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Abstract For a cubic algebraic extension K of Q, the behavior of the ideal
counting function is considered in this paper. More precisely, let aK(n) be the
number of integral ideals of the field K with norm n, we prove an asymptotic
formula for the sum

∑
n2

1+n
2
2�x aK(n2

1 + n2
2).
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1 Introduction

Many deep arithmetic properties of a number field are embedded into the
associated Dedekind zeta function. Let K be an algebraic extension of Q with
degree d. Its associated Dedekind zeta function is defined by

ζK(s) =
∑

a

N(a)−s, Re s > 1,

where the sum runs over all integral ideals in OK , and N(a) is the norm of the
integral ideal a. Since the norm of an integral ideal is a positive rational integer,
the Dedekind zeta function can be rewritten as an ordinary Dirichlet series

ζK(s) =
∞∑

n=1

aK(n)n−s, Re s > 1, (1)

where aK(n) is the so-called ideal counting function, which counts the number
of integral ideals a with norm n in K.

It is known that the ideal counting function aK(n) is a multiplicative
function, and it has the upper bound

aK(n) � τd(n),
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where τ(n) is the divisor function, see [1]. However, in many applications, the
upper bound is not enough and it is more interesting to study the asymptotic
behavior of the ideal counting function in various sequences. Landau [12] proved
the following asymptotic formula:

∑

n�x
aK(n) = cx+O(x

d−1
d+1

+ε)

for arbitrary algebraic number field of degree d � 2. Many authors have studied
this problem and for general algebraic number field of degree d � 3, the best
result hitherto is due to Nowak [16]. Recently, for the Galois extension over
Q, by using the decomposition of prime p in OK and the analytic properties of
L-functions, Lü and Wang [14] considered the average behavior of moments of
the ideal counting function

∑

n�x
alK(n), l = 1, 2, . . . ,

and gave a sharper estimate for l = 1 in the Galois extension over Q, while
later Lü and Yang [15] gave an asymptotic formula for the sum

∑

n�x
alK(n2), l = 1, 2, . . . ,

in the Galois extension over Q.
It is more difficult to study the ideal counting function for a non-normal

extension K of Q. However, by applying the so-called strong Artin conjecture,
Fomenko [4] studied the sum

∑

n�x
alK(n), l = 2, 3,

when K is a non-normal cubic field extension. Later, Lü [13] improved the
error term.

In this paper, we will be interested in the estimation of the following sum:
∑

n2
1+n2

2�x
aK(n2

1 + n2
2), (2)

where K is the cubic algebraic extension of Q.
Let r(n) be the number of representation of an integer n as sums of two

square integers. i.e.,

r(n) = #{n ∈ Z | n = n2
1 + n2

2}.
Then, we can rewrite formula (2) as

∑

n2
1+n

2
2�x

aK(n2
1 + n2

2) =
∑

n�x
aK(n)

∑

n=n2
1+n

2
2

1 =
∑

n�x
aK(n)r(n). (3)
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It is known that r(n) is the ideal counting function of the Gaussian number
field Q(

√−1) and we have

r(n) = 4
∑

d|n
χ′(d),

where χ′ is the real primitive Dirichlet character modulo 4.
In general, for a quadratic number field L with discriminant D′, the ideal

counting function of the field L is

aL(n) =
∑

d|n
χ′(d),

where χ′ is a real primitive Dirichlet character modulo |D′| . It is an interesting
question to consider the sum

∑

n�x
aK(n)aL(n).

Fomenko [3] considered this convolution sum when both K and L are quadratic
fields. In this paper, we shall discuss a more general case. Assume that q � 1
is an integer and χ is a primitive character modulo q. Define the function

fχ(n) =
∑

k|n
χ(k).

Then we have the following results.

Theorem 1 Let K be a cubic normal extension of Q, let q � 1 be an integer,
and let χ be a primitive Dirichlet character modulo q. Then we have

∑

n�x
aK(n)fχ(n) = xP4(log x) +O(x

7
12

+ε), (4)

where P4(t) is a polynomial in t with degree 3, and ε > 0 is an arbitrarily small
constant.

Theorem 2 Let K be a cubic non-normal extension of Q, let q � 1 be an
integer, and let χ be a primitive Dirichlet character modulo q. Then we have

∑

n�x
aK(n)fχ(n) = xP3(log x) +O(x

3
5
+ε), (5)

where P3(t) is a polynomial in t with degree 2, and ε > 0 is an arbitrarily small
constant.

According to the theorems above, we obtain the following corollaries.
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Corollary 1 Let K be a cubic normal extension of Q, and let r(n) be the
number of representation of an integer n as sums of two square integers. Then
we have ∑

n�x
aK(n)r(n) = xP4(log x) +O(x

7
12

+ε),

where P4(t) is a polynomial in t with degree 3, and ε > 0 is an arbitrarily small
constant.

Corollary 2 Let K be a cubic non-normal extension of Q, and let r(n) be the
number of representation of an integer n as sums of two square integers. Then
we have ∑

n�x
aK(n)r(n) = xP3(log x) +O(x

3
5
+ε),

where P3(t) is a polynomial in t with degree 2, and ε > 0 is an arbitrarily small
constant.

2 Preliminaries

Let K be a cubic algebraic extension of Q, and let D = df2 (d squarefree) its
discriminant. The Dedekind zeta function of K is given in (1). It has the Euler
product

ζK(s) =
∏

p

(
1 +

aK(p)
ps

+
aK(p2)
p2s

+ · · ·
)
. (6)

We will give some results about Dedekind zeta function of cubic field K in the
following.

Lemma 1 K is a normal extension if and only if D = f2. In this case,

ζK(s) = ζ(s)L(s, ϕ)L(s, ϕ),

where ζ(s) is the Riemann zeta function and L(s, ϕ) is an ordinary Dirichlet
series (over Q) corresponding to a primitive character ϕ modulo f.

Proof See the lemma in [17]. �
By using Lemma 1, the Euler product of Riemann zeta function ζ(s), and

the Dirichlet L-functions, we have the following result.

Lemma 2 Assume that aK(n) is the ideal counting function of the cubic
normal extension K over Q. Then we get

aK(n) =
∑

xy|n
ϕ(x)ϕ(y),

where x and y are integers. In particular, when n = p is a prime, we get

aK(p) = 1 + ϕ(p) + ϕ(p), (7)
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where ϕ is a primitive character modulo f.

Assume that K is a non-normal cubic extension over Q, which is given by
an irreducible polynomial

f(x) = x3 + ax2 + bx+ c.

Let E denote the normal closure of K that is normal over Q with degree 6,
and denoted the Galois group Gal(E/Q) = S3. First, we will introduce some
properties about S3 (see [5, pp. 226, 227] for detailed arguments).

The elements of S3 fall into three conjugacy classes:
C1 : (1);
C2 : (1, 2, 3), (3, 2, 1);
C3 : (1, 2), (2, 3), (1, 3),

with the following three simple characters: the one dimensional characters
ψ1 (the principal character) and ψ2 (the other character determined by the
subgroup C1 ∪ C2), and the two dimensional character ψ3.

Let D be the discriminant of f(x) = x3 + ax2 + bx+ c and K2 = Q(
√
D ).

The fields K2 and K are the intermediate extensions fixed under the subgroups
A3 and {(1), (1, 2)}, respectively. The extensions K2/Q, E/K2, and E/K are
abelian. The Dedekind zeta function satisfy the relations

ζE(s) = Lψ1Lψ2L
2
ψ3
, ζK2(s) = Lψ1Lψ2 , ζK(s) = Lψ1Lψ3, ζ(s) = Lψ1,

where
Lψ2 = L(s, ψ2, E/Q), Lψ3 = L(s, ψ3, E/Q),

which are Artin L-functions.
Kim [11] proved that the strong Artin conjecture holds true for the group S3.

By using the strong Artin conjecture, the function Lψ3 also can be interpreted
in another way [2]. Let ρ : S3 → GL2(C) be the irreducible two-dimensional
representation. Then ρ gives rise to a cuspidal representation π of GL2(AQ).
Let

L(s, π) =
∞∑

n=1

M(n)n−s.

Below, we assume that ρ is odd, i.e. D < 0. Then L(s, π) = L(s, f), where f
is a holomorphic cusp form of weight 1 with respect to the congruence group
Γ0(|D|) :

f(z) =
∞∑

n=1

M(n)e2πinz.

Here, as usual, L(s, π) denotes the L-function of the representation π, and
L(s, f) denotes the Hecke L-function of cusp form f. Thus Lψ3 = L(s, f) and

ζK(s) = ζ(s)L(s, f). (8)
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Formula (8) implies the following result.

Lemma 3 The symbols are defined as above. We have

aK(n) =
∑

d|n
M(d).

In particular,
aK(p) = 1 +M(p),

where p is a prime integer.

To prove the theorems, we also need some well-known estimates of the
relative L-functions. For subconvexity bounds, we have the following well-
known estimates.

Lemma 4 For any ε > 0, we have

ζ(σ + it) �ε (1 + |t|) 1
3

(1−σ)+ε (9)

uniformly for 1/2 � σ � 1 and |t| � 1.

Proof See [18, Theorem II 3.6]. �
For the Dirichlet L-series, by using the Phragmen-Lindelöf principle for a

strip [9] and the estimates given by Heath-Brown [7], we have the similar results:

L(σ + it, χ) �ε (1 + |t|) 1
3

(1−σ)+ε (10)

uniformly for 1/2 � σ � 1 and |t| � 1, where χ is a Dirichlet character modulo
q, and q is an integer.

For the mean values of the relative L-functions on the critical line, we have
the following result.

Lemma 5 For any ε > 0, let L(s) be the Riemann zeta function ζ(s), or the
Dirichlet L-function L(s;χ, q) with respect to the Dirichlet character χ modulo
a fixed q � 1. Then we have

∫ T

1

∣
∣
∣L

(1
2

+ it
)∣
∣
∣
A �ε T

1+ε (11)

uniformly for T � 1, where A = 2, 4.

For Hecke L-functions defined in (8), we have the following result.

Lemma 6 For any ε > 0, we have
∫ T

1

∣
∣
∣L

(1
2

+ it, f
)∣
∣
∣
2
dt ∼ CT log T, (12)

∫ T

1

∣
∣
∣L

(1
2

+ it, f
)∣
∣
∣
6
dt� T 2+ε, (13)
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uniformly for T � 1, and the subconvexity bound

L(σ + it, f) �t, ε (1 + |t|)max{ 2
3

(1−σ), 0}+ε

uniformly for 1/2 � σ � 2 and |t| � 1.

Proof The first and third results due to Good [6], and the second was proved
by Jutila [10]. �

By using Lemma 6 and Hölder’s inequality, we have
∫ T

1

∣
∣
∣L

(1
2

+ it, f
)∣
∣
∣
4
dt

�
(∫ T

1

∣
∣
∣L

(1
2

+ it, f
)∣
∣
∣
2
dt

)1/2(∫ T

1

∣
∣
∣L

(1
2

+ it, f
)∣
∣
∣
6
dt

)1/2

� T
3
2
+ε. (14)

For the mean values of the Riemann zeta function in the critical strip 1/2 <
σ < 1, define m(σ) (� 4) as the supremum of all numbers m (� 4) such that

∫ T

1
|ζ(σ + it)|mdt� T 1+ε, ∀ ε > 0. (15)

Ivić [8] proved that for 1/2 < σ < 5/8,

m(σ) � 4
3 − 4σ

.

Let σ = 7/12. Then we can get
∫ T

1

∣
∣
∣ζ

( 7
12

+ it
)∣
∣
∣
6
dt� T 1+ε, ∀ ε > 0. (16)

Similarly, as the proof of the mean values of Riemann zeta function, for
Dirichlet L-function L(s;χ, q) with respect to the Dirichlet character χ modulo
a fixed q � 1, we have

∫ T

1

∣
∣
∣L

( 7
12

+ it;χ, q
)∣
∣
∣
6
dt� T 1+ε. (17)

3 Proofs of theorems

Assume that K is a cubic extension of Q. The Dedekind zeta function of K is
given in (1). Its Euler product is (6) with Re s > 1.

Let q be an integer, and let χ be a primitive Dirichlet character modulo q.
Define the function

fχ(n) =
∑

k|n
χ(k). (18)
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It is easy to check that

fχ(mn) = fχ(m)fχ(n), (m,n) = 1.

Since aK(n) � nε, so does aK(n)fχ(n). We can define an L-function
associated to the function aK(n)fχ(n) in the half-plane Re s > 1,

LK,fχ(s) =
∞∑

n=1

aK(n)fχ(n)n−s, (19)

which is absolutely convergent in this region. Both aK(n) and fχ(n) are
multiplicative, so for Re s > 1, the function LK,fχ(s) can be expressed by the
Euler product

LK,fχ(s) =
∏

p

(
1 +

aK(p)fχ(p)
ps

+
aK(p2)fχ(p2)

p2s
+ · · ·

)
,

where the product runs over all primes.

Proof of Theorem 1 When K is a cubic normal extension, according to (7)
and (18), we get the formula

aK(p)fχ(p) = 1 + ϕ(p) + ϕ(p) + χ(p) + ϕ(p)χ(p) + ϕ(p)χ(p) =: A(p), (20)

where p is a prime.
For Re s > 1, we can write

MK,fχ(s) := ζ(s)L(s, ϕ)L(s, ϕ)L(s, χ)L(s, ϕ × χ)L(s, ϕ× χ)

as an Euler product of the form

∏

p

(
1 +

A(p)
ps

+
A(p2)
p2s

+ · · ·
)
,

where the functions L(s, ϕ × χ) and L(s, ϕ × χ) are the Rankin-Selberg
convolution L-function of the Dirichlet L-functions L(s, ϕ) and L(s, ϕ) with
the Dirichlet L-functions L(s, χ), respectively.

By comparing it with the Euler product of LK,fχ(s), and using (20), we
obtain

LK,fχ(s) = MK,fχ(s) · U1(s), (21)

where U1(s) denotes a Dirichlet series, which is absolutely convergent for Re s >
1/2, and uniformly convergent for Re s > 1

2 +ε. Therefore, the function LK,fχ(s)
admits an analytic continuation into the half-plane σ > 1/2, having as its only
singularity a pole of order 4 at s = 1.

By using the well-known inversion formula for Dirichlet series, we obtain

∑

n�x
aK(n)fχ(n) =

1
2πi

∫ b+iT

b−iT
LK,fχ(s)

xs

s
ds+O

(x1+ε

T

)
,
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where b = 1 + ε and 1 � T � x is a parameter to be chosen later.
Shifting the path of integration to the line σ = 7

12 + ε. By using Cauchy’s
residue theorem, we have

∑

n�x
aK(n)fχ(n) =

1
2πi

{∫ 7
12

+ε+iT

7
12

+ε−iT
+

∫ b+iT

7
12

+ε+iT
+

∫ 7
12

+ε−iT

b−iT

}

LK,fχ(s)
xs

s
ds

+ Res
s=1

LK,fχ(s)
xs

s
+O

(x1+ε

T

)

=: I1 + I2 + I3 + xP4(log x) +O
(x1+ε

T

)
, (22)

where P4(t) is a polynomial in t with degree 3.
Using the lemmas in Section 2 about the bound for the Dirichlet series, we

will estimate Ii, i = 1, 2, 3, in the following.
For I1, we have

I1 � x
7
12

+ε + x
7
12

+ε

∫ T

1

∣
∣
∣MK,fχ

( 7
12

+ ε+ it
)∣
∣
∣t−1dt, (23)

where we have used that U1(s) is absolutely convergent in the region Re s � 1
2+ε

and behaves as O(1) there.
By Hölder’s inequality, (16), and (17), we have
∫ T

1

∣
∣
∣MK,fχ

( 7
12

+ ε+ it
)∣
∣
∣t−1dt� log T sup

1�T1�T
T−1

1 · (T
1
6
+ε

1 )6 � T ε. (24)

Now, we can deduce that

I1 � x
7
12

+ε + x
7
12

+εT ε. (25)

For I2 and I3, we have

I2 + I3 � sup
7
12

+ε�σ�1+ε

xσT−1|MK,fχ(σ + iT )|

� sup
7
12

+ε�σ�1+ε

xσT−1T ( 1
3
+ 1

3
+ 1

3
+ 1

3
+ 1

3
+ 1

3
)(1−σ)+ε

� x1+ε

T
+ x

7
12

+εT− 1
6
+ε. (26)

From (22), (25), and (26), we have

∑

n�x
aK(n)fχ(n) = xP4(log x) +O(x

7
12

+εT ε) +O
(x1+ε

T

)
. (27)

Taking T = x
5
12

+ε in (27), we have
∑

n�x
aK(n)fχ(n) = xP4(log x) +O(x

7
12

+ε).
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We complete the proof of Theorem 1. �

Proof of Theorem 2 Now, assume that K is a cubic non-normal extension over
Q. According to Lemma 3 and (18), we have

aK(p)fχ(p) = 1 + χ(p) +M(p) + χ(p)M(p), (28)

where p is a prime.
By virtue of (28), we have the relation

LK,fχ(s) = ζ(s)L(s, χ)L(s, f)L(s, f × χ) · U2(s),

where L(s, f × χ) is the Rankin-Selberg convolution L-function of L(s, f) and
L(s, χ), and U2(s) denotes a Dirichlet series, which is absolutely convergent for
σ > 1/2. Therefore, the function LK,fχ(s) admits an analytic continuation into
the half-plane σ > 1/2, having as its only singularity a pole of order 3 at s = 1,
because L(s, f × χ) has no poles at s = 1.

Similarly, as the proof of Theorem 1, by using Perron’s formula, we have

∑

n�x
aK(n)fχ(n) =

1
2πi

∫ b+iT

b−iT
LK,fχ(s)

xs

s
ds+O

(x1+ε

T

)
,

where b = 1 + ε and 1 � T � x is a parameter to be chosen later.
Then we move the integration to the segment parallel with Re s = 1

2 + ε.
By Cauchy’s residue theorem, we have

∑

n�x
aK(n)fχ(n) =

1
2πi

{∫ 1
2
+ε+iT

1
2
+ε−iT

+
∫ b+iT

1
2
+ε+iT

+
∫ 1

2
+ε−iT

b−iT

}

LK,fχ(s)
xs

s
ds

+ Res
s=1

LK,fχ(s)
xs

s
+O

(x1+ε

T

)

=: J1 + J2 + J3 + xP3(log x) +O
(x1+ε

T

)
, (29)

where P3(t) is a polynomial in t with degree 2.
Let

s1/2 =
1
2

+ ε+ it.

Then we have

J1 � x
1
2
+ε + x

1
2
+ε

∫ T

1
|ζ(s1/2)L(s1/2, χ)L(s1/2, f)L(s1/2, f × χ)|t−1dt

� x
1
2
+ε + x

1
2
+ε log T · T−1

1 H1(T1)1/4H2(T1)1/4H3(T1)1/4H4(T1)1/4, (30)
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where

H1(T1) =
∫ 2T1

T1

∣
∣
∣ζ

(1
2

+ ε+ it
)∣
∣
∣
4
dt,

H2(T1) =
∫ 2T1

T1

∣
∣
∣L

(1
2

+ ε+ it, χ
)∣
∣
∣
4
dt,

H3(T1) =
∫ 2T1

T1

∣
∣
∣L

(1
2

+ ε+ it, f
)∣
∣
∣
4
dt,

H4(T1) =
∫ 2T1

T1

∣
∣
∣L

(1
2

+ ε+ it, f × χ
)∣
∣
∣
4
dt.

By using (14), it is easily to get

H3(T1) � T
3
2
+ε

1 , H4(T1) � T
3
2
+ε

1 .

So that we have
J1 � x

1
2
+ε + x

1
2
+εT

1
4
+ε. (31)

For J2 and J3, let sσ = σ + iT. Then we have

J2 + J3 � sup
1
2
+ε�σ�1+ε

xσT−1|ζ(sσ)L(sσ, χ)L(sσ, f)L(sσ, f × χ)|

� sup
1
2
+ε�σ�1+ε

xσT−1T ( 1
3
+ 1

3
+ 2

3
+ 2

3
)(1−σ)+ε

� x1+ε

T
+ x

1
2
+εT ε. (32)

From (29), (31), and (32), we have

∑

n�x
aK(n)fχ(n) = xP3(log x) +O(x

1
2
+εT

1
4
+ε) +O

(x1+ε

T

)
. (33)

Taking T = x
2
5
+ε in (33), we have
∑

n�x
aK(n)fχ(n) = xP3(log x) +O(x

3
5
+ε). �
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