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Abstract We give a survey on 4-dimensional manifolds with positive isotropic
curvature. We will introduce the work of B. L. Chen, S. H. Tang and X. P. Zhu
on a complete classification theorem on compact four-manifolds with positive
isotropic curvature (PIC). Then we review an application of the classification
theorem, which is from Chen and Zhu’s work. Finally, we discuss our recent
result on the path-connectedness of the moduli spaces of Riemannian metrics
with positive isotropic curvature.

Keywords Four-manifolds, positive isotropic curvature (PIC), Ricci flow
MSC 53C20, 53C44, 57M50

1 Positive isotropic curvature

Curvature is one of the most fundamental concepts in geometry and it dates
back to the work of Gauss and Riemann. Given a manifold M, whether M
admits some metrics with prescribed curvature restriction is a fundamental
problem in Riemannian geometry. These curvature conditions may include
positive scalar curvature, positive Ricci curvature, positive or negative sectional
curvature, etc. In this paper, we will concentrate on the positive isotropic
curvature (PIC) condition.

The notion of isotropic curvature was introduced by Micallef and Moore [26],
it appears naturally in the second variation formula on the areas of surfaces.

Let g(·, ·) denote the Riemannian metric and its complex bilinear extension
on the complexified tangent bundle TM ⊗ C, and we use 〈·, ·〉 to denote the
Hermitian extension of g(·, ·) on TM ⊗ C. Let R : Λ2TM → Λ2TM be the
curvature operator and also its complex linear extension to Λ2TM⊗C. Suppose
that a two-dimensional subspace W ⊂ TpM ⊗ C is spanned by a unitary basis
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v,w ∈ TpM ⊗ C, and we call

KC(W ) := 〈R(v ∧ w), (v ∧ w)〉

the complex sectional curvature of W. A subspace W ⊂ TpM ⊗C is isotropic if
g(w,w) = 0 for all w ∈W. The manifold (M,g) is said to have positive isotropic
curvature if KC(W ) > 0 whenever W is a two-dimensional isotropic subspace
of TpM ⊗ C for every point p ∈M.

By linear algebra, it is not hard to prove that, a two-dimensional subspace
W ⊂ TpM ⊗ C is isotropic if and only if there exist

v = e1 +
√−1 e2, w = e3 +

√−1 e4,

such that
W = span{v,w},

where e1, e2, e3, e4 are orthonormal vectors. Thus, the isotropic curvature
condition is non-vacuous only for n � 4. By expanding the formula for isotropic
curvature, we obtain an alternative characterization of PIC: (Mn, g) has PIC if
and only if

R1313 +R1414 +R2323 +R2424 − 2R1234 > 0

for any orthonormal four vectors e1, e2, e3, e4. Here,

R(X,Y,Z,W ) = g(R(X ∧ Y ), Z ∧W )

is the curvature tensor.
It is known that some classical curvature conditions such as strictly point-

wise 1
4 -pinched sectional curvature and positive curvature operator imply PIC

condition (see [26]). On the other hand, PIC implies positive scalar curvature
(see [27]). The following diagram shows the relative strength of the positivity
for various notions of curvatures:

pointwise 1
4 pinching
⇓

R > 0 =⇒ KC > 0 =⇒ sec > 0 =⇒ Ric > 0 =⇒ R > 0
⇓

PIC =⇒ R > 0

Here, sec denotes the sectional curvature, Ric is the Ricci curvature, R is the
scalar curvature on M, and the strictly pointwise 1

4 -pinched sectional curvature
means that

0 < max{sec(σ)} < 4min{sec(σ)}
holds for every p ∈M and 2-plane σ ⊂ TpM.

Isotropic curvature plays a similar role for surface areas variation to that of
sectional curvature for curve lengths. Combining Morse theory and variational
theory, Micallef and Moore proved the following elegant theorem.
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Theorem 1.1 (Micallef and Moore [26]) Let M be a compact simply connected
Riemannian manifold of dimension n � 4 with PIC. Then M is a homotopy
sphere. In particular, M is homeomorphic to Sn.

At present, we do not know whether a compact simply-connected manifold
with PIC is diffeomorphic to Sn.

The basic examples of compact manifolds with PIC are the quotients of the
spheres Sn, and the compact quotients of Sn−1×R. Furthermore, we know that
the connected sum of these basic pieces also admits metrics with PIC. It is a
corollary of the following theorem of Micallef and Wang.

Theorem 1.2 (Micallef and Wang [27]) Let (M1, g1) and (M2, g2) be two
manifolds of dimension n � 4 with PIC. Then the connected sum M1#M2 also
admits a metric with PIC.

From this result, we know that the fundamental group of a manifold with
PIC could be very large. The following conjecture on the fundamental group
of a compact Riemannian manifold with PIC was proposed by Gromov [13].

Conjecture 1.3 For n � 4, let M be an n-dimensional compact Riemannian
manifold with PIC. Then the fundamental group of M contains a free subgroup
of finite index.

The topology of non-simply connected manifolds with PIC is not fully
understood. A partial result was obtained by [27] on second Betti numbers.

Theorem 1.4 (Micallef and Wang [27]) Let M2n be a closed even-dimensional
Riemannian manifold with PIC. Then b2(M) = 0.

As a corollary, a Kähler manifold can never have PIC and also Σg × S2k,
where Σg is a Riemann surface of genus g � 2, admits no metric with PIC.

However, a stronger conjecture on the topology of manifolds with PIC can
be proposed (see Schoen [33]).

Conjecture 1.5 For n � 4, let M be an n-dimensional compact
Riemannian manifold with PIC. Then a finite cover of M is diffeomorphic to a
finite connected sum of Sn−1 × S1.

For fundamental groups, Fraser has obtained an important result.

Theorem 1.6 (Fraser [12]) Let M be a compact Riemannian manifold of
dimension n � 5 with PIC. Then the fundamental group of M does not contain
a subgroup isomorphic to Z ⊕ Z.

The proof of Theorem 1.6 relies on a delicate study on stable minimal tori. It
is difficult to generalize to high genus surfaces. Brendle and Schoen [2] extended
Theorem 1.6 to the dimension n = 4 case provided that M is orientable.

The PIC condition is also closely related to Ricci flow. One of the most
interesting thing is that Ricci flow preserves PIC condition.

Theorem 1.7 (Hamilton [18] (for n = 4); Brendle and Schoen [1]; Nguyen [28])
Let M be a compact manifold of dimension n � 4, and let g(t), t ∈ [0, T ), be a
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solution to the Ricci flow on M. If (M,g(0)) has PIC, then (M,g(t)) has PIC
for all t ∈ [0, T ).

The PIC condition plays a key role in Brendle-Schoen’s proof of the 1
4 -

pinched Differentiable Sphere Theorem, see [1]. Here, we will not go into the
details of their works. In the rest of the paper, we will focus on dimension n = 4
and show that how Ricci flow can be applied to solve Conjectures 1.3 and 1.5
when n = 4.

Hamilton [18] initiated the classification for four-manifolds M with PIC
without essential incompressible space forms. Here, no essential imcompress-
ible space forms is a condition on the fundamental group, which means that
any embedded three-dimensional spherical space form N with injective
fundamental group π1(N) into π1(M) satisfies π1(N) = 0 or π1(N) = Z2,
and we require that the normal bundle of N is non-orientable in the latter
case. Hamilton’s classification was completed in Chen-Zhu [8]. The complete
classification theorem on compact four-manifolds with PIC was given by [7].

Theorem 1.8 (Chen et al. [7]) Let M be a compact four-dimensional
manifold. Then it admits a metric with PIC if and only if it is diffeomorphic
to S4, RP4, (S3 × R)/G, or a connected sum of them. Here, G is a cocompact
fixed-point-free discrete isometric subgroup of the standard S3 × R.

In Section 2, we will give a sketch of the proof of Theorem 1.8.
As an application of Theorem 1.8, Chen and Zhu [9] proved a conformally

invariant classification theorem (see Theorem 3.3 below). We will review this
result in Section 3. Recently, we ([6]) further investigated the moduli space of
metrics with PIC on four-manifolds. We will discuss this recent work in Section
4.

There are other interesting results on manifolds with PIC in general
dimensions which we cannot cover here, for example, see the survey articles
[2,33].

2 Complete classification theorem on compact four-manifolds with PIC

2.1 PIC condition in four-dimension

Let (M,g) be a four-dimensional Riemannian manifold. The local orientation
gives the bundle Λ2TM a decomposition

Λ2TM = Λ2
+TM ⊕ Λ2

−TM

into its self-dual and anti-self-dual parts. Therefore, the curvature operator has
a block decomposition

R =
(
A B
Bt C

)
,

where
A = W+ +

R

12
I, C = W− +

R

12
I,
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and B is the traceless part of the Ricci curvature, W± are the self-dual and
anti-self-dual Weyl tensors, respectively. Denote the eigenvalues of the matrices
A, C, and

√
BBt by

a1 � a2 � a3 , c1 � c2 � c3, b1 � b2 � b3,

respectively. It is known that PIC is equivalent to a1 + a2 > 0 and c1 + c2 > 0
(see [18]). From this, it is clear that if g is locally conformally flat, then g has
positive scalar curvature if and only if g has PIC.

2.2 Notations

We fix some notations which will be used throughout the paper.
2.2.1 Orbifold
We will give some terminologies and notations about orbifolds (see [7]).

For x ∈ X, where X is an n-dimensional orbifold, we use Γx to denote the
local uniformization group at x, that is, there is an open neighborhood Bx 
 x,
such that Bx is diffeomorphic to R

n/Γx, where Γx is a finite subgroup of linear
transformations of R

n. After conjugating with an element in GL(Rn), we can
assume Γx ⊂ O(n).

By Lefschetz fixed-point formula, every orientation-reversing diffeomorphism
of S3 has a fixed point (see [34]). Therefore, if X is a four-dimensional
orbifold with at most isolated singularities, then, for every point x ∈ X, we
have Γx ⊂ SO(4).

We will fix some notations of orbifolds that will appear in this paper (see
also [6]).

Suppose that Γ is a fixed-point-free finite subgroup of SO(4) acting on S3.
We write the equation of S4 as

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 1. (2.1)

Regard S3 as an equator

x2
1 + x2

2 + x2
3 + x2

4 = 1

in S4, Γ can naturally extend to act isometrically on S4 by fixing the x5-axis.
We will still use Γ to denote this group action. Γ has exactly two fixed points
(0, 0, 0, 0, 1) and (0, 0, 0, 0,−1), and thus, the orbifold S4/Γ has two orbifold
singularities with local uniformization group Γ. In this paper, we say that a
spherical orbifold is of the form S4/Γ with Γ ⊂ SO(4), it means that it is
diffeomorphic to an orbifold constructed above.

If S3/Γ admits a fixed-point-free isometry τ satisfying τ2 = 1, then we can
define an action τ̂ on S3/Γ × R by

τ̂(θ, r) = (τ(θ),−r), θ ∈ S3/Γ, r ∈ R.

The quotient (S3/Γ×R)/{1, τ̂} is a smooth four manifold with a neck-like end
S3/Γ×R. We denote this manifold by Cτ

Γ. If we think of S4 as the compactifica-
tion of S3 ×R by adding two points at infinities of S3 ×R, then Γ and τ̂ can be
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naturally regarded as isometries of the standard S4 . We denote S4/〈Γ, τ̂ 〉 the
resulting orbifold in this paper. Obviously, Cτ

Γ is diffeomorphic to the smooth
manifold obtained by removing the orbifold singularity (or a smooth point when
Γ is trivial) from S4/〈Γ, τ̂ 〉. RP4 \B4 is an example of Cτ

Γ.
In the following, we define topological necks and caps whose meanings will

be fixed in our subsequent discussion. A neck is defined to be a manifold
diffeomorphic to S3/Γ × R. For caps, we have smooth caps and orbifold caps.
Smooth caps consist of Cτ

Γ and B4. Our orbifold caps have two types, denoted
by CΓ and CII below.

The orbifold cap of Type I is diffeomorphic to R
4/Γ, where Γ ⊂ SO(4) is a

finite subgroup fixing the origin of R
4 and acting freely on the unit three-sphere

in R
4. We denote it by CΓ. CΓ has a neck-like end S3/Γ × R and one orbifold

singularity with local uniformization group Γ.
The orbifold cap of type II is constructed as follows. Let the equation of S3

be x2
1 + x2

2 + x2
3 + x2

4 = 1. The isometry

γ : (x1, x2, x3, x4) → (x1,−x2,−x3,−x4)

has exactly two fixed points p1 = (1, 0, 0, 0) and p2 = (−1, 0, 0, 0), and satisfies
γ2 = 1. We define an action γ̂ on S3 ×R by γ̂(x, r) = (γ(x),−r), where x ∈ S3,
r ∈ R. It is clear γ̂2 = 1, and (p1, 0), (p2, 0) are the only two fixed points of γ̂.
Denote the quotient orbifold (S3×R)/{1, γ̂} by CII, and call it the orbifold cap
of Type II. It has a neck-like end S3 × R and two orbifold singularities with
local uniformization group Z2. There is another way to understand CII. Let the
equation of S4 be as (2.1). The isometry

ζ : (x1, x2, x3, x4, x5) → (−x1,−x2,−x3,−x4, x5)

has exactly two fixed points (0, 0, 0, 0, 1) and (0, 0, 0, 0,−1). Here, we note that
S4/{1, ζ} is a special case of S4/Γ with Γ ⊂ SO(4). Removing a smooth point
from S4/{1, ζ}, we get an orbifold diffeomorphic to CII.

Finally, we recall a characterization of four-dimensional spherical orbifolds
with at most isolated singularities S4/Γ̃. By studying the corresponding group
actions on S4 (see [7, Lemmas 5.1, 5.2]), one can derive that such an S4/Γ̃ has no
more than two orbifold singularities. So there are three possible diffeomorphism
types of S4/Γ̃ according to the number of singularities: the first type is S4 or
RP4, the second type is of the form S4/〈Γ, τ̂ 〉 with Γ ⊂ SO(4), and the third
case is of the form S4/Γ with Γ ⊂ SO(4).
2.2.2 Orbifold connected sum [7]
Suppose that X1,X2 are two n-dimensional orbifolds (not necessarily distinct)
with at most isolated singularities. Let x1 ∈ X1, x2 ∈ X2 be two distinct
points (not necessarily singular) such that Γx1 is conjugate to Γx2 as subgroups
of GL(Rn). By choosing new local trivializations, we may assume

Γx1 = Γx2 =: Γ ⊂ O(n).
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Let Bn ⊂ R
n be the unit open ball, Bx1 ≈ Bn/Γ and Bx2 ≈ Bn/Γ are neigh-

borhoods of x1 and x2, respectively. Let f be a diffeomorphism from ∂Bx1

to ∂Bx2. Remove Bx1 and Bx2 from X1 and X2, and identify the boundary
∂Bx1 and ∂Bx2 by the diffeomorphism f. The resulting orbifold is denoted by
#f ;x1,x2(X1,X2) or #f (X1,X2), and is called orbifold connected sum of X1 and
X2. Note that the diffeomorphism type of the resulting orbifold depends only
on the isotopic class of f. When the orientation is taken into account, we adopt
the convention that the orientation of ∂Bx1 is induced from the orientation of
X1, while the orientation of ∂Bx2 is reverse to that induced from X2.

Suppose that X is diffeomorphic to S4/Γ, Γ ⊂ SO(4), with two orbifold
singularities p1 and p2 (when Γ is trivial, we take p1 and p2 to be arbitrary two
different smooth points). If we perform an orbifold connected sum on X with
itself at p1 and p2 by f ∈ Diff(S3/Γ), then we obtain the mapping torus of f,
and denote it by S3/Γ×f S

1. S3/Γ×f S
1 has the structure of a fiber bundle over

S1 with fibers S3/Γ and the monodromy f. It can be shown that the bundle
structure depends only on the isotopic class of f.

2.3 Ricci flow

The Ricci flow equation
∂g

∂t
= −2Ricg

is an evolution equation on Riemannian metrics, where Ricg is the Ricci
curvature of g. This equation was introduced by Hamilton [16].

Let g0 be a metric with PIC on a compact four-manifold or orbifold M.
We evolve g0 by the Ricci flow. The solution gt exists for a short time (see
[10,16,19]). Hamilton [18] proved that PIC is preserved on 4-d Ricci flow.
Moreover, he derived the following improved pinching estimates. Since the
maximum principle can still be applied on orbifolds, these estimates are still
true for orbifolds.

Theorem 2.1 [18, Theorems B1.1, B2.3] There exist positive constants ρ,
Λ, P < +∞ depending only on the initial metric, such that the solution to
the Ricci flow satisfies

a1 + ρ > 0, c1 + ρ > 0,

max{a3, b3, c3} � Λ(a1 + ρ), max{a3, b3, c3} � Λ(c1 + ρ),

b3√
(a1 + ρ)(c1 + ρ)

� 1 +
ΛePt

max{log √
(a1 + ρ)(c1 + ρ), 2} .

(2.2)

As a result, any blowing up limit will satisfy the following restricted isotropic
curvature pinching condition:

a3 � Λa1, c3 � Λc1, b23 � a1c1. (2.3)

We call the solution g(t), t ∈ [0, T ), of Ricci flow is κ non-collapsed at
(x0, t0) ∈ M × [0, T ) on the scale r0 if it satisfies the following: whenever
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|Rm|(x, t) � r−2
0 holds for all t ∈ [t0 − r20, t0] and x ∈ Bt(x0, r0), we have

Volt0(Bt0(x0, r0)) � κr40 .

From the evolution equation of the scalar curvature

∂R

∂t
= ΔR+ 2|Ric|2,

we have the differential inequality

dRmin(t)
dt

� 1
2
R2

min(t). (2.4)

Since a = Rmin(0) > 0, we derive that Rmin(t) � 2a/(2 − at), and thus, the
solution will blow up at a finite time t1 � 2/a.

2.4 Ancient solution

In order to understand the singularities of the Ricci flow, it is important to
investigate the structures of ancient κ-orbifold solutions.

Definition 2.2 We say that a solution to the Ricci flow is an ancient κ-
orbifold solution if it is a smooth complete nonflat solution to the Ricci flow
on a four-orbifold X with at most isolated singularities satisfying the following
three conditions:

(1) the solution exists on time interval t ∈ (−∞, 0],
(2) it has positive isotropic curvature and bounded curvature, and satisfies

the restricted isotropic curvature pinching condition (2.3),
(3) it is κ-noncollapsed on all scales for some κ > 0.

The structure of ancient κ-orbifold solutions was thoroughly studied in
[7, Section 3], we summarize the results in the following theorem.

Theorem 2.3 [7, Theorems 3.4–3.10] For a four-dimensional ancient κ-
orbifold solution (X, gt), t ∈ (−∞, 0],

(1) if the curvature operator has nontrivial null eigenvectors somewhere,
then X is isometric to S3/Γ × R, Cτ

Γ, or CII, with the induced metric from the
product metric on S3 × R;

(2) if the curvature operator is strictly positive everywhere, then either X is
compact and diffeomorphic to a spherical space form S4/Γ with at most isolated
singularities, or X is noncompact and diffeomorphic to R

4 or CΓ.

Furthermore, for ε > 0 small enough, one can find positive constants C1 =
C1(ε), C2 = C2(ε), such that for every (x, t), there is a radius r,

1
C1

(R(x, t))−1/2 < r < C1(R(x, t))−1/2,

so that some open neighborhood Bt(x, r) ⊂ B ⊂ Bt(x, 2r) falls into one of the
following categories:
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(i) B is an evolving ε-neck around (x, t) (in the sense that it is the time slice
at time t of the parabolic region {(x′, t′) | x′ ∈ B, t′ ∈ [t−R(x, t)−1, t]}, where the
solution is well defined on the whole parabolic neighborhood and is, after scaling
with factor R(x, t) and shifting the time t to zero, ε-close to the corresponding
subset of the evolving round cylinder S3/Γ × R with scalar curvature 1 at the
time zero);

(ii) B is an evolving ε-cap (in the sense that it is the time slice at the time
t of an evolving metric on open caps R

4, Cτ
Γ, CΓ, or CII such that the region

outside some suitable compact subset is an evolving ε-neck);
(iii) at time t, x is contained in a connected compact component with positive

curvature operator.
Moreover, the scalar curvature of B in cases (i) and (ii) at time t is between
C−1

2 R(x, t) and C2R(x, t).

We remark that conclusions in Theorem 2.3 in smooth manifold case were
proved by Chen and Zhu [8]. In the orbifold case, due to the possible collapsing
of the solution in the presence of orbifold singularities with big local uniformiza-
tion groups, some analysis in the proof of the smooth case cannot go through
directly. For example, if we follow the argument in [8] directly, the constants
C1, C2 may depend on the noncollapsing constant κ. The idea to solve this
problem in [7] is to lift the ancient κ-orbifold solution to its universal cover so
that we can make use of the results in the manifold case. See [7, Section 3] for
more details.

2.5 Hamilton’s surgery process

Hamilton [18] initiated the surgery process to handle the higher curvature part
of Ricci flow.

Suppose that h is a metric on N = S3 × (−4, 4) such that h is ε-close to
hstd in C [1/ε]-topology, where hstd is the standard round cylinder metric on N
of scalar curvature 1. Denote the coordinate of the second factor by s. Let f be
a smooth function defined by

f(s) =

{
0, s � 0,

ce−q/s, s > 0,
(2.5)

where c, q > 0. Hamilton [18, Section D 3.1] showed that if c is small enough
and q large enough (independent of ε), then the metric ĥ = e−2fh satisfies
Hamilton’s improved pinching estimates (see Theorem 2.1) on s ∈ [0, 4], and has
positive curvature operator for s ∈ (1, 4], if h is ε-close to hstd with ε sufficiently
small. And we will fix such a small c and a large q. Now, let α : R → [0, 1] be a
fixed smooth cutoff function such that α(s) ≡ 1 if s � 2 and α(s) ≡ 0 if s � 3.
Then there exists a universal constant ε1 such that, if h is ε-close to hstd with
ε < ε1, then the metric

ȟ = e−2f [α(s)h+ (1 − α(s))hstd]
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satisfies Hamilton’s improved pinching estimates on s ∈ [0, 4] and has positive
curvature operator on s ∈ (1, 4]. From the above construction, ȟ on the part
s ∈ [3, 4] is independent of h, and then we extend ȟ by gluing a fixed
suitably chosen rotationally symmetric cap with positive curvature operator
and satisfying Hamilton’s improved pinching estimates. We denote the resulting
Riemaninan manifold by (S , hsurg). Note that in this case, S is diffeomorphic
to R

4.
When N is S3/Γ× (−4, 4) with nontrivial Γ, and h is a metric close to hstd

on N, the above construction can also be applied. But in this case, we will
obtain a Riemannian orbifold (S , hsurg) with S diffeomorphic to CΓ.

We remark that no essential imcompressible space forms condition in [18]
and [8] prevents the appearance of orbifold singularities. In general, if there
is no any topological assumption on the initial manifold M, isolated orbifold
singularities may appear after performing surgeries.

2.6 Ricci flow with surgery and proof of Theorem 1.8

The existence of Ricci flow with surgery on four-dimensional orbifold with
isolated singularities and with PIC metric was established in [7, Section 4].
We summarize the results in the following theorem.

Theorem 2.4 Let g0 be a PIC metric on M (M may be a four-dimensional
manifold or orbifold with isolated singularities). There exist two sequences of
non-increasing small positive numbers {ri}, {δi}, and a Ricci flow with surgery
on orbifolds with at most isolated singularities (Xi, gi(t))t∈[ti,ti+1), 0 � i � p,
such that

1) X0 = M and g0(0) = g0;
2) the flow becomes extinct at a finite time T = tp+1;
3) for every 0 � i � p, the flow (Xi, gi(t))t∈[ti,ti+1) satisfies the ε-canonical

neighborhood assumption with parameter ri and the pinching assumption;
4) for every 0 � i � p− 1, (Xi+1, gi+1(ti+1)) is obtained from (Xi,

gi(t))t∈[ti,ti+1) by doing surgery at singular time ti+1 with parameters ri and
δi.

In [8, Section 5], Theorem 2.4 was established for smooth manifolds under
suitable topological assumptions, while in [7, Section 4], it was established
in a general form. We remark that in the general case, due to the possible
existence of orbifold singularities with big uniformizaton group, the canonical
neighborhoods may be sufficiently collapsed, which bring difficulties to establish
the long time existence of Ricci flow with surgery. Thus, there need some work
to overcome this problem, see [7] for details. We will not include the very
detailed and lengthy argument here, except explain the terminologies appear
in Theorem 2.4.

Definition 2.5 Let ε > 0 be a small constant, and let r : R
+ → R

+ be a
non-increasing function. We say that a solution to the Ricci flow with surgery
g(t), t ∈ [0, b], satisfies ε-canonical neighborhood assumption with parameter
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r, if there exist two constants C1 = C1(ε), C2 = C2(ε) depending only on ε

such that every point (x, t) ∈ M × [0, b] with R(x, t) � r(t)−2 has an open
neighborhood B, called an ε-canonical neighborhood, satisfying the properties
that Bt(x, r) ⊂ B ⊂ Bt(x, 2r) with 0 < r < C1R(x, t)−1/2, and one of the
following conditions:

(a) B is an ε-neck around (x, t);
(b) B is an ε-cap (C , g), and thus, B is diffeomorphic to B4, Cτ

Γ, CΓ, or
CII such that the region outside some suitable compact subset is an ε-neck;

(c) at time t, x lies in a compact connected component with positive
curvature operator.
Moreover, for cases (a) and (b), the scalar curvature in B at time t is between
C−1

2 R(x, t) and C2R(x, t), and satisfies the estimate

|∇R| < ηR3/2,
∣∣∣∂R
∂t

∣∣∣ < ηR2,

where η is a universal constant.

At each singular time ti+1, for those components of Xi with positive
curvature operator at time ti+1, we know that these components are spherical
by Hamilton’s result (see [18]). Denote the union of the remaining components
of Xi by Ω. Let

ρ = δiri, Ωρ =
{
x ∈ Ω | lim

t→ti+1

R(x, t) � ρ−2
}
.

Then every point of Ω outside Ωρ has an ε-neck or ε-cap neighborhood by the
canonical neighborhood assumption with parameter ri. When Ωρ �= ∅, there are
finitely many connected components of Ω \Ωρ whose one end is in Ωρ, another
end has unbounded curvature. These components are called ε-horns and we
denote them by Hj, 1 � j � k. Each of these components is diffeomorphic
to S3/Γ × (0, 1) for some Γ ⊂ SO(4). By [7, Proposition 4.4], there exists
h ∈ (0, δiρi) such that every point on an ε-horn with curvature � h−2 is a
center of a δi-neck. For every j, we select such an xj on Hj with curvature
� h−2, and xj is a center of a δi-neck Nj , and denote the center slice of Nj

by Sj . Let Ω̃ be the union of the connected components of Ω \ ∪Sj with finite

curvature at ti+1, and denote Ω̂ = Ω\Ω̃. Now, we cut off the δi-neck Nj along Sj ,

and glue back surgery caps to the boundaries of Ω̃. The resulting Riemannian
orbifold is just (Xi+1, gi+1(ti+1)), which have bounded curvature and the Ricci
flow can be resumed until it hits another singular time. This is what we mean
by doing surgery at singular time ti+1 with parameters ri and δi.

As the surgeries are done at the points lying deeply in the ε-horns, the
minimum of the scalar curvature Rmin(t) of the solution to the Ricci flow with
surgery at each time-slice is achieved in the region unaffected by the surgeries.
Then, from (2.4), we know that there will be a tp+1 = T < +∞ such that every
point is covered by a canonical neighborhood. In this case, every connected
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component of Xp can be well characterized, thus we stop the Ricci flow and say
that it is extinct at time T.

With Theorem 2.4 in hand, we can prove Theorem 1.8. The proof is by
backward induction.

Because at the extinct time tp+1, every point is covered by a canonical
neighborhood, we know that every connected component of Xp is diffeomor-
phic to a spherical orbifold, or an (S3 × R)/G, or #(S4/{1, ζ}, S4/{1, ζ}), or
#(S4/{1, ζ},RP4), where the connected sum is performed at smooth points.
Topologically, these connected components can be obtained by performing
suitable orbifold connected sum on a finite number four-dimensional spherical
orbifolds S4/Γ̃.

At every surgery time ti, i < p + 1, we can recover the topology of Xi−1

from that of Xi, because Xi is obtained from Xi−1 by first throwing away
those component with positive curvature operator and then performing surgery,
and the canonical neighborhood assumptions enable us to know the topological
types of the higher curvature part. By backward inductions, we can argue that
each connected component of Xi−1 is a suitable orbifold connected sum of a
finite number four-dimensional spherical orbifolds.

Since there are no orbifold singularities on the initial manifold M, by
the characterization of four-dimensional spherical orbifolds with isolated
singularities (see [7, Lemmas 5.1, 5.2]), one can show that the conclusion of
Theorem 1.8 hold. See [7] for details.

3 A conformally invariant classification theorem

Suppose that Mn is a closed manifold of dimension n with n � 3. Given a
metric g on Mn, let Cg = {ρg | ρ > 0} be the class of metrics conformal to g.

Define

Y (Mn,Cg) = inf
g′∈Cg

∫
Mn Rg′dvg′(∫

Mn dvg′
)(n−2)/n

,

and the Yamabe invariant Y (Mn) of the manifold is defined to be

Y (Mn) = sup
C

Y (Mn,C ),

where the superum is taken over all conformal classes of Riemannian metrics
on Mn.

An interesting question is to classify manifolds with positive Yamabe
invariant. But it turns out that when dimension n � 4, the Yamabe
invariant alone is too weak to control the whole topology of manifolds. One
needs additional conditions to investigate the topology of the manifolds with
positive Yamabe invariant.
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In dimension 4, recall that the Gauss-Bonnet-Chern Theorem says

1
8π2

∫

M4

(
|W+|2 + |W−|2 +

R2

24
− |

◦
Ric|2

2

)
dvg = χ(M4), (3.1)

where W± are the self-dual and anti-self-dual Weyl tensors, respectively, see
Section 2.1.

Chang et al. [5] proved a conformally invariant sphere theorem in dimension
4, where besides the positivity of the Yamabe invariant, they assumed that the
Weyl curvature is suitably controlled in L2 sense by the Euler characteristic
χ(M4) of the manifold.

Theorem 3.1 (Chang, Gursky, and Yang [5]) Let (M4, g) be a compact four-
dimensional Riemannian manifold. Suppose that we have

(1) Y (M4,Cg) > 0;
(2)

∫
M4

(|W+|2 + |W−|2
)
dvg < 4π2χ(M4).

Then M4 is diffeomorphic to S4 or RP4.

Note that conditions (1) and (2) are invariant under conformal change of
the metric.

In [5], the authors also obtained the following rigidity theorem that shows
the pinching condition (2) is sharp.

Theorem 3.2 (Chang, Gursky, and Yang [5]) Let (M4, g) be a compact four-
dimensional Riemannian manifold which is not diffeomorphic to S4 or RP4.
Suppose that we have

(1) Y (M4,Cg) > 0;
(2)

∫
M4(|W+|2 + |W−|2)dvg = 4π2χ(M4).

Then
(a) (M4, g) is conformal to CP2 with the Fubini-Study metric; or
(b) (M4, g) is conformal to a manifold which is isometrically covered by

S3 × S1 endowed with the standard product metric.

It is obvious that χ(M4) is positive in Theorem 3.1 and is non-negative in
Theorem 3.2.

3.1 Conformally invariant classification theorems

Chen and Zhu [9] generalized the above sharp conformally invariant sphere
theorems to manifolds with possibly non-positive Euler characteristic as follows.

Theorem 3.3 (Chen and Zhu [9]) Let (M4, g) be a compact four-dimensional
Riemannian manifold satisfying

(1) Y (M4,Cg) > 0;
(2)

∫

M4

[max{λmax(W+), λmax(W−)}]2dvg <
1
36

Y (M4,Cg)2,
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where λmax(W±) is the largest eigenvalue of W±, respectively. Then M4 is
diffeomorphic to a connected sum

S4#mRP4#(S3 × R)/Γ1# · · ·#(S3 × R)/Γk,

where k is a non-negative integer, m = 0 or 1, and each Γi is a cocompact
discrete subgroup of the isometric group of S3 × R.

Theorem 3.4 (Chen and Zhu [9]) Let (M4, g) be a compact four-dimensional
Riemannian manifold satisfying

(1) Y (M4,Cg) > 0;
(2)

∫
M4 [max{λmax(W+), λmax(W−)}]2dvg = 1

36 Y (M4,Cg)2.

If M4 is not diffeomorphic to

S4#mRP4#(S3 × R)/Γ1# · · ·#(S3 × R)/Γk

for all m = 0, 1 and non-negative integer k, then
(a) (M4, g) is conformal to CP2 with the Fubini-Study metric; or
(b) the universal cover of (M4, g) is conformal to (Σ1, g1)× (Σ2, g2), where

the surface (Σi, gi) has constant Gaussian curvature ki, and k1 + k2 > 0.

Clearly, conditions (1) and (2) in Theorem 3.3 are conformally invariant.
We now show that Theorem 3.1 can be deduced from Theorem 3.3.

By Schoen’s solution of Yamabe problem [32], there is a metric g̃ ∈ Cg such
that g̃ has constant scalar curvature and

Y (M4,Cg) =

∫
M4 Rg̃dvg̃(∫
M4 dvg̃

)1/2
.

Note that, by (3.1), condition (2) in Theorem 3.1 is equivalent to

∫

M4

(|W+|2 + |W−|2)dvg <

∫

M4

(R2

24
− |

◦
Ric|2

2

)
dvg. (3.2)

Since the LHS of (3.2) is conformally invariant, we know the RHS of (3.2) is
also conformally invariant. By (3.2), we have

∫

M4

(|W+|2 + |W−|2)dvg <

∫

M4

(
R2

g̃

24
− |

◦
Ricg̃|2g̃

2

)
dvg̃

�
∫

M4

R2
g̃

24
dvg̃

=
Y (M4,Cg)2

24
. (3.3)
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On the other hand, let λ1 � λ2 � λ3 be the eigenvalues of W+. Since W+ is
trace free, we have λ1 + λ2 + λ3 = 0, and thus,

|W+|2 = λ2
1 + λ2

2 + λ2
3 � λ2

1 +
1
2

(λ2 + λ3)2 =
3
2
|λmax(W+)|2. (3.4)

Similarly, we have

|W−|2 � 3
2
|λmax(W−)|2. (3.5)

Combining (3.4), (3.5) with (3.3), we have
∫

M4

(|λmax(W+)|2 + |λmax(W−)|2)dvg <
Y (M4,Cg)2

36
, (3.6)

which clearly implies condition (2) in Theorem 3.3. Thus, it follows from the
conclusion of Theorem 3.3 that M4 has a finite cover M̃4 diffeomorphic to
S4#k(S3 × S1), where

k = b1(M̃4), b2(M̃4) = 0.

Obviously, condition (2) in Theorem 3.1 implies that χ(M̃4) > 0. Noting that
χ(M̃4) = 2 − 2k, we have k = 0. Thus, M̃4 is diffeomorphic to S4 and M4 is
diffeomorphic to S4 or RP4. Hence, we have proved that Theorem 3.1 can be
deduced from Theorem 3.3.

Furthermore, it follows from Theorem 3.3 that if χ(M4) = 0, then M4 has
a finite cover diffeomorphic to S3 × S1, and if k � 2, then we have χ(M4) < 0.
Thus, Theorem 3.3 generalizes Theorem 3.1 to manifolds with negative Euler
characteristic numbers.

3.2 Proofs of Theorems 3.3 and 3.4

We give a sketch on the proofs of Theorems 3.3 and 3.4 in this subsection.
Analogous to the Yamabe invariant, Chen and Zhu [9] defined a

conformal invariant G Y (M4,Cg) and a differentiable invariant G Y (M4) on
the four-manifold M4 as follows:

G Y (M4,Cg) := inf
g′∈Cg

∫
M4(Rg′ − 6max{λmax(W

g′
+ ), λmax(W

g′
− )})dvg′

(
∫
M4 dvg′)1/2

,

G Y (M4) := sup
C

G Y (M4,C ).

Then the following theorem was established.

Theorem 3.5 [9, Theorem 1.7] Let M4 be a compact four-dimensional
manifold with G Y (M4) > 0. Then M4 is diffeomorphic to a connected sum

S4#mRP4#(S3 × R)/Γ1# · · ·#(S3 × R)/Γk,

where k is a non-negative integer, m = 0 or 1, and each Γi is a cocompact
discrete subgroup of the isometric group of S3 × R.
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Now, we give a sketch of the proof of Theorem 3.5. A key step is to transform
the integral condition G Y (M4) > 0 to a pointwise curvature condition by
solving a semi-linear elliptic equation.

If we define

σg := Rg − 6max{λmax(W+), λmax(W−)}, (3.7)

where λmax(W±) are the largest eigenvalue of W±, respectively. Since both W+

and W− are trace free, it is easy to see that the condition σg > 0 is equivalent
to a1 +a2 > 0 and c1 + c2 > 0, that is to say, (M4, g) has PIC (see Section 2.1).

Let g̃ = u2g, u ∈ C∞(M4), u > 0. By direct computations, we obtain the
following relations:

Rg̃ = u−3(−6Δu+Rgu), (3.8)

σg̃ = u−3(−6Δu+ σgu). (3.9)

Proposition 3.6 For any given conformal class Cg of Riemannian metrics
on M4, G Y (M4,Cg) can be achieved by some g̃ ∈ Cg such that σg̃ is a constant.

We have the following corollary.

Corollary 3.7 If G Y (M4,Cg) > 0, then there exists g̃ ∈ Cg such that σg̃ > 0.

Indeed, Proposition 3.6 and Corollary 3.7 are some kind of generalized
Yamabe problem. They can be stated in a more general form, see [9, Lemma
2.1, Corollary 2.2] and [15, Proposition 3]. The proof of Proposition 3.6 is
similar to that of the Yamabe problem.

Since the metric g̃ in Corollary 3.7 has PIC, we can apply the classification
theorem (Theorem 1.8) and finish the proof of Theorem 3.5.

With Theorem 3.5 in hand, Theorem 3.3 can actually be proved by verifying
G Y (M4) > 0.

Proof of Theorem 3.3 By Proposition 3.6, there is a metric g̃ of unit volume
in Cg achieving G Y (M4,Cg) and σg̃ ≡ G Y (M4,Cg). Hence, we have

G Y (M4,Cg) =
∫

M4

(Rg̃ − 6max{λmax(W
g̃
+), λmax(W

g̃
−)})dvg̃

(i)

� Y (M4,Cg) − 6
(∫

M4

[max{λmax(W
g̃
+), λmax(W

g̃
−)}]2dvg̃

)1/2

(ii)
= Y (M4,Cg) − 6

(∫

M4

[max{λmax(W+), λmax(W−)}]2dvg

)1/2

(iii)
> 0, (3.10)

where we have used the Schwarz inequality in (i), conformal invariance of W±
in (ii), and assumptions (1) and (2) of Theorem 3.3 in (iii). The conclusion of
Theorem 3.3 follows from Theorem 3.5. �
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For the proof of Theorem 3.4, we first mimic the above argument, but we
have ‘=’ in (iii) of (3.10) instead of ‘>’. Also, by the assumptions of Theorem
3.4, we know that (i) of (3.10) must be an equality, which implies that g̃ satisfies

Rg̃ = 6max{λmax(W
g̃
+), λmax(W

g̃
−)} ≡ const. > 0.

Note that (M4, g̃) has non-negative isotropic curvature. Then we can apply the
results of Micallef-Wang [27]. See [9] for details.

4 Moduli spaces of metrics with PIC

As is known, the existence of certain Riemannian metrics with various curvature
conditions is an important problem in geometry. On the other hand, when the
manifold M admits such a metric, it will be a very interesting problem to
investigate the topology of the moduli space of such metrics.

It is easy to see that on a given manifold M, the space of all Riemennian
metrics, equipped with the C∞-topology, is star-shaped, hence contractible.
To the contrary, when we are restricted to the subspace of metrics with certain
curvature conditions, the topology of this space or its corresponding moduli
space may become difficult to study.

There are many works studying the moduli space of metrics with certain
curvature restrictions. Let us denote the set of Riemannian metrics g with
positive scalar curvature by R+(M). The group of diffeomorphisms on M,
denoted by Diff(M), acts on R+(M) naturally. In 1916, Weyl [36] proved
that R+(S2) is path-connected. Rosenberg and Stolz [30] further showed that
R+(S2) is contractible. When dimension n � 7, there are many examples
with disconnected R+(Mn) or even the moduli spaces R+(Mn)/Diff(Mn), see
[3,14,20,22,29], etc. When dimension n = 3, Marques [24] proved recently that
the moduli space R+(M)/Diff(M) is path-connected ifM is compact orientable
with R+(M) �= ∅. Combining the result of Cerf [4] on Diff(S3), Marques [24]
further argued that R+(S3) is path-connected. In dimension 4, not much is
known about the moduli space R+(M)/Diff(M). There is an example of a 4-
manifold, due to Ruberman [31], for which the moduli space R+(M)/Diff(M)
is disconnected. For the four-sphere S4, we remark that whether the moduli
space R+(S4)/Diff(S4) is connected is still an open problem. There are many
other interesting results about the connectedness or disconnectedness of moduli
spaces of metrics satisfying certain geometric conditions, see [11,21,23], etc.

The topological classification problem for compact four-manifolds with PIC
is completed by Theorem 1.8. Thus, it is a natural question to study the space
of metrics g with PIC, denoted by PIC(M), and its corresponding moduli space
PIC(M)/Diff(M). In this section, we introduce our recent work [6] on the path-
connectedness of PIC(M)/Diff(M). The main theorem in [6] is as follows.

Theorem 4.1 (Chen and Huang [6]) The moduli space PIC(M)/Diff(M) is
path-connected if M is orientable and diffeomorphic to one of the following
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manifolds:
(1) S4;
(2) (S3 × R)/G, where G is a cocompact fixed-point-free discrete isometric

subgroup of S3 × R;
(3) a finite connected sum (S3/Γ1 × S1)# · · ·#(S3/Γk × S1), where Γi

(1 � i � k) is either the trivial group or a non-cyclic isometric group of S3.

Let g and g′ be metrics with PIC. We say that g is isotopic to g′ if there exists
a continuous path gμ, μ ∈ [0, 1], such that g0 = g, g1 = g′, and gμ ∈ PIC(M) for
every μ ∈ [0, 1]. The path-connectedness of PIC(M)/Diff(M) just means that
for any two g1, g2 ∈ PIC(M), there is a diffeomorphism ϕ ∈ Diff(M) such that
g1 is isotopic to ϕ∗g2.

The proof of Theorem 4.1 is mainly using Ricci flow. The idea is to use Ricci
flow to deform the initial metric g0 = g. By Theorem 1.7, once the solution gt

is well defined, it gives a curve in PIC(M). By Theorem 2.4, Ricci flow with
surgery is well-defined: at every surgery time ti+1, we obtain (Xi+1, gi+1(ti+1))
from (Xi, gi(t))t∈[ti,ti+1) by doing surgery at singular time ti+1 with parameters
ri, δi, and the flow becomes extinct at a finite time T = tp+1. Here, we remark
that, after doing surgery, the underling orbifold will change, and the behavior
of metrics on the parts cut or glued in the surgery process will also bring
difficulties in our analysis. This requires more careful investigations on the
surgery procedure.

Following the strategy as in Marques’s paper [24] for dimension 3, our
arguments consist of two steps. In the first step, we obtain the following result.

Theorem 4.2 [6, Theorem 1.2] Let M be a compact four-dimensional
manifold with PIC(M) �= ∅. If g ∈ PIC(M), then there is a path of metrics
gμ, μ ∈ [0, 1], such that g0 = g, g1 is a canonical metric, and gμ ∈ PIC(M) for
all μ ∈ [0, 1].

The precise definition of a canonical metric will be given in Section 4.1.3.
The second step is to prove two different canonical metrics g̃ and g̃′ are

isotopic to each other modulo diffeomorphisms. This turns out to be a
topological problem.

We will provide some details for these two steps in the remaining
subsections.

4.1 M-W connected sum, standard metrics, and canonical metrics

4.1.1 M-W connected sum
We first need a connected sum construction which will be served as the
inverse process of the surgery in Ricci flow. Recall that Micallef and Wang
[27] proved that the connected sum of two manifolds admitting metrics with
PIC also admits metrics with PIC (see Theorem 1.2). We give a short
description of the proof of Theorem 1.2 here to indicate how the connected
sum construction is performed. The construction depends smoothly on many
parameters, the key point is that the resulting metrics are isotopic to each other



Four-manifolds with positive isotropic curvature 1141

modulo diffeomorphisms.

Sketch of proof of Theorem 1.2 Let (M1, g1) be an n-dimensional Riemannian
manifold with PIC. Given p1 ∈M1, denote the geodesic ball of radius r around
p1 by Br(p1), and let r(x) = d(x, p1) be the distance from x to p1. Given an
orthonormal frame {e(1)i }1�i�n ⊂ Tp1M1, we have a natural isometry from R

n

to Tp1M1. Denote the ball of radius r in R
n by Dr. Denote by dθ2 the metric

on Sn−1 induced from the inclusion Sn−1 ↪→ R
n. The exponential map

expg1
p1

: R
n ∼= Tp1M1 →M1

gives a diffeomorphism from Dr ⊂ R
n to Br(p1) for small r > 0, and gives a

local coordinate system (r, θ) around p1.
By careful computations (see [27] for details), Micallef and Wang showed

that, there exist small positive numbers r0 and ρ0 depending only on g1, such
that for every ρ < ρ0, we can always find a function u : [0,+∞) → [0,+∞)
satisfying the following conditions:

1) the metric g′1(x) = u2(r(x))g1(x) is a complete metric with PIC on
M1 \ {p1};

2) g′1 coincides with g1 outside Br0(p1);
3) there is a small neighborhood U1 ⊂ M1 of p1 such that g′1 on U1 \ {p1}

is C2-close to the product metric ds2 + ρ2dθ2 on Sn−1 × (0,+∞).
Since g′1 on U1 \ {p1} is C2-close to the product metric, we can slightly modify
g′1 on U1 \ {p1} to obtain a metric g̃1 with PIC such that g̃1 is just g1 outside
Br0(p1) and the product metric ds2 + ρ2dθ2 near p1, where s = −ρ log r.

Suppose that we have another n-dimensional manifold (M2, g2) with PIC.
Fix a point p2 ∈ M2 and an orthonormal frame {e(2)i }1�i�n ⊂ Tp2M2 at p2.
This gives a geodesic polar coordinate system (r, θ) around p2 induced by the
exponential map and the frame {e(2)i }1�i�n. We can do the same construction
as above to obtain a new metric g̃2 on M2 \ {p2} such that g̃2 has PIC, which
coincides with g2 outside a small ball of p2 and is a product metric ds2 + ρ2dθ2

on a punctured small neighborhood U2 of p2, where s = −ρ log r.
Note that we can choose the same small number ρ in the both constructions

on M1 and M2.
We cut the half-cylinder ends from both (M1\{p1}, g̃1) and (M2\{p2}, g̃2) for

fixed large s = s0. Note that the boundaries of the remaining parts are isometric.
Fix an isometry f of the boundaries, and glue the two truncated manifolds
together by f along the boundaries. It results in a manifold #f ;p1,p2(M1,M2)
with a metric #f ;p1,p2(g1, g2) of PIC. �

The gluing map f in the above proof actually is a diffeomorphism between
two geodesic spheres (of original metrics) around p1 and p2. In the polar
coordinates, f can be viewed as an element in Isom(S3). If there is no
danger of confusion, we use the notations #f ;p1,p2(M1,M2), #f ;p1,p2(g1, g2),
where f ∈ Isom(S3), to denote above constructed manifolds and metrics,
respectively, without mentioning the choices of polar coordinates.
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The resulting metric #f ;p1,p2(g1, g2) in the above construction is not unique.
From the argument in [27], we know that it depends on our choice of the small
parameters r0, ρ, the function u, the bases {e(1)i }, {e(2)i }, and the isometry f, but
the resulting metrics with different but continuous choices of these parameters
are isotopic to each other modulo diffeomorphisms. Furthermore, it is not hard
to see that, the connected sum construction can be applied to a continuous
family of metrics with PIC. Moreover, it can be generalized to orbifold
connected sums. The readers can refer to [6, Remark 2.2] for a precise
description. In conclusion, we have the following result.

Proposition 4.3 The M-W connected sum can be performed continuously on
orbifolds such that the resulting metrics have PIC and vary continuously with
the parameters.

We call such a procedure an M-W connected sum for short.
4.1.2 Standard metrics
Let hstd = ds2 + dθ2 be the standard cylindrical metric on S3 × R, where dθ2

is the metric induced from the inclusion S3 ⊂ R
4. Let G be a cocompact fixed-

point-free discrete subgroup of the isometric group of (S3×R, hstd). We call the
quotient metric on (S3 × R)/G, denoted also by hstd, a standard metric. For a
manifold M and a diffeomorphism Ψ: M → (S3 × R)/G, we also call Ψ∗(hstd)
a standard metric on M.

In [6, Section 3.1], we have recalled some basic facts on the geometries
on (S3 ×R)/G : they are diffeomorphic either to S3/Γ×f S

1 or #f (S4/〈Γ, τ̂1〉,
S4/〈Γ, τ̂2〉). Note that manifolds diffeomorphic to #f (S4/〈Γ, τ̂1〉, S4/〈Γ, τ̂2〉) are
not orientable.

Let hround be the standard metric of S4 induced by the inclusion S4 ↪→ R
5.

If Γ̃ is a discrete subgroup of isometries of (S4, hround), we will also call the
induced metric on S4/Γ̃ a standard metric, and still denote it by hround. For
an orbifold M and a diffeomorphism Ψ: M → S4/Γ̃, we also call Ψ∗(hround) a
standard metric on M.

In conclusion, we have defined standard metrics on manifolds or orbifolds
diffeomorphic to one of the following types:

(1) S3/Γ ×f S
1, #f (S4/〈Γ, τ̂1〉, S4/〈Γ, τ̂2〉);

(2) S4/Γ̃.

4.1.3 Canonical metrics
Let p1, p2, . . . , pk, q1, q2, . . . , ql be (k + l) distinct points on (S4, hround). Let
(Mi, hi), i = 1, 2, . . . , k, be compact Riemannian manifolds isometric to
(S3 × R)/Gi with standard metrics, with p′i ∈ Mi. Let (Xj , h̃j), j = 1, 2, . . . , l,
be Riemannian orbifolds isometric to spherical orbifolds S4/Γj with
isolated singularities and with standard metrics, where Γj ⊂ O(5), Γj �= {1}.
Let q′j ∈ Xj be smooth points of Xj for j = 1, 2, . . . , l. If we perform the M-W
connected sum operation on (S4, hround, p1, p2, . . . , pk, q1, q2, . . . , ql) with those
(Mi, hi, p

′
i) and (Xj , h̃j , q

′
j), we obtain a Riemannian orbifold (X̂, ĝ). Clearly, the
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resulting metric ĝ has PIC. The sphere (S4, hround) in the above construction
will be called a principal sphere. (Mi, hi) and (Xj , h̃j) in the above construction
will be called subcomponents of X̂. The decomposition of X̂ as the connected
sum of subcomponents of above types is called a canonical decomposition of X̂.

Suppose that (M,g) is a Riemannian orbifold. We call g a canonical metric
on M if there is a diffeomorphism Ψ: M → X̂ such that Ψ∗(ĝ) = g, where
(X̂, ĝ) is a Riemannian orbifold constructed as above.

Because of the presence of the principal sphere, a canonical metric on
(S3 × R)/G (or S4/Γ with Γ �= {1}) is not isometric to the standard metric
induced from the (S3 × R, hstd) (or (S4, hround)).

The orbifolds admitting a canonical decomposition will naturally appear in
the process of Ricci flow with surgery.

We remark that given a manifold M, a priori, there might exist different
canonical metrics on M. One of the reasons is that if we have two different
diffeomorphisms Ψ1 : M → X̂1, Ψ2 : M → X̂2, such that (X̂1, ĝ1), (X̂2, ĝ2)
are Riemannian orbifolds with canonical metrics constructed as above, then
the pull-backs Ψ∗

1(ĝ1) and Ψ∗
2(ĝ2) are both canonical metrics on M, but we

even do not know whether topologically X̂1 and X̂2 have the same canonical
decompositions, i.e., the subcomponents of the decompositions of X̂1 and X̂2

are diffeomorphic to each other up to a reordering.

4.2 Proof of Theorem 4.2

The proof of Theorem 4.2 is lengthy and detailed. Except for Ricci flow, we need
some other techniques to deform the metrics to standard ones or canonical ones.
For example, we use the conformal method. The conformal method also plays
an important role in the work of Weyl [36] and Marques [24]. The following
proposition and its proof give a model for applying the conformal method.

Proposition 4.4 [6, Proposition 4.1] Let (M,g) be a compact four-orbifold
with PIC. Then the space PIC(M) ∩ {g̃ | g̃ = u2g, u ∈ C∞(M), u > 0} of
metrics is star-shaped, hence contractible.

Proof Recall that we have defined σg in (3.7), and we know that σg > 0 is
equivalent to PIC.

Let g̃ = u2g, u ∈ C∞(M), u > 0. By (3.9), we have

σg̃ = u−3(−6Δu+ σgu).

Denote
uμ = 1 − μ+ μu, gμ = u2

μg, σμ = σgµ , μ ∈ [0, 1].

Then g0 = g, g1 = g̃. Suppose that both σg and σg̃ are positive. Then we have

u3
μσμ = μ(−6Δu+ σgu) + (1 − μ)σg > 0.

Hence, every gμ has PIC and we finish the proof. �
Making use of the properties of M-W connected sum (Proposition 4.3) and

conformal method as above, we have the following results.
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Proposition 4.5 [6, Proposition 4.7] Let (M,g) be a Riemannian orbifold
isometric to one of S4/G, S3/Γ×f S

1, or S4/〈Γ, τ̂1〉#fS
4/〈Γ, τ̂2〉, equipped with

a standard metric. Suppose that (M̃, g̃) is the canonical metric obtained from
an M-W connected sum of (M,g) with a sphere (S4, hround). Then g̃ is isotopic
to g modulo a diffeomorphism.

Proposition 4.6 [6, Proposition 4.12] Suppose that (X1, g1), (X2, g2),
. . . , (Xl, gl) are orbifolds endowed with canonical metrics. If (X, g) is the
Riemannian orbifold obtained by performing M-W connected sums between them
(we allow performing connected sums on some Xi with itself), then g is isotopic
to a canonical metric on X.

The readers can refer to [6, Section 4] for proofs of the above propositions.
In [6], M-W connected sum is served as the inverse process of the surgery

in Ricci flow. The influence of compositions of M-W connected sums and
Hamilton’s surgeries on the metrics needs a careful study. We summarize it
in the following proposition.

Proposition 4.7 (see [6, Lemma 5.5, Remark 5.6]) Suppose that (M,g) is
a Riemannian orbifold containing a region N which is ε-close to a standard
neck (S3/Γ × (−4, 4), hstd) with ε < ε2, where ε2 is some universal positive
constant. Let ψN : S3/Γ × (−4, 4) → N be the corresponding parametrization,
and let s : N → R be the function such that s(ψN (θ, t)) = t. Suppose that we
perform Hamilton’s surgery along the central slice of N and then perform M-W
connected sum along the tips of surgery caps, where we use a suitable choice
of the isotopic class of the gluing map f ∈ Isom(S3/Γ) in the M-W connected
sum such that the resulting orbifold is diffeomorphic to M. Denote the resulting
orbifold by (M ′, g′) and the diffeomorphism by Ψ: M → M ′. Then Ψ∗(g′) is
isotopic to g, and the isotopy preserves g outside s−1([−3, 3]).

The idea of the proof of Proposition 4.7 is as follows. We assume that Γ is
trivial for simplicity. Since the metric h = ψ∗

Ng is sufficiently close to hstd on
S3 × (−4, 4), the linear homotopy

hμ = μhstd + (1 − μ)h, μ ∈ [0, 1],

provides an isotopy between h and hstd.We perform Hamilton’s surgery on (S3×
(−4, 4), hμ) uniformly at the central slice, and then perform M-W connected
sum at the tips of the added caps uniformly, these procedures provide an isotopy.
Note that performing Hamilton’s surgery and then performing M-W connected
sum at the tips of the added caps on (S3 × (−4, 4), hstd) gives a rotationally
symmetric metric on S3 × (−4, 4), which is isotopic to hstd by the conformal
method in Proposition 4.4, and then isotopic to h via h1−μ. This is sufficient
to prove Proposition 4.7.

In the surgery process, we cut or glue something to change the topology
and metrics of the original orbifolds. Since we are concerned not only with
the topology but also the geometry of the manifold M, we have to choose the
parameters in the surgery process more carefully, and investigate closely the
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geometric structure of the pieces left by surgeries. See [6, Section 6] for some
refined properties of Ricci flow with surgery.

Combining Propositions 4.5 to 4.7 with the properties of Ricci flow with
surgery obtained in [6], we derive the following proposition.

Proposition 4.8 [6, Proposition 7.1] Suppose that (X, g) is a compact
connected four-orbifold with isolated singularities and with PIC such that every
point x ∈ X has an ε-canonical neighborhood. Then g is isotopic to a canonical
metric, and X is diffeomorphic to one of the following orbifolds:

1) S4/Γ or S4/〈Γ, τ̂ 〉, where Γ ⊂ SO(4) (Γ may be trivial);
2) (S3 × R)/G, where G is a cocompact fixed point free discrete isometric

subgroup of (S3 × R, hstd);
3) #(S4/{1, ζ}, S4/{1, ζ}) or #(S4/{1, ζ},RP4), where the connected sum

is performed at smooth points.

The idea in the proof of Proposition 4.8 is as follows. Since every point
x ∈ X has an ε-canonical neighborhood (see [6, Section 6.3] for description
on ε-canonical neighborhoods), we can suitably perform Hamilton’s surgeries
on (X, g) to decompose it into finitely many pieces which is isotopic to some
standard ones. Perform suitable M-W connected sums to glue these pieces
together, and then by Propositions 4.6 and 4.7, we are not hard to prove that
g itself is isotopic to a canonical metric. See [6, Section 7] for details.

Now, we begin to prove Theorem 4.2.

Proof of Theorem 4.2 Let g0 be a PIC metric on M. By Theorem 2.4, there
exist two sequences of non-increasing small positive numbers {ri}, {δi}, and a
Ricci flow with surgery on orbifolds with at most isolated singularities
(Xi, gi(t))t∈[ti,ti+1), 0 � i � p, such that

1) X0 = M and g0(0) = g0;
2) the flow becomes extinct at a finite time T = tp+1;
3) for every 0 � i � p, the flow (Xi, gi(t))t∈[ti,ti+1) satisfies the ε-canonical

neighborhood assumption with parameter ri and the pinching assumption;
4) for every 0 � i � p− 1, (Xi+1, gi+1(ti+1)) is obtained from

(Xi, gi(t))t∈[ti,ti+1) by doing surgery at singular time ti+1 with parameters ri
and δi.

Let Ai be the assertion that the restriction of gi(ti) to each component of
Xi is isotopic to a canonical metric. We will prove the theorem by backward
induction on i.

First, since the flow becomes extinct at T, at a time t′ ∈ [tp, T ) sufficiently
close to T, every point is covered by a canonical neighborhood. By Proposition
4.8, each connected component in (Xp, gp(t′)) is isotopic to a canonical metric.
By the Ricci flow equation, gp(tp) is isotopic to gp(t′). Hence, on each connected
component of Xp, gp(tp) is isotopic to a canonical metric and Ap is proven.

In the following, providing Ai+1 is true for some 0 � i � p− 1, we will prove
that Ai is true. Let us recall how the Ricci flow can be extended across the
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time ti+1. Denote
gi(t−i+1) = lim

t↗ti+1

gi(t).

Then gi(t−i+1) is a metric with unbounded curvature on Xi.
Note thatXi may contain several compact connected components. For those

components of Xi with positive curvature operator at time ti+1, we know that
the metrics gi(t−i+1) on these components are isotopic to spherical metrics (see
[17]). Denote the union of the remaining components of Xi by Ω. Let ρ = δiri,
and let

Ωρ =
{
x ∈ Ω | lim

t→ti+1

R(x, t) � ρ−2
}
.

Then every point of Ω outside Ωρ has an ε-neck or ε-cap neighborhood. There
are finitely many ε-horns, denoted by Hj, 1 � j � k, which are connected
components of Ω \ Ωρ with one end in Ωρ and another end has unbounded
curvature. Each of these ε-horns is diffeomorphic to S3/Γ × (0, 1) for some
Γ ⊂ SO(4). On each ε-horn Hj, find a δi-neck Nj with center xj where the
curvature � hi

−2, where h ∈ (0, δiρi) is the constant as in [7, Proposition
4.4]. Denote the center slice of Nj by Sj . Let Ω̃ be the union of the connected
components of Ω \ (∪Sj) with finite curvature at ti+1 for the metric gi(t−i+1),

and denote Ω̂ = Ω \ Ω̃. Now, we cut off the δi-neck Nj along Sj, and glue back
surgery caps to the boundaries of Ω̃. Then we obtain (Xi+1, gi+1(ti+1)).

On the other hand, for t′ ∈ (ti, ti+1) sufficiently close to ti+1, the family of
metrics (1−μ)gi(t′)+μgi(t−i+1) (μ ∈ [0, 1]) on Ω̃∪(∪jNj) have positive isotropic
curvature and has δi-neck structures on each Nj. Gluing surgery caps at the
slices Sj on this family of metrics, we know that (Xi+1, gi(t′)surg) is isotopic
to (Xi+1, gi+1(ti+1)). By induction assumption Ai+1, we conclude that on each
connected component of Xi+1, gi(t′)surg is isotopic to a canonical metric.

Moreover, at time t′, if we glue back surgery caps to the boundary necks of
Ω̂, then we get a (possibly disconnected) closed orbifold (Yi+1, gi(t′)surg). Since
every point of Yi+1 has a canonical neighborhood, by Proposition 4.8, on each
connected component of Yi+1, gi(t′)surg is isotopic to a canonical metric.

Finally, by Proposition 4.7, if we perform suitable M-W connected sums at
the tips of the surgery caps of (Xi+1, gi(t′)surg) and (Yi+1, gi(t′)surg), then the
resulting metric will be isotopic to gi(t′) modulo a diffeomorphism. Hence, the
metric gi(t′) on Ω is isotopic to a canonical metric by Proposition 4.6. By the
Ricci flow equation, gi(ti) is isotopic to gi(t′). This proves Ai.

Repeating the above procedure, we know that g0 is isotopic to a canonical
metric on M. Since M is itself a manifold, we know that there is no subcom-
ponent in the canonical decomposition of M containing orbifold singularities.
Therefore, every subcomponent is either diffeomorphic to RP4 or (S3 × R)/G.
The proof is completed. �
4.3 Proof of Theorem 4.1

Let M be a compact orientable four-manifold, and let g1, g2 be two different
metrics on M with PIC. By Theorem 4.2, there are two canonical metrics
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g̃1, g̃2 ∈ PIC(M) such that gi is isotopic to g̃i for i = 1, 2. Let

S4#M1#M2 · · ·#Mk, S4#N1#N2 · · ·#Nl

be the canonical decompositions associated to g̃1 and g̃2, respectively, where Mi

and Ni are diffeomorphic to manifolds of the form S3/Γ ×f S
1. We first show

that this decomposition is unique in the fundamental group level.

Proposition 4.9 [6, Theorem 8.1] Suppose that (M,g) admits two canonical
decompositions S4#M1#M2 · · ·#Mk and S4#N1#N2 · · ·#Nl. Then k = l, and
there is a permutation σ ∈ Sk such that π1(Mi) ∼= π1(Nσ(i)) for all 1 � i � k.

The observation in the proof of Proposition 4.9 is that an orientable
manifold diffeomorphic to S3/Γ×f S

1 has a freely indecomposable fundamental
group. Thus, we can apply Kurosh’s theorem on the uniqueness of free product
decomposition of groups. See [6, Section 8] for details.

When k = 0, M is diffeomorphic to S4. By Proposition 4.5, the canonical
metric on S4 is isotopic to the round metric, and thus, the conclusion of
Theorem 4.1 is clearly true in this case. The k = 1 case was solved in [6],
whose proof is omitted here.

Proposition 4.10 [6, Proposition 8.4] Let M be an orientable four-manifold
equipped with two canonical metrics g̃1, g̃2 and the associated canonical
decompositions S4#M1 and S4#N1 have only one nontrivial piece. Then
there is a diffeomorphism Ψ ∈ Diff(M) such that g̃2 is isotopic to Ψ∗(g̃1). In
particular, PIC(M)/Diff(M) is path-connected.

When k � 2, we have the following proposition.

Proposition 4.11 Let M be an orientable manifold diffeomorphic to a finite
connected sum of S3/Γi × S1, 1 � i � k, where Γi is either the trivial group
or a non-cyclic discrete isometric group of S3. Then PIC(M)/Diff(M) is path-
connected.

Proof As before, let g1, g2 ∈ PIC(M). By Theorem 4.2, there are two canonical
metrics g̃1, g̃2 ∈ PIC(M) such that gi is isotopic to g̃i for i = 1, 2. Suppose that
Ψi : M → X̂i is a diffeomorphism such that g̃i = Ψ∗

i (ĝi) (i = 1, 2), where (X̂1, ĝ1)
is obtained from M-W connected sum between Mj (1 � j � k) equipped with
standard metric hj and S4 with round metric, while (X̂2, ĝ2) is obtained from
M-W connected sum between Nj (1 � j � k) equipped with standard metric
h′j and S4 with round metric. We require that when doing M-W connected
sum, the orientation on Mj are consistent with the orientation of X̂1, while the
orientation on Nj are consistent with the orientation of X̂2.

Since M is diffeomorphic to a finite connected sum of S3/Γi ×S1, we know

π1(M) ∼= (Γ1 × Z) ∗ (Γ2 × Z) ∗ · · · ∗ (Γk × Z).

From Theorem 4.9, we may assume

π1(Mj) ∼= π1(Nj) ∼= Γj × Z, 1 � j � k.
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Note that if two spherical 3-manifolds F1, F2 have isomorphic fundamental
groups, and π1(F1) ∼= π1(F2) is either trivial or non-cyclic, then F1, F2

are diffeomorphic to each other (see [25]). Combining these facts with [35,
Proposition 8], we know that both Mj and Nj are diffeomorphic to S3/Γj ×S1.

From Proposition 4.10, we know that both hj and h′j are isotopic to some
pull-back metrics from (S3/Γj×S1, gj), where gj is the standard product metric
on S3/Γj ×S1. Without loss of generality, we may assume that both hj and h′j
are pull-back metrics from (S3/Γj ×S1, gj). Thus, there is an isometry between
(Mj , hj) and (Nj , h

′
j). Note that there is an orientation reversing isometry on

(S3/Γj × S1, gj) defined by

χ : S3/Γj × S1 → S3/Γj × S1,

(θ, s) �→ (θ,−s).
Hence, there is always an orientation preserving diffeomorphism ϕj : Mj → Nj

such that ϕ∗
j (h

′
j) = hj for j = 1, 2, . . . , k.

From Proposition 4.3, during making M-W connected sums, these ϕj ’s may
be glued together to give a global diffeomorphism Φ: X̂1 → X̂2 such that Φ∗(ĝ2)
is isotopic to ĝ1. From this, we know that (Ψ−1

2 ΦΨ1)∗(g̃2) is isotopic to g̃1.
Hence, (Ψ−1

2 ΦΨ1)∗(g2) is isotopic to g1. The proof is completed. �
Theorem 4.1 follows from Propositions 4.10 and 4.11.
Finally, we remark that the result of Theorem 4.1 does not include all

orientable four-manifolds with PIC(M) �= ∅. We conjecture that the
conclusion of Theorem 4.1 should hold for all orientable four-manifolds
admitting metrics with PIC.
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14. Gromov M, Lawson H B Jr. Positive scalar curvature and the Dirac operator on
complete Riemannian manifolds. Publ Math Inst Hautes Études Sci, 1983, 58: 83–
196

15. Gursky M J, LeBrun C. Yamabe invariants and Spinc structures. Geom Funct Anal,
1998, 8: 965–977

16. Hamilton R. Three-manifolds with positive Ricci curvature. J Differential Geom, 1982,
17: 255–306

17. Hamilton R. Four-manifolds with positive curvature operator. J Differential Geom,
1986, 24: 153–179

18. Hamilton R. Four-manifolds with positive isotropic curvature. Comm Anal Geom,
1997, 5: 1–92

19. Hamilton R. Three-orbifolds with positive Ricci curvature. In: Collected Papers on
Ricci Flow. Ser Geom Topol, Vol 37. Somerville: Int Press, 2003, 521–524

20. Hitchin N. Harmonic spinors. Adv Math, 1974, 14: 1–55
21. Kapovitch V, Petrunin A, Tuschmann W. Non-negative pinching, moduli spaces and

bundles with infinitely many souls. J Differential Geom, 2005, 71: 365–383
22. Kreck M, Stolz S. Nonconnected moduli spaces of positive sectional curvature metrics.

J Amer Math Soc, 1993, 6: 825–850
23. Lohkamp J. The space of negative scalar curvature metrics. Invent Math, 1992, 110:

403–407
24. Marques F C. Deforming three-manifolds with positive scalar curvature. Ann of Math

(2), 2012, 176: 815–863
25. McCullough D. Isometries of elliptic 3-manifolds. J Lond Math Soc (2), 2002, 65: 167–

182
26. Micallef M J, Moore J D. Minimal two-spheres and the topology of manifolds with

positive curvature on totally isotropic two-planes. Ann of Math (2), 1988, 127: 199–227
27. Micallef M J, Wang M. Metrics with nonnegative isotropic curvature. Duke Math J,

1993, 72: 649–672
28. Nguyen H T. Isotropic curvature and the Ricci flow. Int Math Res Not IMRN, 2010,

2010(3): 536–558
29. Rosenberg J. Manifolds of positive scalar curvature: a progress report. In: Surv Differ

Geom, Vol 11. Somerville: Int Press, 2007, 259–294
30. Rosenberg J, Stolz S. Metrics of positive scalar curvature and connections with surgery.

In: Surveys on Surgery Theory: Papers Dedicated to C. T. C. Wall, Vol 2. Ann of
Math Stud, Vol 149. Princeton: Princeton Univ Press, 2001, 353–386

31. Ruberman D. Positive scalar curvature, diffeomorphisms and the Seiberg-Witten
invariants. Geom Topol, 2001, 5: 895–924

32. Schoen R. Conformal deformation of a Riemannian metric to constant scalar curvature.
J Differential Geom, 1984, 20: 479–495

33. Schoen R. Minimal submanifolds in higher codimension. Mat Contemp, 2006, 30: 169–
199

34. Scott P. The geometries of 3-manifolds. Bull Lond Math Soc, 1983, 15: 401–487
35. Ue M. Geometric 4-manifolds in the sense of Thurston and Seifert 4-manifolds II.

J Math Soc Japan, 1991, 43: 149–183
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