Front. Math. China 2017, 12(4): 981–992 DOI 10.1007/s11464-016-0570-7

RESEARCH ARTICLE

Ideal counting function in cubic fields

Zhishan YANG

School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China

-c Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract For a cubic algebraic extension K of \mathbb{Q} , the behavior of the ideal counting function is considered in this paper. More precisely, let $a_K(n)$ be the number of integral ideals of the field K with norm n , we prove an asymptotic formula for the sum $\sum_{n_1^2+n_2^2 \leq x} a_K(n_1^2+n_2^2)$.

Keywords Non-normal extension, ideal counting function, Rankin-Selberg convolution

MSC 11F30, 11F66, 11N45, 11R42

1 Introduction

Many deep arithmetic properties of a number field are embedded into the associated Dedekind zeta function. Let K be an algebraic extension of $\mathbb Q$ with degree d. Its associated Dedekind zeta function is defined by

$$
\zeta_K(s) = \sum_{\mathfrak{a}} \mathfrak{N}(\mathfrak{a})^{-s}, \quad \text{Re } s > 1,
$$

where the sum runs over all integral ideals in \mathscr{O}_K , and $\mathfrak{N}(\mathfrak{a})$ is the norm of the integral ideal a. Since the norm of an integral ideal is a positive rational integer, the Dedekind zeta function can be rewritten as an ordinary Dirichlet series

$$
\zeta_K(s) = \sum_{n=1}^{\infty} a_K(n) n^{-s}, \quad \text{Re } s > 1,
$$
 (1)

where $a_K(n)$ is the so-called ideal counting function, which counts the number of integral ideals α with norm n in K.

It is known that the ideal counting function $a_K(n)$ is a multiplicative function, and it has the upper bound

 $a_K(n) \ll \tau^d(n),$

Received February 3, 2016; accepted July 7, 2016 E-mail: zsyang@qdu.edu.cn

where $\tau(n)$ is the divisor function, see [1]. However, in many applications, the upper bound is not enough and it is more interesting to study the asymptotic behavior of the ideal counting function in various sequences. Landau [12] proved the following asymptotic formula:

$$
\sum_{n \leq x} a_K(n) = cx + O(x^{\frac{d-1}{d+1} + \varepsilon})
$$

for arbitrary algebraic number field of degree $d \geq 2$. Many authors have studied this problem and for general algebraic number field of degree $d \geq 3$, the best result hitherto is due to Nowak [16]. Recently, for the Galois extension over \mathbb{Q} , by using the decomposition of prime p in \mathscr{O}_K and the analytic properties of L-functions, Lü and Wang [14] considered the average behavior of moments of the ideal counting function

$$
\sum_{n \leq x} a_K^l(n), \quad l = 1, 2, \dots,
$$

and gave a sharper estimate for $l = 1$ in the Galois extension over \mathbb{O} , while later Lü and Yang [15] gave an asymptotic formula for the sum

$$
\sum_{n \leq x} a_K^l(n^2), \quad l = 1, 2, \dots,
$$

in the Galois extension over Q.

It is more difficult to study the ideal counting function for a non-normal extension K of $\mathbb Q$. However, by applying the so-called strong Artin conjecture, Fomenko [4] studied the sum

$$
\sum_{n \leqslant x} a^l_K(n), \quad l = 2, 3,
$$

when K is a non-normal cubic field extension. Later, Lü [13] improved the error term.

In this paper, we will be interested in the estimation of the following sum:

$$
\sum_{n_1^2 + n_2^2 \leq x} a_K(n_1^2 + n_2^2),\tag{2}
$$

where K is the cubic algebraic extension of \mathbb{Q} .

Let $r(n)$ be the number of representation of an integer n as sums of two square integers. i.e.,

$$
r(n) = \#\{n \in \mathbb{Z} \mid n = n_1^2 + n_2^2\}.
$$

Then, we can rewrite formula (2) as

$$
\sum_{n_1^2 + n_2^2 \le x} a_K(n_1^2 + n_2^2) = \sum_{n \le x} a_K(n) \sum_{n = n_1^2 + n_2^2} 1 = \sum_{n \le x} a_K(n)r(n). \tag{3}
$$

It is known that $r(n)$ is the ideal counting function of the Gaussian number It is known that $r(n)$ is
field $\mathbb{Q}(\sqrt{-1})$ and we have

$$
r(n) = 4 \sum_{d|n} \chi'(d),
$$

where χ' is the real primitive Dirichlet character modulo 4.

In general, for a quadratic number field L with discriminant D' , the ideal counting function of the field L is

$$
a_L(n) = \sum_{d|n} \chi'(d),
$$

where χ' is a real primitive Dirichlet character modulo $|D'|$. It is an interesting question to consider the sum

$$
\sum_{n\leqslant x} a_K(n)a_L(n).
$$

Fomenko $[3]$ considered this convolution sum when both K and L are quadratic fields. In this paper, we shall discuss a more general case. Assume that $q \geq 1$ is an integer and χ is a primitive character modulo q. Define the function

$$
f_{\chi}(n) = \sum_{k|n} \chi(k).
$$

Then we have the following results.

Theorem 1 Let K be a cubic normal extension of \mathbb{Q} , let $q \geq 1$ be an integer, *and let* χ *be a primitive Dirichlet character modulo* q. *Then we have*

$$
\sum_{n \leq x} a_K(n) f_\chi(n) = x P_4(\log x) + O(x^{\frac{7}{12} + \varepsilon}),\tag{4}
$$

where $P_4(t)$ *is a polynomial int with degree* 3, and $\varepsilon > 0$ *is an arbitrarily small constant.*

Theorem 2 Let K be a cubic non-normal extension of \mathbb{Q} , let $q \geq 1$ be an *integer, and let* χ *be a primitive Dirichlet character modulo* q. *Then we have*

$$
\sum_{n \leq x} a_K(n) f_\chi(n) = x P_3(\log x) + O(x^{\frac{3}{5} + \varepsilon}),\tag{5}
$$

where $P_3(t)$ *is a polynomial in t with degree* 2, and $\varepsilon > 0$ *is an arbitrarily small constant.*

According to the theorems above, we obtain the following corollaries.

Corollary 1 Let K be a cubic normal extension of \mathbb{O} , and let $r(n)$ be the *number of representation of an integer* n *as sums of two square integers. Then we have*

$$
\sum_{n \leq x} a_K(n)r(n) = xP_4(\log x) + O(x^{\frac{7}{12} + \varepsilon}),
$$

where $P_4(t)$ *is a polynomial in* t *with degree* 3, *and* $\varepsilon > 0$ *is an arbitrarily small constant.*

Corollary 2 Let K be a cubic non-normal extension of \mathbb{Q} , and let $r(n)$ be the *number of representation of an integer* n *as sums of two square integers. Then we have*

$$
\sum_{n \leq x} a_K(n)r(n) = xP_3(\log x) + O(x^{\frac{3}{5} + \varepsilon}),
$$

where $P_3(t)$ *is a polynomial in* t *with degree* 2, and $\varepsilon > 0$ *is an arbitrarily small constant.*

2 Preliminaries

Let K be a cubic algebraic extension of Q, and let $D = df^2$ (d squarefree) its discriminant. The Dedekind zeta function of K is given in (1) . It has the Euler product

$$
\zeta_K(s) = \prod_p \left(1 + \frac{a_K(p)}{p^s} + \frac{a_K(p^2)}{p^{2s}} + \cdots \right). \tag{6}
$$

We will give some results about Dedekind zeta function of cubic field K in the following.

Lemma 1 K *is a normal extension if and only if* $D = f^2$. In this case,

$$
\zeta_K(s) = \zeta(s)L(s,\varphi)L(s,\overline{\varphi}),
$$

where $\zeta(s)$ *is the Riemann zeta function and* $L(s, \varphi)$ *is an ordinary Dirichlet series* (*over* \mathbb{O}) *corresponding to a primitive character* φ *modulo* f.

Proof See the lemma in [17]. □

By using Lemma 1, the Euler product of Riemann zeta function $\zeta(s)$, and the Dirichlet L-functions, we have the following result.

Lemma 2 *Assume that* $a_K(n)$ *is the ideal counting function of the cubic normal extension* K *over* Q. *Then we get*

$$
a_K(n) = \sum_{xy|n} \varphi(x)\overline{\varphi}(y),
$$

where x and y are integers. In particular, when $n = p$ is a prime, we get

$$
a_K(p) = 1 + \varphi(p) + \overline{\varphi}(p),\tag{7}
$$

where φ *is a primitive character modulo f.*

Assume that K is a non-normal cubic extension over $\mathbb Q$, which is given by an irreducible polynomial

$$
f(x) = x^3 + ax^2 + bx + c.
$$

Let E denote the normal closure of K that is normal over $\mathbb Q$ with degree 6, and denoted the Galois group $Gal(E/\mathbb{Q}) = S_3$. First, we will introduce some properties about S_3 (see [5, pp. 226, 227] for detailed arguments).

The elements of S_3 fall into three conjugacy classes:

$$
C_1: (1);
$$

\n
$$
C_2: (1, 2, 3), (3, 2, 1);
$$

\n
$$
C_3: (1, 2), (2, 3), (1, 3),
$$

with the following three simple characters: the one dimensional characters ψ_1 (the principal character) and ψ_2 (the other character determined by the subgroup $C_1 \cup C_2$, and the two dimensional character ψ_3 .

group $C_1 \cup C_2$), and the two dimensional character ψ_3 .
Let D be the discriminant of $f(x) = x^3 + ax^2 + bx + c$ and $K_2 = \mathbb{Q}(\sqrt{D})$. The fields K_2 and K are the intermediate extensions fixed under the subgroups A_3 and $\{(1), (1, 2)\}\)$, respectively. The extensions K_2/\mathbb{Q} , E/K_2 , and E/K are abelian. The Dedekind zeta function satisfy the relations

$$
\zeta_E(s) = L_{\psi_1} L_{\psi_2} L_{\psi_3}^2, \quad \zeta_{K_2}(s) = L_{\psi_1} L_{\psi_2}, \quad \zeta_K(s) = L_{\psi_1} L_{\psi_3}, \quad \zeta(s) = L_{\psi_1},
$$

where

$$
L_{\psi_2} = L(s, \psi_2, E/\mathbb{Q}), \quad L_{\psi_3} = L(s, \psi_3, E/\mathbb{Q}),
$$

which are Artin L-functions.

Kim [11] proved that the strong Artin conjecture holds true for the group S_3 . By using the strong Artin conjecture, the function L_{ψ_3} also can be interpreted in another way [2]. Let $\rho: S_3 \to GL_2(\mathbb{C})$ be the irreducible two-dimensional representation. Then ρ gives rise to a cuspidal representation π of $GL_2(\mathbb{A}_{\mathbb{Q}})$. Let

$$
L(s,\pi) = \sum_{n=1}^{\infty} M(n) n^{-s}.
$$

Below, we assume that ρ is odd, i.e. $D < 0$. Then $L(s, \pi) = L(s, f)$, where f is a holomorphic cusp form of weight 1 with respect to the congruence group $\Gamma_0(|D|)$:

$$
f(z) = \sum_{n=1}^{\infty} M(n) e^{2\pi i n z}.
$$

Here, as usual, $L(s, \pi)$ denotes the L-function of the representation π , and $L(s, f)$ denotes the Hecke L-function of cusp form f. Thus $L_{\psi_3} = L(s, f)$ and

$$
\zeta_K(s) = \zeta(s)L(s, f). \tag{8}
$$

Formula (8) implies the following result.

Lemma 3 *The symbols are defined as above. We have*

$$
a_K(n) = \sum_{d|n} M(d).
$$

In particular,

$$
a_K(p) = 1 + M(p),
$$

where p *is a prime integer.*

To prove the theorems, we also need some well-known estimates of the relative L-functions. For subconvexity bounds, we have the following wellknown estimates.

Lemma 4 *For any* $\varepsilon > 0$ *, we have*

$$
\zeta(\sigma + it) \ll_{\varepsilon} (1+|t|)^{\frac{1}{3}(1-\sigma)+\varepsilon} \tag{9}
$$

uniformly for $1/2 \le \sigma \le 1$ *and* $|t| \ge 1$.

Proof See [18, Theorem II 3.6]. □

For the Dirichlet L-series, by using the Phragmen-Lindelöf principle for a strip [9] and the estimates given by Heath-Brown [7], we have the similar results:

$$
L(\sigma + it, \chi) \ll_{\varepsilon} (1+|t|)^{\frac{1}{3}(1-\sigma)+\varepsilon}
$$
\n(10)

uniformly for $1/2 \le \sigma \le 1$ and $|t| \ge 1$, where χ is a Dirichlet character modulo q , and q is an integer.

For the mean values of the relative L-functions on the critical line, we have the following result.

Lemma 5 *For any* $\varepsilon > 0$, *let* $L(s)$ *be the Riemann zeta function* $\zeta(s)$, *or the Dirichlet* L-function $L(s; \chi, q)$ *with respect to the Dirichlet character* χ *modulo a fixed* $q \geqslant 1$ *. Then we have*

$$
\int_{1}^{T} \left| L\left(\frac{1}{2} + it\right) \right|^{A} \ll_{\varepsilon} T^{1+\varepsilon}
$$
\n(11)

uniformly for $T \geq 1$ *, where* $A = 2, 4$ *.*

For Hecke L-functions defined in (8), we have the following result.

Lemma 6 *For any* $\varepsilon > 0$ *, we have*

$$
\int_{1}^{T} \left| L\left(\frac{1}{2} + it, f\right) \right|^{2} dt \sim CT \log T,\tag{12}
$$

$$
\int_{1}^{T} \left| L\left(\frac{1}{2} + it, f\right) \right|^{6} dt \ll T^{2+\varepsilon},\tag{13}
$$

 $uniformly for T \geqslant 1, and the subconvexity bound$

$$
L(\sigma + it, f) \ll_{t, \varepsilon} (1+|t|)^{\max\{\frac{2}{3}(1-\sigma), 0\}+\varepsilon}
$$

uniformly for $1/2 \le \sigma \le 2$ *and* $|t| \ge 1$.

Proof The first and third results due to Good [6], and the second was proved by Jutila [10]. \Box

By using Lemma 6 and Hölder's inequality, we have

$$
\int_{1}^{T} \left| L\left(\frac{1}{2} + it, f\right) \right|^{4} dt
$$

\n
$$
\ll \left(\int_{1}^{T} \left| L\left(\frac{1}{2} + it, f\right) \right|^{2} dt \right)^{1/2} \left(\int_{1}^{T} \left| L\left(\frac{1}{2} + it, f\right) \right|^{6} dt \right)^{1/2}
$$

\n
$$
\ll T^{\frac{3}{2} + \varepsilon}.
$$
\n(14)

For the mean values of the Riemann zeta function in the critical strip $1/2 <$ σ < 1, define $m(\sigma)$ (\geq 4) as the supremum of all numbers m (\geq 4) such that

$$
\int_{1}^{T} |\zeta(\sigma + it)|^{m} dt \ll T^{1+\varepsilon}, \quad \forall \varepsilon > 0.
$$
 (15)

Ivić [8] proved that for $1/2 < \sigma < 5/8$,

$$
m(\sigma) \geqslant \frac{4}{3-4\sigma}.
$$

Let $\sigma = \frac{7}{12}$. Then we can get

$$
\int_{1}^{T} \left| \zeta \left(\frac{7}{12} + it \right) \right|^{6} dt \ll T^{1+\varepsilon}, \quad \forall \varepsilon > 0.
$$
 (16)

Similarly, as the proof of the mean values of Riemann zeta function, for Dirichlet L-function $L(s; \chi, q)$ with respect to the Dirichlet character χ modulo a fixed $q \geq 1$, we have

$$
\int_{1}^{T} \left| L\left(\frac{7}{12} + it; \chi, q\right) \right|^{6} dt \ll T^{1+\varepsilon}.
$$
 (17)

3 Proofs of theorems

Assume that K is a cubic extension of $\mathbb Q$. The Dedekind zeta function of K is given in (1). Its Euler product is (6) with $\text{Re } s > 1$.

Let q be an integer, and let χ be a primitive Dirichlet character modulo q. Define the function

$$
f_{\chi}(n) = \sum_{k|n} \chi(k). \tag{18}
$$

It is easy to check that

$$
f_{\chi}(mn) = f_{\chi}(m) f_{\chi}(n), \quad (m, n) = 1.
$$

Since $a_K(n) \ll n^{\epsilon}$, so does $a_K(n) f_{\chi}(n)$. We can define an *L*-function associated to the function $a_K(n)f_\chi(n)$ in the half-plane Re $s > 1$,

$$
L_{K,f_X}(s) = \sum_{n=1}^{\infty} a_K(n) f_X(n) n^{-s},
$$
\n(19)

which is absolutely convergent in this region. Both $a_K(n)$ and $f_{\chi}(n)$ are multiplicative, so for $\text{Re } s > 1$, the function $L_{K,f_x}(s)$ can be expressed by the Euler product

$$
L_{K, f_X}(s) = \prod_p \Big(1 + \frac{a_K(p) f_X(p)}{p^s} + \frac{a_K(p^2) f_X(p^2)}{p^{2s}} + \cdots \Big),
$$

where the product runs over all primes.

Proof of Theorem 1 When K is a cubic normal extension, according to (7) and (18), we get the formula

$$
a_K(p)f_\chi(p) = 1 + \varphi(p) + \overline{\varphi}(p) + \chi(p) + \varphi(p)\chi(p) + \overline{\varphi}(p)\chi(p) =: A(p), \quad (20)
$$

where p is a prime.

For $\text{Re } s > 1$, we can write

$$
M_{K, f_X}(s) := \zeta(s)L(s, \varphi)L(s, \overline{\varphi})L(s, \chi)L(s, \varphi \times \chi)L(s, \overline{\varphi} \times \chi)
$$

as an Euler product of the form

$$
\prod_{p} \left(1 + \frac{A(p)}{p^{s}} + \frac{A(p^{2})}{p^{2s}} + \cdots \right),
$$

where the functions $L(s, \varphi \times \chi)$ and $L(s, \overline{\varphi} \times \chi)$ are the Rankin-Selberg convolution L-function of the Dirichlet L-functions $L(s, \varphi)$ and $L(s, \overline{\varphi})$ with the Dirichlet L-functions $L(s, \chi)$, respectively.

By comparing it with the Euler product of $L_{K,f_{\chi}}(s)$, and using (20), we obtain

$$
L_{K, f_X}(s) = M_{K, f_X}(s) \cdot U_1(s), \tag{21}
$$

where $U_1(s)$ denotes a Dirichlet series, which is absolutely convergent for Re s 1/2, and uniformly convergent for Re $s > \frac{1}{2} + \varepsilon$. Therefore, the function $L_{K, f_X}(s)$ admits an analytic continuation into the half-plane $\sigma > 1/2$, having as its only singularity a pole of order 4 at $s = 1$.

By using the well-known inversion formula for Dirichlet series, we obtain

$$
\sum_{n \leq x} a_K(n) f_\chi(n) = \frac{1}{2\pi i} \int_{b-iT}^{b+iT} L_{K,f_\chi}(s) \frac{x^s}{s} ds + O\left(\frac{x^{1+\varepsilon}}{T}\right),
$$

where $b = 1 + \varepsilon$ and $1 \leqslant T \leqslant x$ is a parameter to be chosen later.

Shifting the path of integration to the line $\sigma = \frac{7}{12} + \varepsilon$. By using Cauchy's residue theorem, we have

$$
\sum_{n \leq x} a_K(n) f_X(n) = \frac{1}{2\pi i} \left\{ \int_{\frac{7}{12} + \varepsilon - iT}^{\frac{7}{12} + \varepsilon + iT} + \int_{\frac{7}{12} + \varepsilon + iT}^{\frac{7}{12} + \varepsilon - iT} \right\} L_{K, f_X}(s) \frac{x^s}{s} ds
$$

+ Res_{s=1} $L_{K, f_X}(s) \frac{x^s}{s} + O\left(\frac{x^{1+\varepsilon}}{T}\right)$
=: $I_1 + I_2 + I_3 + x P_4(\log x) + O\left(\frac{x^{1+\varepsilon}}{T}\right)$, (22)

where $P_4(t)$ is a polynomial in t with degree 3.

Using the lemmas in Section 2 about the bound for the Dirichlet series, we will estimate I_i , $i = 1, 2, 3$, in the following.

For I_1 , we have

$$
I_1 \ll x^{\frac{7}{12} + \varepsilon} + x^{\frac{7}{12} + \varepsilon} \int_1^T \left| M_{K, f_X} \left(\frac{7}{12} + \varepsilon + \mathrm{i}t \right) \right| t^{-1} \mathrm{d}t,\tag{23}
$$

where we have used that $U_1(s)$ is absolutely convergent in the region Re $s \geq \frac{1}{2} + \varepsilon$ and behaves as $O(1)$ there.

By Hölder's inequality, (16) , and (17) , we have

$$
\int_{1}^{T} \left| M_{K,f_{\chi}} \left(\frac{7}{12} + \varepsilon + it \right) \right| t^{-1} dt \ll \log T \sup_{1 \leq T_{1} \leq T} T_{1}^{-1} \cdot (T_{1}^{\frac{1}{6} + \varepsilon})^{6} \ll T^{\varepsilon}.
$$
 (24)

Now, we can deduce that

$$
I_1 \ll x^{\frac{7}{12} + \varepsilon} + x^{\frac{7}{12} + \varepsilon} T^{\varepsilon}.
$$
 (25)

For I_2 and I_3 , we have

$$
I_2 + I_3 \ll \sup_{\frac{7}{12} + \varepsilon \leq \sigma \leq 1+\varepsilon} x^{\sigma} T^{-1} |M_{K, f_\chi}(\sigma + iT)|
$$

$$
\ll \sup_{\frac{7}{12} + \varepsilon \leq \sigma \leq 1+\varepsilon} x^{\sigma} T^{-1} T^{\left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}\right)(1-\sigma) + \varepsilon}
$$

$$
\ll \frac{x^{1+\varepsilon}}{T} + x^{\frac{7}{12} + \varepsilon} T^{-\frac{1}{6} + \varepsilon}.
$$
 (26)

From (22) , (25) , and (26) , we have

$$
\sum_{n \leq x} a_K(n) f_\chi(n) = x P_4(\log x) + O(x^{\frac{7}{12} + \varepsilon} T^{\varepsilon}) + O\left(\frac{x^{1+\varepsilon}}{T}\right). \tag{27}
$$

Taking $T = x^{\frac{5}{12} + \varepsilon}$ in (27), we have

$$
\sum_{n \leq x} a_K(n) f_\chi(n) = x P_4(\log x) + O(x^{\frac{7}{12} + \varepsilon}).
$$

We complete the proof of Theorem 1.

Proof of Theorem 2 Now, assume that K is a cubic non-normal extension over Q. According to Lemma 3 and (18), we have

$$
a_K(p)f_\chi(p) = 1 + \chi(p) + M(p) + \chi(p)M(p),\tag{28}
$$

where p is a prime.

By virtue of (28), we have the relation

$$
L_{K, f_X}(s) = \zeta(s)L(s, \chi)L(s, f)L(s, f \times \chi) \cdot U_2(s),
$$

where $L(s, f \times \chi)$ is the Rankin-Selberg convolution L-function of $L(s, f)$ and $L(s, \chi)$, and $U_2(s)$ denotes a Dirichlet series, which is absolutely convergent for $\sigma > 1/2$. Therefore, the function $L_{K,f_x}(s)$ admits an analytic continuation into the half-plane $\sigma > 1/2$, having as its only singularity a pole of order 3 at $s = 1$, because $L(s, f \times \chi)$ has no poles at $s = 1$.

Similarly, as the proof of Theorem 1, by using Perron's formula, we have

$$
\sum_{n \leq x} a_K(n) f_\chi(n) = \frac{1}{2\pi i} \int_{b-iT}^{b+iT} L_{K,f_\chi}(s) \frac{x^s}{s} ds + O\left(\frac{x^{1+\varepsilon}}{T}\right),
$$

where $b = 1 + \varepsilon$ and $1 \leq T \leq x$ is a parameter to be chosen later.

Then we move the integration to the segment parallel with $\text{Re } s = \frac{1}{2} + \varepsilon$. By Cauchy's residue theorem, we have

$$
\sum_{n \leq x} a_K(n) f_X(n) = \frac{1}{2\pi i} \left\{ \int_{\frac{1}{2} + \varepsilon - iT}^{\frac{1}{2} + \varepsilon + iT} + \int_{\frac{1}{2} + \varepsilon + iT}^{\frac{1}{2} + \varepsilon - iT} \right\} L_{K, f_X}(s) \frac{x^s}{s} ds
$$

+ Res $L_{K, f_X}(s) \frac{x^s}{s} + O\left(\frac{x^{1+\varepsilon}}{T}\right)$
=: $J_1 + J_2 + J_3 + x P_3(\log x) + O\left(\frac{x^{1+\varepsilon}}{T}\right),$ (29)

where $P_3(t)$ is a polynomial in t with degree 2.

Let

$$
s_{1/2} = \frac{1}{2} + \varepsilon + \mathrm{i}t.
$$

Then we have

$$
J_1 \ll x^{\frac{1}{2}+\varepsilon} + x^{\frac{1}{2}+\varepsilon} \int_1^T |\zeta(s_{1/2})L(s_{1/2}, \chi)L(s_{1/2}, f)L(s_{1/2}, f \times \chi)|t^{-1}dt
$$

$$
\ll x^{\frac{1}{2}+\varepsilon} + x^{\frac{1}{2}+\varepsilon} \log T \cdot T_1^{-1} H_1(T_1)^{1/4} H_2(T_1)^{1/4} H_3(T_1)^{1/4} H_4(T_1)^{1/4}, \quad (30)
$$

where

$$
H_1(T_1) = \int_{T_1}^{2T_1} \left| \zeta \left(\frac{1}{2} + \varepsilon + \mathrm{i}t \right) \right|^4 \mathrm{d}t,
$$

\n
$$
H_2(T_1) = \int_{T_1}^{2T_1} \left| L \left(\frac{1}{2} + \varepsilon + \mathrm{i}t, \chi \right) \right|^4 \mathrm{d}t,
$$

\n
$$
H_3(T_1) = \int_{T_1}^{2T_1} \left| L \left(\frac{1}{2} + \varepsilon + \mathrm{i}t, f \right) \right|^4 \mathrm{d}t,
$$

\n
$$
H_4(T_1) = \int_{T_1}^{2T_1} \left| L \left(\frac{1}{2} + \varepsilon + \mathrm{i}t, f \times \chi \right) \right|^4 \mathrm{d}t.
$$

By using (14), it is easily to get

$$
H_3(T_1) \ll T_1^{\frac{3}{2}+\varepsilon}
$$
, $H_4(T_1) \ll T_1^{\frac{3}{2}+\varepsilon}$.

So that we have

$$
J_1 \ll x^{\frac{1}{2} + \varepsilon} + x^{\frac{1}{2} + \varepsilon} T^{\frac{1}{4} + \varepsilon}.
$$
 (31)

For J_2 and J_3 , let $s_{\sigma} = \sigma + iT$. Then we have

$$
J_2 + J_3 \ll \sup_{\frac{1}{2} + \varepsilon \leq \sigma \leq 1 + \varepsilon} x^{\sigma} T^{-1} |\zeta(s_{\sigma}) L(s_{\sigma}, \chi) L(s_{\sigma}, f) L(s_{\sigma}, f \times \chi)|
$$

$$
\ll \sup_{\frac{1}{2} + \varepsilon \leq \sigma \leq 1 + \varepsilon} x^{\sigma} T^{-1} T^{\left(\frac{1}{3} + \frac{1}{3} + \frac{2}{3} + \frac{2}{3}\right)(1 - \sigma) + \varepsilon}
$$

$$
\ll \frac{x^{1 + \varepsilon}}{T} + x^{\frac{1}{2} + \varepsilon} T^{\varepsilon}.
$$
 (32)

From (29), (31), and (32), we have

$$
\sum_{n \leq x} a_K(n) f_\chi(n) = x P_3(\log x) + O(x^{\frac{1}{2} + \varepsilon} T^{\frac{1}{4} + \varepsilon}) + O\left(\frac{x^{1+\varepsilon}}{T}\right). \tag{33}
$$

Taking $T = x^{\frac{2}{5} + \varepsilon}$ in (33), we have

$$
\sum_{n \leq x} a_K(n) f_\chi(n) = x P_3(\log x) + O(x^{\frac{3}{5} + \varepsilon}).
$$

Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant No. 11526047).

References

1. Chandrasekharan K, Good A. On the number of integral ideals in Galois extensions. Monatsh Math, 1983, 95(2): 99–109

- 2. Deligne P, Serre J P. Formes modulaires de poids 1. Ann Sci Éc Norm Supér (4) , 1975, 7: 507–530
- 3. Fomenko O M. Distribution of lattice points on surfaces of second order. J Math Sci, 1997, 83: 795–815
- 4. Fomenko O M. Mean values connected with the Dedekind zeta function. J Math Sci, 2008, 150(3): 2115–2122
- 5. Fröhlich A, Taylor M J. Algebraic Number Theory. Cambridge Stud Adv Math, Vol 27. Cambridge: Cambridge Univ Press, 1993
- 6. Good A. The square mean of Dirichlet series associated with cusp forms. Mathematika, 1982, 29(2): 278–295
- 7. Heath-Brown D R. The growth rate of the Dedekind zeta function on the critical line. Acta Arith, 1988, 49(4): 323–339
- 8. Ivić A. The Riemann Zeta-function. The Theory of the Riemann Zeta-function with Applications. New York: John Wiley and Sons, Inc, 1985
- 9. Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 1997
- 10. Jutila M. Lectures on a Method in the Theory of Exponential Sums. Tata Inst Fund Res Lectures on Math and Phys, Vol 80. Berlin; Springer, 1987
- 11. Kim H H. Functoriality and number of solutions of congruences. Acta Arith, 2007, 128(3): 235–243
- 12. Landau E. Einführung in die elementare and analytische Theorie der algebraischen Zahlen und der Ideale. Teubner, 1927
- 13. Lü G. Mean values connected with the Dedekind zeta-function of a non-normal cubic field. Cent Eur J Math, 2013, 11(2): 274–282
- 14. Lü G, Wang Y. Note on the number of integral ideals in Galois extension. Sci China Math, 2010, 53(9): 2417–2424
- 15. Lü G, Yang Z. The average behavior of the coefficients of Dedekind zeta function over square numbers. J Number Theory, 2011, 131: 1924–1938
- 16. Nowak W G. On the distribution of integral ideals in algebraic number theory fields. Math Nachr, 1993, 161: 59–74
- 17. Müller W. On the distribution of ideals in cubic number fields. Monatsh Math, 1988, 106(3): 211–219
- 18. Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge Stud Adv Math, Vol 46. Cambridge: Cambridge Univ Press, 1995