When Ai � 0 for every i ∈ E, one can jump from here to Step 2 below
by setting Q = A. Otherwise, let maxi∈E Ai > 0. Define

Q = A − (
max
i∈E

Ai

)
I.

Then the sum of each row of Q is less or equal to zero and at least one of the
rows is less than zero since Ai is not a constant. Now, if

Q0 = Q1 = · · · = QN−1 = 0

but QN < 0 (Qk :=
∑

j qkj), then one can jump from here to Step 3 with
hi ≡ 1.
Step 2 Assume that Qk < 0 for some k � N − 1. Denote by

h = (h0, h1, . . . , hN)∗

with h0 = 1 the solution to the equation

Q\N ’s rowh = 0,

where Q\k’s row is obtained from Q removing its k’s row (qk0, qk1, . . . , qkN). In
the case that

cN +
∑

j�N−1

qNj

(
1 − hj

hN

)

1400 Mu-Fa CHEN

is much smaller than ∑
j�N−1

qNj
hj

hN

(say, 1 : 100 for instance), one can jump from here to (10) with xi ≡ 1 (cf.
Example 21 in the case of b4 = 0.01).
Step 3 Let (hi : i ∈ E) be constructed in the last step. Define qi = −qii,
i ∈ E. Let x = (x0, x1, . . . , xN)∗ (with x0 = 1) be the solution to the equation

x\0’s row = P \0’s row x, (9)

where
P = (pij : i, j ∈ E) : pii = 0, pij =

qijhj

qihi
, j �= i;

or in the matrix form,

P = Diag((qihi)−1)QDiag(hi) + I.

Refer to the comments below Examples 21 and 22 for the constraint x0 = 1.
Here, the sequence (xi) is an extension of (ϕi) used in Section 3 (cf. Lemma 24
below).
Step 4 We are now ready to state our algorithm as follows. Define a (column)
vector ṽ0 with components

ṽ0(i) = hi
√

xi, i = 0, 1, . . . , N. (10)

Let
v0 =

ṽ0√
ṽ∗0 ṽ0

, z0 = v∗0(−Q)v0.

In general, for k � 1, let wk be the solution to the equation

(−Q − zk−1I)wk = vk−1,

and define
vk =

wk√
w∗

kwk

, zk = v∗k(−Q)vk.

Then zk and vk are approximations of the minimal eigenvalue λ0 = λmin(−Q)
of −Q and its eigenvector, respectively. If we replace −Q by A everywhere
in this step, then the resulting zk and vk are approximations of ρ(A) and its
eigenvector g, respectively. Obviously, from Step 1, it follows that

λmin(−Q) + ρ(A) = max
i∈E

Ai.

Hence,
λ0 = λmin(−Q) > α ⇐⇒ ρ(A) � max

i∈E
Ai − α.

Efficient initials for computing maximal eigenpair 1401

This gives the relationship of a lower estimate of λ0 and an upper estimate of
ρ(A).

Example 18 Let A be given in Example 10. Then

ρ(A) = 3 +
√

5 ≈ 5.23607.

Our algorithm here gives us

z1 ≈ 5.23883, z2 ≈ 5.23607.

Proof Since maxi Ai = 6, we have

Q = A − 6 I =

⎛
⎝
−5 2 3
1 −4 1
3 2 −5

⎞
⎠ .

Next, we have

h0 = 1, h1 =
4
7
, h2 =

9
7
,

and
x0 = 1, x1 =

7
9
, x2 =

49
81

.

From these, we obtain

ṽ0 = (1, h1
√

x1, h2
√

x2)∗ =
(
1,

4
3
√

7
, 1

)∗
.

Now, with

v0 =
ṽ0√
ṽ∗0 ṽ0

, z0 = v∗0Av0 ≈ 5.11616,

we can apply the Rayleigh quotient iteration in two steps to obtain the
conclusion. �
Example 19 Let A be the same as in Example 14. Then ρ(A) ≈ 36.2094. By
using (10),

v0 = (0.348213, 0.244601, 0.389728, 0.816719)∗ ,

the Rayleigh quotient iteration starts at z0 ≈ 34.4924 and gives us

z1 ≈ 36.1469, z2 ≈ 36.2095, z3 ≈ 36.2094.

Proof We have

Q = A − 58I =

⎛
⎜⎜⎝
−57 2 3 4
5 −52 7 8
9 10 −47 12
13 14 15 −42

⎞
⎟⎟⎠ .

1402 Mu-Fa CHEN

Next, we have

h0 = 1, h1 =
59
27

, h2 =
91
27

, h3 =
287
27

.

Furthermore, we have

x0 = 1, x1 =
189
1829

, x2 =
7155
64883

, x3 =
243
4991

.

Then the conclusion follows from the iteration. �
Example 20 Let A be the same as in Example 15. Then ρ(A) ≈ 24.0293.
By using the algorithm in Section 4.2, the Rayleigh quotient iteration starts at
31 − z0 ≈ 22.6424 and gives us for k = 1, 2, 3,

31 − zk ≈ 24.1046, 24.0298, 24.0293,

respectively.

Proof We have

Q = A − 31I =

⎛
⎜⎜⎝
−30 2 0 0
3 −17 11 0
9 10 −20 1
5 6 7 −23

⎞
⎟⎟⎠ .

Then, we have

h0 = 1, h1 = 15, h2 =
252
11

, h3 =
3291
11

;

x0 = 1, x1 =
3691
76575

, x2 =
1694
45945

, x3 =
7447

3360111
;

v0 = (0.140655, 0.463208, 0.61873, 0.61873).

The conclusion follows by the algorithm. �
It is interesting to compare this example with Examples 15 and 17.
Actually, to show that our algorithm is reasonable, one may ignore the

part using the H-transform and jump to the last step on Q-matrix since the
transform does not change the spectrum. Thus, one needs to compare the
maximal eigenvector g and its approximation (xi). As mentioned before, this
depends heavily on the rate bN = cN . Here is an example of sparse matrix.

Example 21 Let

Q =

⎛
⎜⎜⎜⎜⎝

−3 2 0 1 0
4 −7 3 0 0
0 5 −5 0 0
10 0 0 −16 6
0 0 0 11 −11 − b4

⎞
⎟⎟⎟⎟⎠

.

Efficient initials for computing maximal eigenpair 1403

Corresponding to different b4, the maximal eigenvector g (normalized so that
the first component to be one) and its approximation (

√
xi) (up to a positive

constant) are given in Table 6.

Table 6 For different b4, vectors g and (
√

xi) (Example 21)

b4 g
√

x up to a constant

0.01 (1, 1.00011, 1.00017, 0.999498, 0.998616)∗ (1, 1, 1, 0.999728, 0.999274)∗

1 (1, 1.00992, 1.0149, 0.955637, 0.877794)∗ (1, 1, 1, 0.9759, 0.934353)∗

100 (1, 1.08011, 1.1211, 0.656961, 0.0652116)∗ (1, 1, 1, 0.805682, 0.253629)∗

The corresponding output of our algorithm is given in Table 7.

Table 7 For different b4, eigenvalue λ0 and z1, z2, z3 (Example 21)

b4 z1 z2 z3 = λ0

0.01 0.000278573 0.000278686

1 0.0236258 0.0245174 0.0245175
100 0.200058 0.182609 0.182819

Our original purpose to design the Q-matrix in the last example is for a
test of sparse matrix. The solution x0 = x1 = x2 = 1 leads us to think about
the transition machinery of the Q-matrix. Here is the graphic structure of the
Q-matrix:

©2 � ©1 � ©0 � ©3 � ©4 .

As we will see at the end of Section 5, xi is the probability of the process
first hitting 0 starting from i (which is exactly the probabilistic meaning of the
construction of (xi) given in our general algorithm). Now, starting from 2, there
is only one way to go to 0, and hence x2 should be equal to 1. So does x1. From
this graph, it follows that the matrix is indeed tridiagonal after a relabeling
(simply exchange the labels ©2 and ©0):

©0 � ©1 � ©2 � ©3 � ©4 .

As a comparison, we present the next result using the algorithms given in
Sections 4 and 3, respectively.

Example 22 Let

Q =

⎛
⎜⎜⎜⎜⎝

−5 5 0 0 0
3 −7 4 0 0
0 2 −3 1 0
0 0 10 −16 6
0 0 0 11 −11 − b4

⎞
⎟⎟⎟⎟⎠

.

Corresponding to different b4, the maximal eigenvector g and its approximation
(
√

xi) are given in Table 8.

1404 Mu-Fa CHEN

Table 8 For different b4, vectors g and (
√

xi) (Example 22)

b4 g
√

x up to a constant

0.01 (1, 0.999944, 0.999833, 0.999331, 0.998449)∗ (1, 0.999819, 0.999682, 0.99941, 0.998956)∗

1 (1, 0.995096, 0.98532, 0.941608, 0.864908)∗ (1, 0.984848, 0.973329, 0.949871, 0.909433)∗

100 (1, 0.963436, 0.89198, 0.585996, 0.0581675)∗ (1, 0.91325, 0.842344, 0.678661, 0.213643)∗

The corresponding output (zk) of the algorithm in Section 4 is given in Table
9.

Table 9 For different b4, eigenvalue λ0 and z1, z2, z3 (Example 22)

b4 z1 z2 z3 = λ0

0.01 0.000278548 0.000278686

1 0.0234222 0.0245174 0.0245175
100 0.13342 0.182541 0.182819

The output (zk) of the algorithm in Section 3 is given in Table 10.

Table 10 For different b4, eigenvalue λ0, its lower bound δ−1
1 and z1, z2 (Example 22)

b4 z0 = δ−1
1 z1 z2 = λ0

0.01 0.00027867 0.000278686

1 0.0244003 0.024519 0.0245175
100 0.179806 0.182912 0.182819
106 0.191917 0.195239 0.195145

Once again, one sees the efficiency of our algorithm.

Comparing the last two examples, especially their g and
√

xi, it is obvious
that the latter is better than the former one. This suggests us to choose the
starting point 0 carefully. Here is an easier way to do so. First, define a sequence
{E�} of level sets as follows. Let E0 = {N} and E1 = {i ∈ E : aiN > 0}. At the
kth step, set

Ek = {i ∈ E \ (E0 + E1 + · · · + Ek−1) : ∃ j ∈ Ek−1 such that aij > 0}.
The procedure should be stopped at m if Em+1 = ∅. Because of the
irreducibility, each i ∈ E should belong to one of the level sets. Finally,
regard one of im ∈ Em satisfying

aimjm−1 = min{aij : i ∈ Em, j ∈ Em−1}
as our initial 0. However, for initial ṽ0, in practice, it is not necessary to
relabeling the states as we did in Example 22. What we need is only replace
the constraint x0 = 1 by xim = 1 (at the same time, “removing the first line”
is replaced by “removing the im’s line” in constructing the required matrix)
in solving (xi) without change the original matrix A or Q. One may need the
relabeling in computing δ1 defined in Section 3.

Efficient initials for computing maximal eigenpair 1405

To conclude this subsection, we introduce a new construction of z0 based
on v0 defined by our general algorithm. It is an extension of z0 = δ−1

1 given in
Section 3. To do so, we use Q, (hi), and (xi) defined at the beginning of this
subsection. Let Q̃0 be the matrix obtained from

Q̃ := Diag(hi)−1QDiag(hi)

by modifying the last diagonal element q̃N,N so that the sum of its last row
becomes zero (i.e., removing the killing cN). Next, let μ := (μ0, μ1, . . . , μN)
with μ0 = 1 be the solution to the equation

μQ̃0 = 0.

Since there are only N variables μ1, μ2, . . . , μN , one may get the solution μ from
the equation

Q̃∗ \the last rowμ∗ = 0.

Here, we remark that for a large class of Q-matrix Q, there is an explicit
representation of μ in terms of the non-diagonal elements of Q, refer to
[3, Chapter 7]. Now, our new initial z0 is defined to be δ−1

1 :

δ1 =
1

1 − x1
max

0�n�N

[√
xn

n∑
k=0

μk
√

xk +
1√
xn

∑
n+1�j�N

μjx
3/2
j

]
. (11)

In contrast to the above examples which use only the automatic z0 = v∗0Av0

(or z0 = v∗0(−Q)v0), here we use (11). Remember that this initial z0 is for −Q,
when we go back to the original A, its initial becomes maxi∈E

∑
j∈E aij − z0.

The outputs of Examples 18–20 using δ−1
1 are listed in Table 11.

Table 11 Outputs of Examples 18–20 using δ−1
1

Example z0 z1 z2 z3 = λ0

18 5.90016 5.22268 5.23611 5.23607

19 57.2719 36.236 36.2097 36.2094
20 30.3886 23.7436 24.0347 24.0293

Finally, we have an improved algorithm (for Q) as stated in Section 3 (below
Example 10) based on the use of L2(μ) and the convex combination:

z0 = ξδ−1
1 + (1 − ξ)(v0,−Qv0)μ, ξ ∈ [0, 1].

The outputs of Examples 18–20 using the new z0 with ξ = 1/3 are listed in
Table 12.

Table 12 Outputs of Examples 18–20 using new z0 with ξ = 1/3

Example z0 z1 z2 z3 = λ0

18 5.04169 5.24358 5.23608 5.23607

19 35.4952 36.2657 36.2095 36.2094
20 24.0583 24.0213 24.0293

1406 Mu-Fa CHEN

This combination becomes more serious when N is large since in that case
(v0,−Qv0)μ is often an upper bound of λ0, which may be much closer to other
λj �= λ0 and so the algorithm would converge to λj but not λ0. Certainly,
the convex combination idea is also meaningful for the first two choices of z0

introduced in the first subsection.

5 Additional remarks and proofs

In this section, we first prove a new result related to our earlier study. Then
we present some proofs of the results given in the last two sections. Finally, we
will make some remarks on the results studied so far in the previous sections.

The next result solves an open question kept in our mind for many years.
For a given birth–death matrix Q on E with c0 = c1 = · · · = cN−1 = 0 and
bN := cN > 0, and a positive function f on E, define

II(f)(i) =
1
fi

N∑
j=i

1
μjbj

j∑
k=0

μkfk, i ∈ E.

Proposition 23 For Q and II given above, let f1 (> 0 on E) be arbitrarily
given function and define successively fn+1 = fnII(fn). Then this algorithm
coincides with the inverse iteration given in Lemma 6 with z = 0, even for
infinite N. Furthermore, we have

λ0 = λmin(−Q) = lim
n→∞ II(fn)(i)−1

for each i ∈ E. In particular, we have

lim
n→∞min

i∈E
II(fn)(i) =

1
λ0

= lim
n→∞max

i∈E
II(fn)(i).

Proof Consider the Poisson equation: −Qf = g for a given g. The solution is
given by f = gII(g) ([5, (2.7)–(2.9)]). It can be also written as f = (−Q)−1g.
By setting g = f1 and f = f2, it follows that

f2 = (−Q)−1f1 = f1II(f1).

Now, by iteration, we get

fn+1 = (−Q)−nf1 = fnII(fn), n � 1.

We have thus proved the first assertion. Therefore,

II(fn) =
fn+1

fn
=

(−Q)−n(f1)
(−Q)−n+1(f1)

→ 1
λ0

, n → ∞,

Efficient initials for computing maximal eigenpair 1407

by the last assertion of Lemma 6 with z = 0. The last assertion of the
proposition then follows since on a finite set, the pointwise convergence
implies the uniform one. �

We remark that the last proposition is meaningful once the Poisson
equation −Qf = g is solvable. In parallel, Lemma 6 improves the approxi-
mating procedures studied in [5] and related publications.

Now, we turn to prove Proposition 9 and Corollary 12.

Proof of Proposition 9 (a) First, we follow the setup and notation in [9] (where
a more general situation is studied) for a moment. Define

MN−1(h) =
N−1∑
k=0

q̃
(k)
N

k∑
j=0

F̃
(j)
k hj

qj,j+1
,

Nn(h) =
n∑

k=0

k∑
j=0

F̃
(j)
k hj

qj,j+1
, 0 � n < N.

Then the solution given in [9, Proposition 2.6] can be rewritten as

gn =
fN + MN−1(f)
cN + MN−1(c·)

[1 − Nn−1(c·)] + Nn−1(f), N−1 := 0, 0 � n � N.

By an exchange of the order of the summations, we can rewrite Mn and Nn as
follows:

MN−1(h) =
N−1∑
j=0

hj

qj,j+1

N−1∑
k=j

q̃
(k)
N F̃

(j)
k ,

Nn(h) =
n∑

j=0

hj

qj,j+1

n∑
k=j

F̃
(j)
k , 0 � n < N.

Here, for finite N, the element qN,N+1 is replaced by cN by our convention.
Thus, by [9, (1.1)], we get

MN−1(h) = cN

N−1∑
j=0

hj

qj,j+1
F̃

(j)
N .

By [6, Proposition 4.1], we have F̃
(i)
i+m = G

(i)
m,m. It follows that

MN−1(h) = cN

N−1∑
j=0

hj

qj, j+1
G

(j)
N−j,N−j,

Nn(h) =
n∑

j=0

hj

qj,j+1

n−j∑
k=0

G
(j)
k,k, 0 � n < N.

1408 Mu-Fa CHEN

Applying this solution to the birth–death context and setting f = −v, g = w,
replacing the original c· used in [9] by z − c·, we obtain

gn =
−vN − MN−1(v)

z − cN + MN−1(z − c·)
[1 − Nn−1(z − c·)] − Nn−1(v), 0 � n � N.

Equivalently,

gn =
vN + MN−1(v)

cN − z + MN−1(c· − z)
[1 + Nn−1(c· − z)] − Nn−1(v), 0 � n � N.

This gives us the required conclusion. �
Proof of Corollary 12 The proof is quite straightforward. Choose m large
enough such that

A := mI + Q

is a nonnegative matrix. Then −Q = mI − A. Hence,

λ0(Q) = m − ρ(A).

The proof now is a direct application of the Collatz–Wielandt formula:

m − ρ(A) = m − inf
x>0

max
i

(Ax)i
xi

= sup
x>0

min
i

(−Qx)i
xi

,

m − ρ(A) = m − sup
x>0

min
i

(Ax)i
xi

= inf
x>0

max
i

(−Qx)i
xi

. �

It is now ready to make some additional remarks on the results in the
previous sections. The two algorithms as well as their convergence and the
Collatz–Wielandt formula can be found easily from Wikipedia. From which, one
knows that the Power Iteration was first appeared in 1929 [14] and the Inverse
Iteration appeared in 1944 [15]. These algorithms are taught for undergraduate
students on the course of computations and are included in many books, see
for instance [10,13,16]. In particular, Appendix of Section 3 is modified from
[10, pp. 584, 585].

We now say a few words about the unusual word “complete” used at the
end of the first section for the results obtained in Section 3. Actually, this is one
of the 16 situations with N � ∞ we have worked out so far to have a unified
estimation of the principal eigenvalue:

(4δ)−1 � δ−1
1 � λ0 � δ′1

−1 � δ−1 (12)

for some constants δ, δ1, and δ′1, where δ1 is the one we have used in Section
3 for the initial z0. Besides, we often have in practice that 1 � δ1/δ

′
1 � 2.

Thus, the efficiency of the initial (v0, z0) introduced in Section 3 comes with
no surprising. More precisely, the initial (v0, z0) is taken from the first step of
our approximating procedure: [5, Theorem 3.3 (1), (3.4)]. Example 1 here is a

Efficient initials for computing maximal eigenpair 1409

truncated one from [5, Example 3.6] where N = ∞, λ0 = 1/4, and δ1 = 4 which
is sharp. Certainly, this is still not enough to claim that we can arrive at such
a precise approximation in the second iteration. The story on the estimation
of the principal eigenvalue, or more general on the estimation of the stability
speed is too long to talk here and so the author is planning to publish a survey
article [7]. For earlier progress, refer to [4] which includes a lot of information
up to 2004, or a more recent paper [5].

Next, we discuss the sequence (h0, h1, . . . , hN) used in Sections 3 and 4.
The role of the sequence is to keep the same spectrum of the original Q and its
H-transform Q̃ :

Q̃ = Diag(hi)−1QDiag(hi). (13)

Certainly, Q and Q̃ have the same diagonals. Next, define

P = (pij : i, j ∈ E) := Diag(q−1
i) Q̃ + I, (14)

which is the matrix used in Section 4. Note that even though the sequence (ci)
in the original Q can be non-zero, the resulting c̃k = 0 for every k < N but
c̃N > 0 for the matrix Q̃. For a given measure μ, set μ̃ = h2μ (i.e., μ̃i = h2

i μi

for each i ∈ E), the transform f̃ = f/h gives us an isometry between L2(μ) and
L2(μ̃) and then an isospectrum of Q on L2(μ) and Q̃ on L2(μ̃). This technique is
due to [8]. See also [6]. Now, if g̃ is an approximating eigenvector corresponding
to λ̃0 of Q̃, then, g := hg̃ is an approximating eigenvector corresponding to λ0

of Q, due to the isospectral property of Q and Q̃. Because

‖g̃‖L2(μ̃) = ‖g‖L2(μ),
(
g̃, Q̃g̃

)
μ̃

= (g,Qg)μ,

by [8], we have (
g̃,−Q̃g̃

)
μ̃

‖g̃‖L2(μ̃)
=

(g,−Qg)μ
‖g‖L2(μ)

=
g∗(−Q)g√

g∗g
. (15)

Here, we assume that μk ≡ 1 for simplicity. This means that we can estimate the
maximal eigenpair (λ0, g) of Q in terms of the one

(
λ̃0, g̃

)
of Q̃. More precisely,

the maximal eigenvalue g̃ of Q̃ is approximated by ϕ in the context of Section
3 (or by x = (xi) in Section 4). Now, in Section 3 for instance, ṽ0 = h

√
ϕ

is an approximation of the maximal eigenvector g of Q. With v0 = ṽ0/
√

ṽ∗0v0,
equation (15) leads to our first approximation of λ0 :

v∗0(−Q)v0 = z0.

Now, our task is to show that the sequence (xi) defined in Section 4 is an
extension of (ϕi) given in Section 3. To this end, recall that the matrix Q̃
defined by (13) is again a Q-matrix. Hence, the matrix P = (pij : i, j ∈ E)
defined by (14) is just the embedding chain of Q̃. Note that here pii = 0 for

1410 Mu-Fa CHEN

each i ∈ E. By the construction of (hi), we have
∑

j∈E pij = 1 for each i � N−1
but

∑
j∈E pNj < 1, refer to [8]. The equation for (xi) in (9) can be rewritten as

xn =
∑
j∈E

pijxj, 1 � n � N, x0 = 1. (16)

In probabilistic language, the solution (xi) (or the minimal solution (x∗
i) when

N = ∞) to equation (16) is the probability of first hitting 0 of the Q-process
with Q-matrix Q̃ or its embedding sub-Markov chain with transition matrix
P = (pij), starting from i. Refer to [3, Lemma 4.46].

We are now going to prove the following result.

Lemma 24 For birth–death matrix, the solution (xi) to equation (16)
coincides with (ϕi) (up to a constant) used in Section 3.

Before prove Lemma 24, let us discuss the relation of these sequence with
the recurrence of the Markov chain in the case of N = ∞. First, it is known by
[3, Theorem 4.55 (1) and the second line of p. 161] that a birth–death process
is recurrent if and only if

b0

∞∑
n=1

a1a2 · · · an

b1b2 · · · bn
= b0

∞∑
n=1

1
μnbn

= ∞.

For simplicity, set
F (0)

n =
a1a2 · · · an

b1b2 · · · bn
, n � 1.

The sequence
{
F

(0)
n

}
n�1

is a very special case of
{
F̃

(j)
n

}
n�1

used in the proof
of Proposition 9. Refer to [9] and [3, §4.5] for more details. Note that (ϕn) is
just the tail series of

∑∞
n=1 F

(0)
n provided N = ∞. On the other hand, by [3,

Lemma 4.46], the process is recurrent if and only if the minimal solution (x∗
i)

to the equation (16),

xn =
bn

an + bn
xn+1 +

an

an + bn
xn−1, n � 1, x0 := 1,

is equal to one identically. Rewrite the equation as

xn − xn+1 =
an

bn
(xn−1 − xn), n � 1.

By induction, it follows that

xn − xn+1 = F (0)
n (x0 − x1), n � 1.

Hence,

xn − xN+1 = (x0 − x1)
N∑

k=n

F
(0)
k , x1 − xn = (x0 − x1)

n−1∑
k=1

F
(0)
k , n � 1.

Efficient initials for computing maximal eigenpair 1411

Equivalently,

xn − xN+1 = (x0 − x1)
N∑

k=n

F
(0)
k , x0 − xn = (x0 − x1)

n−1∑
k=0

F
(0)
k , n � 0,

since F
(0)
0 = 1 by convention. If

∑∞
k=0 F

(0)
k = ∞, then from the second equation,

we must have x1 = 1 (since x0 = 1) and then have the unique solution xi ≡
1. Therefore, the minimal solution x∗

i ≡ 1 and so the process is recurrent.
Conversely, if

∑∞
k=0 F

(0)
k < ∞, then from the first equation above, we obtain

x0 − x1 =
x0 − x∞∑∞

j=0 F
(0)
j

,

and then

xn − x∞ =
x0 − x∞∑∞

j=0 F
(0)
j

∞∑
k=n

F
(0)
k , n � 0.

Equivalently,

xn =
∑∞

k=n F
(0)
k∑∞

j=0 F
(0)
j

+ x∞

∑n−1
k=0 F

(0)
k∑∞

j=0 F
(0)
j

, n � 0.

Clearly, for each given x∞ ∈ [0, 1], using this formula, we obtain a solution (xn)
to the equation. Thus, the minimal solution should be as follows:

x∗
n =

∑∞
k=n F

(0)
k∑∞

j=0 F
(0)
j

, n � 0,

which is clearly less than one for n � 1 since
∑∞

j=0 F
(0)
j < ∞.

Proof of Lemma 24 For finite state {0, 1, . . . , N}, since there is a killing bN > 0,
the minimal solution is as follows:

x∗
n =

∑N
k=n F

(0)
k∑N

j=0 F
(0)
j

, n = 0, 1, . . . , N.

In other words, up to a constant, we have

ϕn =
N∑

k=n

F
(0)
k =

1
1 − x∗

1

x∗
n, n = 0, 1, . . . , N.

That is what we required. �
Finally, we remark that the story for one-dimensional diffusions should be in

parallel to Section 3. The algorithm presented in Section 4 may not be complete
since the lack of an analog of (12).

1412 Mu-Fa CHEN

Summary

This paper deals with the efficient initials for the Rayleigh quotient iteration.
Here are suggestions for the use of the results in the previous sections of the
paper on computing the maximal eigenpair.

(i) If the iterations are easy (small size of A, for instance), one simply
adopts the simplest algorithm: Section 4.1 with Choice I, or more effectively,
with the convex combination of Choice I and Choice II:

z0 = ξ max
i∈E

Ai + (1 − ξ)v∗0Av0, ξ ∈ [0, 1].

More especially, ξ = 7/8 for instance. Certainly, one may use Choice III for z0.

(ii) If the given matrix is nearly tridiagonal (after a suitable relabeling if
necessary) or the Lanczos tridiagonalization procedure is suitable, one use the
method introduced in Section 3. The computation there is rather explicit and
it works even for N = ∞.

(iii) In general, one uses the algorithm given in Section 4.2. Note that at
each step of the Rayleigh quotient iteration, one has to solve a linear equation.
Here, for the initials, we have to solve two more linear equations.

6 Next to maximal eigenpair

After an earlier version of the paper containing the first five sections was
submitted, the author found a natural way to study the next to the maximal
eigenpair. In this section, we restrict ourselves to the easier case that Ai :=∑

j∈E aij is a constant. Then the maximal eigenpair is simply (A0,�) (where �
is the constant function having value 1 everywhere), as mentioned before. By
a shift if necessary, we return to the problem for a Q-matrix which is especially
valuable since its next eigenvalue describes the ergodic rate of the corresponding
Markov chain. In this setup, the minimal eigenpair (λ0 = 0, g0 = �) of −Q is
known and we are looking for the next eigenpair (λ1, g1). Clearly, g1 should be
orthogonal to g0 in L2(π)-sense for the stationary distribution π of the process
corresponding to the given matrix Q. This is the reason why we often use v−πv
in what follows for constructing a mimic of the eigenvector g1. Besides, we need
the assumption that λ1 > |λj | for every j > 1 to guarantee the convergence of
our algorithms.

Once again, let us begin our study with a tridiagonal conservative Q-matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

−b0 b0 0 0 · · ·
a1 −(a1 + b1) b1 0 · · ·
0 a2 −(a2 + b2) b2 · · ·
...

...
.

0 0 0 aN −aN

⎞
⎟⎟⎟⎟⎟⎠

,

where ai, bi > 0. Define (μk : k ∈ E) as in Section 3. Then we have the

Efficient initials for computing maximal eigenpair 1413

probability distribution π = (π0, π1, . . . , πN) : πk = μk/
∑

j∈E μj. Again, denote
by (·, ·)μ and ‖ · ‖μ the inner product and norm in L2(μ), respectively. Next,
set

ϕn =
∑

j�n−1

1
μjbj

, n ∈ E.

To define our initial v0, let

ṽ0 = (
√

ϕ0,
√

ϕ1, . . . ,
√

ϕN)∗, v0 = ṽ0 − πṽ0.

We can now introduce our algorithm in the present situation as follows. Choose
initials

v0 =
v0

‖v0‖μ
, z0 =

(v0,−Qṽ0)μ
‖v0‖2

μ

. (17)

At the kth step (k � 1), let wk be the solution to the equation

(−Q − zk−1)wk = vk−1

and set
vk =

wk

‖wk‖μ
, zk = (vk,−Qvk)μ.

We remark that here in defining vk (k � 1), we do not need to use wk−πwk.
The reason is as follows. If πv = 0 and w solves the equation

(−Q − z)w = v

for some constant z �= 0, then

0 = πv = π(−Q − z)w = −zπw,

and so πw = 0. Therefore, we have πwk = 0 for each k � 1 since so does the
initial v0 : πv0 = 0.

Instead of z0 given in (17), there is another choice. Define

η1 = max
0�i�N−1

1
μibi[ṽ0(i + 1) − ṽ0(i)]

N∑
j=i+1

μjv0(j).

Then one may choose
z0 = η−1

1 (18)

as an initial.
Here, the initials ṽ0 and z0 are taken from [2, Theorem 2.2 (1)] or

[4, Theorem 1.5 (2)]. Certainly, we can adopt the convex combination of those
given in (17) and (18):

z0 = ξη−1
1 + (1 − ξ)(v0,−Qṽ0)μ‖v0‖−2

μ , ξ ∈ [0, 1]. (19)

1414 Mu-Fa CHEN

We now consider an example modified from Example 1.

Example 25 Let E = {0, 1, . . . , 7} and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0
1 −5 22 0 0 0 0 0
0 22 −13 32 0 0 0 0
0 0 32 −25 42 0 0 0
0 0 0 42 −41 52 0 0
0 0 0 0 52 −61 62 0
0 0 0 0 0 62 −85 72

0 0 0 0 0 0 72 −72

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we have μk ≡ 1, λ1(Q) ≈ 0.820539 with eigenvector

≈ (−3.95053,−0.708966, 0.246859, 0.649164, 0.842169, 0.93805, 0.983254, 1)∗ .

Starting from v0 :

(−4.79299, −0.0815238, 0.474589, 0.70372, 0.828504, 0.906932, 0.960767, 1)∗,

for different initial z0, the outputs are given in Table 13.

Table 13 Outputs for different initial z0 (Example 25)

choice z0 z1 z2 = λ1

(17) 0.902633 0.820614 0.820539

(18) 0.456343 0.8216 0.820539
(19) 0.724117 0.820629 0.820539

We remark that for this and the next example, the parameter ξ in (19) is
specified to be 2/5.

The next example has non-trivial (μk).

Example 26 Let

Q =

⎛
⎜⎜⎜⎜⎝

−5 5 0 0 0
3 −7 4 0 0
0 2 −3 1 0
0 0 10 −16 6
0 0 0 11 −11

⎞
⎟⎟⎟⎟⎠

.

Then
μ0 = 1, μ1 =

5
3
, μ2 =

10
3

, μ3 =
1
3
, μ4 =

2
11

.

The eigenvalues of −Q are as follows:

22.348, 10.6857, 5.92951, 3.03673, 0.

With
ṽ0 =

1
2
√

5
(0, 2,

√
7,
√

13,
√

23)

for different initial z0, the outputs are given in Table 14.

Efficient initials for computing maximal eigenpair 1415

Table 14 Outputs for different initial z0 (Example 26)

choice z0 z1 z2 = λ1

(17) 3.84977 3.05196 3.03673

(18) 1.72924 3.05715 3.03673
(19) 3.00156 3.03675 3.03673

Next, consider the general conservative Q-matrices Q = (qij : i, j ∈ E).
Here, the conservativity means that

∑
j∈E qij = 0 for every i ∈ E. Next, define

an auxiliary Q-matrix Q1 which coincides with Q except replacing the element
qNN by cqNN , where c > 1 is an arbitrary constant and is fixed to be 1000 in
what follows for simplicity.

Following Section 4 (replacing Q by Q1), let (x0, x1, . . . , xN) (with x0 = 1)
be the solution to the equation

x\0’s row = P \0’s row x, (20)

where
P = Diag(q−1

0 , q−1
1 , . . . , q−1

N−1,N−1, (cqNN)−1)Q1 + I.

To go further, we need μ = (μ0, μ1, . . . , μN) with μ0 = 1, which is the same as
defined in Section 4: the solution to the equation

Q∗ \the last rowμ∗ = 0.

Having x and μ at hand, we are ready to define our initials. For each r ∈ [0, 1],
to be specified later, define

ṽ0 = (r,
√

1 − x1,
√

1 − x2, . . . ,
√

1 − xN)∗, v0 = ṽ0 − μṽ0∑N
k=0 μk

,

v0 =
v0

‖v0‖μ
, z0 =

(v0,−Qṽ0)μ
‖v0‖2

μ

.

(21)

Because ṽ0 depends on r, so do v0, v0, and z0 =: z0(r). Choose r0 ∈ [0, 1] so
that

z0(r0) ≈ inf
r∈[0,1]

z0(r).

Corresponding to this specified r0, we obtain our initials v0 and z0. This
minimizing procedure in r is necessary for avoiding collapse since we are in
a more sensitive situation than before. Then the iteration procedure is exactly
the same as we used several times before.

The reason we adopt a large c = 1000 here is that for a larger c, its
minimal eigenvalue λ0(Q1) is closer to, but less than, the eigenvalue λ1(Q)
we are interested. Refer to [1, Proposition 3.2] for more details. Thus, one may
regard the former as an approximation of the latter. In other words, we can
use an alternative initial

z0 = λ0(Q1) or its estimates studied in previous sections. (22)

1416 Mu-Fa CHEN

Certainly, one can define a convex combination of those given in (21) and (22)
in an obvious way, but it is omitted here. The use of λ0(Q1) seems necessary
(especially for large N) to avoid some pitfall, as mentioned before.

The next example is interesting for which some of its eigenvalues are complex
but the one we are interested is real.

Example 27 Let

Q =

⎛
⎜⎜⎝

−30 30 0 0
1/5 −17 84/5 0

11/28 275/42 −20 1097/84
55/3291 330/1097 588/1097 −2809/3291

⎞
⎟⎟⎠ .

Then

Q1 =

⎛
⎜⎜⎝

−30 30 0 0
1/5 −17 84/5 0

11/28 275/42 −20 1097/84
55/3291 330/1097 588/1097 −2809000/3291

⎞
⎟⎟⎠ .

The eigenvalues of −Q and −Q1 are

29.8411 + 2.45214 i, 29.8411 − 2.45214 i, 8.17131, 0,

and

853.548, 29.8249 + 2.46241 i, 29.8249 − 2.46241 i, 7.34195,

respectively. Using (21) with r0 ≈ 0.951, the output is

z0 ≈ 7.73667, z1 ≈ 8.15021, z2 ≈ 8.17129, z3 ≈ 8.17131.

While using (22), the output is

z0 ≈ 7.34195, z1 ≈ 8.13216, z2 ≈ 8.17124, z3 ≈ 8.17131.

Here is one more example.

Example 28 Let

Q =

⎛
⎜⎜⎝

−57 118/27 91/9 1148/27
135/59 −52 637/59 2296/59
243/91 590/91 −47 492/13
351/287 118/41 195/41 −62/7

⎞
⎟⎟⎠ .

Then

Q1 =

⎛
⎜⎜⎝

−57 118/27 91/9 1148/27
135/59 −52 637/59 2296/59
243/91 590/91 −47 492/13
351/287 118/41 195/41 −62000/7

⎞
⎟⎟⎠ .

Efficient initials for computing maximal eigenpair 1417

The eigenvalues of −Q and −Q1 are

59.3118, 58, 47.5454, 0,

and
8857.18, 59.2467, 58, 38.7143,

respectively. Using (21) with r0 ≈ 0.953, the output is

z0 ≈ 47.5318, z1 ≈ 47.5453, z2 ≈ 47.5454.

While using (22), the output is

z0 ≈ 38.7143, z1 ≈ 47.5343, z2 ≈ 47.5453, z3 ≈ 47.5454.

Acknowledgements The main results of the paper have been reported at Anhui Normal

University, Jiangsu Normal University, the International Workshop on SDEs and Numerical

Methods at Shanghai Normal University, Workshop on Markov Processes and Their

Applications at Hunan University of Arts and Science, and Workshop of Probability Theory

with Applications at University of Macau. The author acknowledges Professors Dong-Jin Zhu,

Wan-Ding Ding, Ying-Chao Xie, Xue-Rong Mao, Xiang-Qun Yang, Xu-Yan Xiang, Jie Xiong,

Li-Hu Xu, and their teams for very warm hospitality and financial support. The author also

thanks Ms. Yue-Shuang Li for her assistance in computing large matrices. This work was

supported in part by the National Natural Science Foundation of China (Grant No. 11131003),

the “985” project from the Ministry of Education in China, and the Project Funded by the

Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

1. Chen M F. Explicit bounds of the first eigenvalue. Sci China Ser A, 2000, 43(10):
1051–1059

2. Chen M F. Variational formulas and approximation theorems for the first eigenvalue.
Sci China Ser A, 2001, 44(4): 409–418

3. Chen M F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed.
Singapore: World Scientific, 2004

4. Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
5. Chen M F. Speed of stability for birth–death processes. Front Math China, 2010, 5(3):

379–515
6. Chen M F. Criteria for discrete spectrum of 1D operators. Commun Math Stat, 2014,

2: 279–309
7. Chen M F. Unified speed estimation of various stabilities. Chinese J Appl Probab

Statist, 2016, 32(1): 1–22
8. Chen M F, Zhang X. Isospectral operators. Commun Math Stat, 2014, 2: 17–32
9. Chen M F, Zhang Y H. Unified representation of formulas for single birth processes.

Front Math China, 2014, 9(4): 761–796
10. Golub G H, van Loan C F. Matrix Computations. 4th ed. Baltimore: Johns Hopkins

Univ Press, 2013
11. Hua L K. Mathematical theory of global optimization on planned economy, (II) and

(III). Kexue Tongbao, 1984, 13: 769–772 (in Chinese)

1418 Mu-Fa CHEN

12. Langville A N, Meyer C D. Google’s PageRank and Beyond: The Science of Search
Engine Rankings. Princeton: Princeton Univ Press, 2006

13. Meyer C. Matrix Analysis and Applied Linear Algebra. Philadelphia: SIAM, 2000

14. von Mises R, Pollaczek-Geiringer H. Praktische Verfahren der Gleichungsaufösung.
ZAMM Z Angew Math Mech, 1929, 9: 152–164

15. Wielandt H. Beiträge zur mathematischen Behandlung komplexer Eigenwertprobleme.
Teil V: Bestimmung höherer Eigenwerte durch gebrochene Iteration. Bericht B 44/J/37,
Aerodynamische Versuchsanstalt Göttingen, Germany, 1944

16. Wilkinson J H. The Algebraic Eigenvalue Problem. Oxford: Oxford Univ Press, 1965

