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Abstract This paper is concerned with the smoothness (in the sense of Meyer-
Watanabe) of the local times of Gaussian random fields. Sufficient and
necessary conditions for the existence and smoothness of the local times,
collision local times, and self-intersection local times are established for a large
class of Gaussian random fields, including fractional Brownian motions,
fractional Brownian sheets and solutions of stochastic heat equations driven
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1 Introduction

In recent years, Malliavin calculus has been shown to be very useful in stochastic
analysis of Gaussian processes (cf. [21]). In particular, many authors have
studied the chaos expansion and smoothness in the sense of Meyer-Watanabe of
local times and intersection local times of Brownian motion, fractional
Brownian motion and related self-similar Gaussian processes. See [4,9,11–14,
16–18,22,24,25,34,35]. However, there have been only a few results on
smoothness of local times of Gaussian random fields due to their more
complicated dependence structures. We refer to [15,17] for the case of Brownian
sheet and to [7,8] for results on fractional Brownian sheets.
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The main purpose of this paper is to study the smoothness in the sense of
Meyer-Watanabe of the local times of a large class of Gaussian random fields,
including fractional Brownian sheets and solutions of stochastic heat equations
driven by space-time Gaussian noise. More specifically, let X = {X(t), t ∈ R

N}
be a Gaussian random field with values in R

d defined on a probability space
(Ω,F , P) by

X(t) = (X1(t),X2(t), . . . ,Xd(t)), ∀ t ∈ R
N . (1.1)

We will call X an (N, d)-Gaussian random field. We assume that the
coordinate fields X1,X2, . . . ,Xd are independent copies of a real-valued,
centered Gaussian random field X0 = {X0(t), t ∈ R

N} with continuous
covariance function

R(s, t) = E[X0(s)X0(t)].

Let H = (H1,H2, . . . ,HN ) ∈ (0, 1)N be a fixed vector. For a, b ∈ R
N with

aj < bj (j = 1, 2, . . . , N), let

I = [a, b] :=
N∏

j=1

[aj, bj ] ⊆ R
N

be the compact interval (or a rectangle). For simplicity, we will take I = [0, 1]N

throughout this paper. We further assume that X0 = {X0(t), t ∈ R
N} satisfies

the following conditions:
(C1) there exists a positive and finite constant c1 such that

E[(X0(s) − X0(t))2] � c1

N∑
j=1

|sj − tj |2Hj , ∀ s, t ∈ I; (1.2)

(C2) there exists a constant c2 > 0 such that for all s, t ∈ I,

Var(X0(t) | X0(s)) � c2

N∑
j=1

min{|sj − tj|2Hj , |tj |2Hj}, (1.3)

where Var(X0(t) | X0(s)) denotes the conditional variance of X0(t) given X0(s).
The class of Gaussian random fields that satisfy conditions (C1) and (C2)

is large. When N = 1, it includes fractional Brownian motion, bi-fractional
Brownian motion and related Gaussian processes. For N � 2, this class contains
fractional Brownian sheets (cf. [2,29] for verification), solutions to stochastic
heat equation driven by space-time Gaussian noises [6,20,26,28] and many more
(cf. [32]).

The purpose of this paper is to study the existence and smoothness (in
the sense of Meyer-Watanabe) of the local times and the self-intersection local
times of Gaussian random fields that satisfy conditions (C1), (C2), and/or (C3)
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below. Our main results in Sections 2 and 3 unify and extend the previous
results in the references mentioned at the beginning of this section. We should
also mention that Hölder regularities of local times and their applications to
sample path properties of Gaussian random fields have been studied by several
authors, including [1,2,3,5,10,23,29–33].

The rest of this paper is organized as follows. In Section 2, we provide a
sufficient and necessary condition for the existence, and a sufficient condition
for the smoothness (in the sense of Meyer-Watanabe) of the local time at any
level x ∈ R

d for a large class of Gaussian random fields. We also prove that
this condition for the smoothness is also necessary for the local times at x = 0.
We then apply the conditions to prove the existence and smoothness results for
the collision local times and the intersection local times for two independent
anisotropic Gaussian random fields.

Section 3 is concerned with self-intersection local times. We establish a
sufficient and necessary condition for the existence and smoothness of self-
intersection local times on two disjoint intervals. More interestingly, we also
consider the analogous problems on two intersecting intervals. We will see that
the results in the intersecting cases are different from and more difficult than
those in the disjoint case.

Throughout this paper, we will use c to denote unspecified positive finite
constants which may be different in each appearance. More specific constants
are numbered as c1, c2, . . . .

2 Existence and smoothness of local times

This section is concerned with the existence and smoothness of the local times
of a Gaussian random field X in the sense of Meyer-Watanabe. We start
by recalling the definition of chaos expansion, which is an orthogonal
decomposition of L2(Ω, P). We refer to [11,19,21,22] and references therein for
more information.

Let Ω be the space of continuous R
d-valued functions ω on I. Then Ω is a

Banach space with respect to the sup norm. Let F be the Borel σ-algebra on
Ω. Let P be a probability measure on (Ω,F ), and let E denote the expectation
on this probability space. Denote by L2(Ω, P) the space of all real (or complex)
valued functional on Ω such that

E(F 2) =
∫

Ω
|F (ω)|2P(dω) < +∞.

Let
Y = {(Y1(t), Y2(t), . . . , Yd(t)), t ∈ I}

be an (N, d)-Gaussian random field, where Y1, Y2, . . . , Yd are d independent
copies of some centered, real-valued Gaussian random field Y0 on I. Let pn(y1, y2,
. . . , yk) be a polynomial of degree n of k variables y1, y2, . . . , yk. Then, for any
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t1, t2, . . . , tk ∈ I and i1, i2, . . . , ik ∈ {1, 2, . . . , d}, pn(Yi1(t
1), Yi2(t

2), . . . , Yik(tk))
is called a polynomial functional of Y. Let Pn be the completion with respect
to the L2(Ω, P) norm of the set of all polynomials of degree less than or equal
to n. Then Pn is a subspace of L2(Ω, P). Let Cn be the orthogonal complement
of Pn−1 in Pn. Then L2(Ω, P) is the direct sum of Cn, i.e.,

L2(Ω, P) =
+∞⊕
n=0

Cn.

Namely, for any functional F ∈ L2(Ω, P), there exists a sequence {Fn}+∞
n=0 with

Fn ∈ Cn, such that

F =
+∞∑
n=0

Fn.

This decomposition is called the chaos expansion of F, and Fn is called the n-th
chaos of F. Clearly,

F0 = E(F ), E(|F |2) =
+∞∑
n=0

E(|Fn|2).

In Malliavin Calculus, the space of ‘smooth’ functions in the sense of Meyer-
Watanabe (cf. [21,27]) is defined by

D1 :=
{

F ∈ L2(Ω, P), F =
+∞∑
n=0

Fn,

+∞∑
n=0

nE(|Fn|2) < +∞
}

.

For F ∈ L2(Ω, P) with a chaos expansion F =
∑

Fn, define the operator Γu

with u ∈ [0, 1] by

ΓuF :=
+∞∑
n=0

unFn, (2.1)

and set
ΘF (u) := Γ√

uF.

Clearly, ΘF (1) = F. Define

ΦΘF
(u) :=

d
du

E(|ΘF (u)|2).

Then we have

ΦΘF
(u) =

+∞∑
n=1

nun−1
E(|Fn|2).

In the following, we provide several technical lemmas which will be useful
for proving the existence and smoothness of local times. Lemma 2.1 is similar
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to [3, Lemma 8.6] whose proof is elementary. Lemmas 2.2 and 2.3 are from Wu
and Xiao [30].

Lemma 2.1 Let α and β be positive constants. Then, for all A ∈ (0, 1),

∫ 1

0

1
(A + tα)β

dt �

⎧⎪⎨
⎪⎩

A−(β− 1
α ), αβ > 1,

log(1 + A−1/α), αβ = 1,

1, αβ < 1.

(2.2)

In the above, f(A) � g(A) means that the ratio f(A)/g(A) is bounded from
below and above by positive constants that do not depend on A ∈ (0, 1).

Lemma 2.2 Let α and β be positive constants such that αβ � 1.
(i) If αβ > 1, then there exists a constant c3 > 0 whose value depends on

α and β only such that for all A ∈ (0, 1), r > 0, u∗ ∈ R, all integers n � 1, and
all distinct u1, u2, . . . , un ∈ O(u∗, r), we have

∫
O(u∗,r)

du

(A + min1�j�n |u − uj |α)β
� c3nA−(β− 1

α
). (2.3)

where O(u∗, r) denotes a ball centered at u∗ with radius r.

(ii) If αβ = 1, then for any κ ∈ (0, 1), there exists a constant c4 > 0 whose
value depends on α, β, and κ only such that for all A ∈ (0, 1), r > 0, u∗ ∈ R,
all integers n � 1, and all distinct u1, u2, . . . , un ∈ O(u∗, r), we have

∫
O(u∗,r)

du

(A + min1�j�n |u − uj |α)β
� c4n log

[
e +

( r

n
A−1/α

)κ]
. (2.4)

Lemma 2.3 Let β ∈ (0, 1) be a constant. Then there exists a positive constant
c5 such that the following statements hold.

(i) For all r > 0, u∗ ∈ R, all integers n � 1, and all distinct u1, u2, . . . , un ∈
O(u∗, r), we have

∫
O(u∗,r)

du

min1�j�n |u − uj|β � c5n
βr−(β−1). (2.5)

(ii) For all constants r,M > 0, all u∗ ∈ R, integers n � 1, and all distinct
u1, u2, . . . , un ∈ O(u∗, r), we have

∫
O(u∗,r)

log
[
e + M

(
min

1�j�n
|u − uj|

)−β]
du � c5r log

[
e + M

( r

n

)−β]
. (2.6)

2.1 General results

We will apply the following proposition and the method of its proof to study
the existence and smoothness of the local times of X.
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Proposition 2.4 Let X = {X(t), t ∈ I} be an (N, d)-Gaussian field defined
by (1.1), and assume that X0 satisfies conditions (C1) and (C2) with index
H ∈ (0, 1)N . Then, for any γ > 0, λ � 0,

∫
I2

|[E(X0(s)X0(t))]|λ
[detCov(X0(s),X0(t))]γ/2

dsdt < +∞ (2.7)

if and only if
N∑

�=1

1
H�

> γ. (2.8)

Proof First, we prove the sufficiency. By (C2), we have

Var(X0(s)) � Var
(
X0(s)

∣∣ X0

(s

2

))
� c22−2

N∑
j=1

s
2Hj

j , ∀ s ∈ I. (2.9)

This and the fact that

detCov(X0(s),X0(t)) = Var(X0(s))Var(X0(t) | X0(s)) (2.10)

imply

detCov(X0(s),X0(t)) � c

( N∑
j=1

s
2Hj

j

)( N∑
j=1

min{|sj − tj |2Hj , t
2Hj

j }
)

. (2.11)

On the other hand, it follows from the Cauchy-Schwarz inequality and the
continuity of the covariance function R(s, t) that

|[E(X0(s)X0(t))]|λ � c, ∀ s, t ∈ I. (2.12)

Hence, for proving the sufficiency, it suffices to verify that if (2.8) is satisfied,
then ∫

I2

dsdt

(
∑N

j=1 s
2Hj

j )γ/2(
∑N

j=1 min{|sj − tj|2Hj , t
2Hj

j })γ/2
< +∞. (2.13)

To estimate the integral in (2.13), we will assume that

0 < H1 � H2 � · · · � HN < 1 (2.14)

and integrate in the order of dt1,dt2, . . . ,dtN , ds1,ds2, . . . ,dsN . When (2.8) is
satisfied, there exists k ∈ {1, 2, . . . , N} such that

k−1∑
j=1

1
Hj

� γ <

k∑
j=1

1
Hj

. (2.15)
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Note that ∫
I

dt1dt2 · · · dtN

(
∑N

j=1 min{|sj − tj|2Hj , t
2Hj

j })γ/2

�
∫

I

dt1dt2 · · · dtN

(
∑k

j=1 min{|sj − tj|2Hj , t
2Hj

j })γ/2
. (2.16)

We distinguish two cases:
(i)

∑k−1
j=1

1
Hj

< γ <
∑k

j=1
1

Hj
,

(ii)
∑k−1

j=1
1

Hj
= γ <

∑k
j=1

1
Hj

,

and show that the last integral in (2.16) is bounded by a constant that is
independent of s ∈ I.

Case (i). If k = 1, then H1γ < 1. We apply Lemma 2.3 (i) to derive
∫

I

dt1dt2 · · · dtN

(
∑k

j=1 min{|sj − tj |2Hj , t
2Hj

j })γ/2
�

∫
I

dt1dt2 · · · dtN

(min{|s1 − t1|2H1 , t2H1
1 })γ/2

� c6,

as desired.
If k > 1, then H1γ > 1. We first apply Lemma 2.2 (i) with

α = 2H1, β =
γ

2
, A =

N∑
j=2

min{|sj − tj|2Hj , t
2Hj

j }

to deduce that
∫ 1

0

dt1

(min{|s1 − t1|2H1 , t2H1
1 } +

∑k
j=2 min{|sj − tj|2Hj , t

2Hj

j })γ/2

� c7

(
∑k

j=2 min{|sj − tj|2Hj , t
2Hj

j }) 1
2
(γ− 1

H1
)
, (2.17)

where c7 is a constant which only depends on H1 and γ. By repeatedly using
Lemma 2.2 (i) as in (2.17), after k − 1 steps, we obtain that

∫
I

dt1dt2 · · · dtN

(
∑k

j=1 min{|sj − tj |2Hj , t
2Hj

j })γ/2

� c

∫ 1

0

dtk

(min{|sk − tk|2Hk , t2Hk
k })

1
2
(γ−∑k−1

j=1
1

Hj
)
. (2.18)

Noting that

Hk

(
γ −

k−1∑
j=1

1
Hj

)
< 1,
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by applying Lemma 2.3 (i) to the last integral in (2.18), we see from (2.16) that
in Case (i), ∫

I

dt1dt2 · · · dtN

(
∑N

j=1 min
{|sj − tj|2Hj , t

2Hj

j

}
)γ/2

� c8. (2.19)

Case (ii). Notice that k > 1 in (2.16). We integrate in order of dt1,dt2, . . . ,
dtN and repeatedly apply Lemma 2.2 (i) for k − 2 steps to get∫

I

dt1dt2 · · · dtN

(
∑k

j=1 min{|sj − tj |2Hj , t
2Hj

j })γ/2

� c

∫ 1

0

∫ 1

0

dtk−1 dtk

(
∑k

j=k−1 min{|sj − tj |2Hj , t
2Hj

j })
1
2
(γ−∑k−2

j=1
1

Hj
)
. (2.20)

Note that

Hk−1

(
γ −

k−2∑
j=1

1
Hj

)
= 1.

By applying Lemma 2.2 (ii) with A = min{|sk − tk|2Hk , t2Hk
k } and Lemma 2.3

(ii), we derive
∫ 1

0

∫ 1

0

dtk−1dtk

(
∑k

j=k−1 min{|sj − tj |2Hj , t
2Hj

j })
1
2
(γ−∑k−2

j=1
1

Hj
)

� c

∫ 1

0
log

[
e +

(1
2
(min{|sk − tk|2Hk , t2Hk

k })−
1

2Hk−1

)κ]
dtk

� c log(e + 2Hk−Hk−1), (2.21)

where κ ∈ (0, 1) is a constant and we have used the fact that Hk � Hk−1. It
follows from (2.20) and (2.21) that (2.19) also holds in Case (ii).

Hence, by (2.13) and (2.19), we have∫
I2

dsdt

(
∑N

j=1 s
2Hj

j )γ/2(
∑N

j=1 min{|sj − tj|2Hj , t
2Hj

j })γ/2
� c

∫
I

ds

(
∑N

j=1 s
Hj

j )γ
.

It is elementary to verify, by using Lemma 2.1, that the last integral is finite
provided

∑N
j=1

1
Hj

> γ. This proves (2.13), and thus the sufficiency.

To prove the necessity, we prove that if
∑N

j=1
1

Hj
� γ, then

∫
I2

|[E(X0(s)X0(t))]|λ
[det Cov(X0(s),X0(t))]γ/2

dsdt = +∞. (2.22)

For ε0 ∈ (0, 1/2), let Iε0 := [ε0, 1]N . (2.9) and the uniform continuity of
R(s, t) on I2

ε0
imply that there exists a constant δ0 > 0 such that for all s, t ∈

[ε0, ε0 + δ0]N ,

E(X0(s)X0(t)) � 1
2

E(X2
0 (t)) � c9 > 0. (2.23)
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On the other hand, it follows from (2.10) and condition (C1) that for all s, t ∈ I,

detCov(X0(s),X0(t)) � c

N∑
j=1

|sj − tj |2Hj . (2.24)

By (2.23) and (2.24), we derive∫
I2

|E(X0(s)X0(t))|λ
[det Cov(X0(s),X0(t))]γ/2

dsdt � c

∫
[ε0,ε0+δ0]2N

dsdt

(
∑N

j=1 |sj − tj|Hj )γ
.

By using Lemma 2.1 again, it is elementary to verify that the last integral is
infinite when

∑N
j=1

1
Hj

� γ. This proves the necessity of the proposition. �
In the following, we consider the existence of the local time of a Gaussian

random field satisfying (C1) and (C2). Instead of using a Fourier analytic
argument as in [32] (see [10] for a systematic account), we approximate the
Dirac delta function by the heat kernel

pε(x) =
1

(2πε)d/2
exp

(
− ‖x‖2

2ε

)
, x ∈ R

d, (2.25)

and let

Lε(x, I,X) =
∫

I
pε(X(s) − x)ds

=
1

(2π)d

∫
I

∫
Rd

exp
(
i〈ξ, X(s) − x〉 − ε‖ξ‖2

2

)
dξds. (2.26)

The following is a general result on existence of local times.

Lemma 2.5 Let Y = {(Y1(t), Y2(t), . . . , Yd(t)), t ∈ I} be an (N, d)-Gaussian
random field, where Y1, Y2, . . . , Yd are d independent copies of a centered, real-
valued Gaussian random field Y0 on I. Then, for any y ∈ R

d, as ε → 0,
Lε(y, I, Y ) converges to a limit L(y, I, Y ) in L2(Ω, P) if and only if∫

I2

exp
(
− ‖y‖2

E[(Y0(s) − Y0(t))2]
detCov(Y0(t), Y0(s))

) dsdt

[det Cov(Y0(t), Y0(s))]d/2
< +∞. (2.27)

Proof Let I2d be the identity matrix of order 2d, and let

Γε,d(s, t) = εI2d + Cov(Y (s), Y (t)).

For any y ∈ R
d and ε > 0, Fubini’s theorem and (2.26) imply

E(|Lε(y, I, Y )|2)
=

1
(2π)2d

∫
I2

dsdt

∫
R2d

e−ε(‖ξ‖2+‖η‖2)/2

×E exp(i〈ξ, Y (s) − y〉 − i〈η, Y (t) − y〉)dξdη

=
1

(2π)2d

∫
I2

dsdt

∫
R2d

e−i〈ξ−η,y〉 exp
(
− 1

2
(ξ, η)Γε,d(s, t)(ξ, η)T

)
dξdη

=
1

(2π)2d

∫
I2

exp
(
− 1

2
(y, y)Γ−1

ε,d(s, t)(y, y)T
) dsdt√

det Γε,d(s, t)
. (2.28)
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Since the coordinate processes of Y are independent copies of Y0, we have

det Γε,d(s, t) = [det Γε,1(s, t)]d (2.29)

and

1
2

(y, y)Γ−1
ε,d(s, t)(y, y)T =

‖y‖2(2ε + E[(Y0(s) − Y0(t))2])
det Γε,1(s, t)

, (2.30)

where
Γε,1(s, t) = εI2 + Cov(Y0(s), Y0(t)).

It follows from (2.29), (2.30), and the dominated convergence theorem that

lim
ε→0

E(|Lε(y, I, Y )|2)

=
1

(2π)2d

∫
I2

exp
(
− ‖y‖2

E[(Y0(s) − Y0(t))2]
det Γ0,1(s, t)

) dsdt

[det Γ0,1(s, t)]d/2
. (2.31)

Next, we show that {Lε(y, I, Y ), ε > 0} is a Cauchy sequence in L2(Ω, P) if
and only if (2.27) holds. For all integers m,n � 1, we assume, without loss of
generality, that m = n + p for some integer p. Let

Γn+p(s, t) = (n + p)−1I2d + Cov(Y (s), Y (t)),

Γn(s, t) = n−1I2d + Cov(Y (s), Y (t)),

and

Γn+p,n(s, t) =
(

(n + p)−1Id 0
0 n−1Id

)
+ Cov(Y (s), Y (t)).

Then, it follows from Fubini’s theorem and (2.26) that

E[(L1/(n+p)(y, I, Y ) − L1/n(y, I, Y ))2]

=
1

(2π)2d

∫
I2

dsdt

∫
R2d

e−i〈ξ−η,y〉
{

exp
(
− 1

2
(ξ, η)Γn+p(s, t)(ξ, η)T

)

+ exp
(
− 1

2
(ξ, η)Γn(s, t)(ξ, η)T

)

− 2 exp
(
− 1

2
(ξ, η)Γn+p,n(s, t)(ξ, η)T

)}
dξdη

=
1

(2π)2d

∫
I2

{ 1√
det Γn+p(s, t)

exp
(
− 1

2
(y, y)Γ−1

n+p(s, t)(y, y)T
)

+
1√

det Γn(s, t)
exp

(
− 1

2
(y, y)Γ−1

n (s, t)(y, y)T
)

− 2√
det Γn+p,,n(s, t)

exp
(
− 1

2
(y, y)Γ−1

n+p,n(s, t)(y, y)T
)}

dsdt.
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Similar to (2.31), we can verify that

lim
n→+∞E[(L1/(n+p)(y, I, Y ) − L1/n(y, I, Y ))2] = 0

if and only if (2.27) holds. Then {Lε(y, I, Y ), ε > 0} is a Cauchy sequence in
L2(Ω, P) if and only if that (2.27) holds. This finishes the proof. �

Now, we provide a sufficient and necessary condition for the existence of the
local time of X, which complements [32, Theorem 8.1] and [18, Theorem 3.1].

Theorem 2.6 Let X = {X(t), t ∈ I} be an (N, d)-Gaussian random field
defined by (1.1) and assume that X0 has mean zero, continuous covariance
function, and satisfies conditions (C1) and (C2) with index H ∈ (0, 1)N . Then,
for every x ∈ R

d, Lε(x, I,X) converges in L2(Ω, P) sense, to a limit L(x, I,X)
as ε → 0 if and only if

∑N
j=1 1/Hj > d.

Proof By Lemma 2.5, we only need to verify that for any x ∈ R
d,

M :=
∫

I2

exp
(
− ‖x‖2

E[(X0(s) − X0(t))2]
det Cov(X0(t),X0(s))

) dsdt

[det Cov(X0(t),X0(s))]d/2

is finite if and only if
∑N

j=1
1

Hj
> d.

The sufficiency follows immediately from Proposition 2.4. To prove the
necessity, we derive from (2.9), (C1), and (C2) that, for any ε0 ∈ (0, 1), there
exist constants c11 � 1 and c12 > 0 such that

c−1
11 � Var(X0(s)) � c11

and

Var(X0(t) | X0(s)) � c12

N∑
j=1

|sj − tj|2Hj

for all s, t ∈ [ε0, 1]N . These inequalities and (2.10) imply

E[(X0(s) − X0(t))2]
det Γ0,1(s, t)

� 1, ∀ s, t ∈ [ε0, 1]N . (2.32)

It follows from (2.32) that

M � c

∫
[ε0,1]2N

dsdt

[det Cov(X0(s),X0(t))]d/2
.

From the proof of Proposition 2.4 with γ = d and λ = 0, we see that the last
integral is infinite if

∑N
j=1

1
Hj

� d. This proves the necessity and hence the
theorem. �

In order to study the smoothness of the local times, we will make use of the
following lemmas. Lemma 2.7 is from Hu [11], and Lemma 2.8 is from Chen
and Yan [4].
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Lemma 2.7 Let F ∈ L2(Ω, P). Then F ∈ D1 if and only if ΦΘ(1) < +∞.

Lemma 2.8 For any d ∈ N, we have, for x ∈ [−1, 1),
+∞∑
n=1

∑
0�k1,k2,...,kd�n
k1+k2+···+kd=n

d∏
j=1

(2kj − 1)!!
(2kj)!!

2nxn � x(1 − x)−( d
2
+1).

Recall that the Hermite polynomial of degree n is defined by

Hn(x) =
(−1)n

n!
ex2/2 dn

dxn
e−x2/2, n ∈ Z+.

It is known that (cf. [21]) for any centered Gaussian random vector (ξ, η) with
E(ξ2) = E(η2) = 1, we have

E[Hn(ξ)Hm(η)] =

⎧⎨
⎩

0, m �= n,

1
n!

[E(ξη)]n, m = n,
(2.33)

and for all z ∈ C and x ∈ R,

ezx− z2

2 =
+∞∑
n=0

znHn(x). (2.34)

We will make use of the following lemma.

Lemma 2.9 Let Y = {(Y1(t), Y2(t), . . . , Yd(t)), t ∈ I} be an (N, d)-Gaussian
random field, where Y1, Y2, . . . , Yd are d independent copies of a centered, real-
valued Gaussian random field Y0 on I. Suppose that its local time L(y, I, Y ) ∈
L2(Ω, P). Then,

(i) L(0, I, Y ) ∈ D1 if and only if∫
I2

[E(Y0(s)Y0(t))]2

[det Cov(Y0(t), Y0(s))]
d
2
+1

dsdt < +∞; (2.35)

(ii) if (2.35) holds, then L(y, I, Y ) ∈ D1 for every y ∈ Rd\{0}.
Proof The proof is similar to that of [4, Lemma 3.2], see also [11]. Let
Lε(y, I, Y ) be as in (2.26) (by replacing X by Y ). Thanks to (2.26) and (2.34),
we can write

Lε(y, I, Y ) =
1

(2π)d

∫
I

∫
Rd

e−i〈ξ,y〉 exp
(
i〈ξ, Y (s)〉 − ε

‖ξ‖2

2

)
dξds

=
1

(2π)d

∫
I

∫
Rd

e−i〈ξ,y〉 exp
(
− 1

2
(E(Y 2

0 (s)) + ε)‖ξ‖2
)

×
+∞∑
n=0

in(E(Y 2
0 (s))‖ξ‖2)n/2Hn

( 〈ξ, Y (s)〉√
E(Y 2

0 (s))‖ξ‖2

)
dξds

=:
+∞∑
n=0

F y,ε
n . (2.36)
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Denote

ΦΘy,ε(u) = E(|Γ√
uLε(y, I, Y )|2), ΦΘy(u) = E(|Γ√

uL(y, I, Y )|2).

Also, for simplicity of notation, let

a2 = E(Y 2
0 (s)) + ε, b2 = E(Y 2

0 (t)) + ε.

It follows from (2.36) and (2.33) that

ΦΘy,ε(1) =
+∞∑
n=0

nE(|F y,ε
n |2)

=
+∞∑
n=0

n

(2π)2d
E

[ ∫
I2

∫
R2d

e−i〈ξ−η,y〉[E(Y 2
0 (s))E(Y 2

0 (t))‖ξ‖2‖η‖2]n/2

× exp
(
− 1

2
[a2‖ξ‖2 + b2‖η‖2]

)

×Hn

( 〈ξ, Y (s)〉√
E(Y 2

0 (s))‖ξ‖2

)
Hn

( 〈η, Y (t)〉√
E(Y 2

0 (t))‖η‖2

)
dξdηdsdt

]

=
+∞∑
n=1

1
(2π)2d(n − 1)!

∫
I2

[E(Y0(s)Y0(t))]ndsdt

×
∫

R2d

e−i〈ξ−η,y〉〈ξ, η〉n exp
(
− 1

2
[a2‖ξ‖2 + b2|η‖2]

)
dξdη. (2.37)

If y = 0, then the integrals in (2.37) become 0 for all odd numbers n. Hence,

ΦΘ0,ε(1) =
+∞∑
n=1

1
(2π)2d(2n − 1)!

∫
I2

[E(Y0(s)Y0(t))]2ndsdt

×
∫

R2d

〈ξ, η〉2n exp
(
− 1

2
[a2‖ξ‖2 + b2‖η‖2]

)
dξdη. (2.38)

By using the fact that for k ∈ Z+, γ > 0,
∫

R

v2k exp
(
− γv2

2

)
dv =

√
2π (2k − 1)!! γ−(k+ 1

2
)

and the same argument as [4, p. 1010], we obtain

1
(2π)d

∫
R2d

〈ξ, η〉2n

(2n − 1)!
exp

(
− 1

2
[a2‖ξ‖2 + b2‖η‖2]

)
dξdη

=
∑

0�k1,k2,...,kd�n
k1+k2+···+kd=n

d∏
j=1

(2kj − 1)!!
(2kj)!!

2n

[(E(Y 2
0 (s)) + ε)(E(Y 2

0 (t)) + ε)]n+ d
2

. (2.39)
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(This can be verified by using induction.) Combining (2.38) and (2.39), and
applying Lemma 2.8 and the monotone convergence theorem, we obtain

+∞∑
n=1

1
(2n − 1)!

∫
I2

[E(Y0(s)Y0(t))]2n dsdt

∫
R2d

〈ξ, η〉2n

× exp
(
− 1

2
[a2‖ξ‖2 + b2‖η‖2]

)
dξdη

�
∫

I2

[E(Y0(s)Y0(t))]2

{a2b2 − [E(Y0(s)Y0(t))]2}d
2
+1

dsdt

as ε→0−→
∫

I2

[E(Y0(s)Y0(t))]2

{E(Y 2
0 (s))E(Y 2

0 (t)) − [E(Y0(s)Y0(t))]2}d
2
+1

dsdt

=
∫

I2

[E(Y0(t)Y0(s))]2

[det Cov(Y0(s), Y0(t))]
d
2
+1

dsdt, (2.40)

which proves part (i) of the lemma, thanks to Lemma 2.7.
Now, we prove part (ii) of the lemma. Notice that for y ∈ R

d\{0}, it does
not seem easy to compute the integrals in the last equality of (2.37) explicitly.
So we turn to the following upper bound:

ΦΘy,ε(1) �
+∞∑
n=1

1
(2π)2d(n − 1)!

∫
I2

|E(Y0(s)Y0(t))|ndsdt

×
∫

R2d

|〈ξ, η〉|n exp
(
− 1

2
[a2‖ξ‖2 + b2‖η‖2]

)
dξdη. (2.41)

The sum over even integers in (2.41) is the same as in (2.40). So we only need
to consider the terms over odd integers. For this purpose, let

J2n+1 =
1

(2n)!

∫
I2

|E(Y0(s)Y0(t))|2n+1dsdt

×
∫

R2d

|〈ξ, η〉|2n+1 exp
(
− 1

2
[a2‖ξ‖2 + b2‖η‖2]

)
dξdη. (2.42)

By using the Cauchy-Schwarz inequality and the elementary inequality

xe−
β
2n

x2 �
√

n

eβ
, ∀ β, x > 0,

we have
|〈ξ, η〉|e− 1

2n
[a2‖ξ‖2+b2‖η‖2] � n

eab
.

Plugging this into (2.42) yields

J2n+1 � 1
2e(2n − 1)!

∫
I2

|E(Y0(s)Y0(t))|2ndsdt

×
∫

R2d

|〈ξ, η〉|2n exp
(
− n − 1

2n
[a2‖ξ‖2 + b2‖η‖2]

)
dξdη. (2.43)
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The same argument for (2.39) gives
∫

R2d

|〈ξ, η〉|2n

(2n − 1)!
exp

(
− n − 1

2n
[a2‖ξ‖2 + b2‖η‖2]

)
dξdη

=
(2π)d

(1 − n−1)n+ d
2

∑
0�k1,k2,...,kd�n
k1+k2+···+kd=n

d∏
j=1

(2kj − 1)!!
(2kj)!!

2n

(a2b2)n+ d
2

. (2.44)

Combining (2.42)–(2.44) with (2.41), and using the same argument as in (2.40),
we derive ΦΘy(1) < +∞ under (2.35). This finishes the proof of part (ii). �

The following is the main theorem of this section.

Theorem 2.10 Let X = {X(t), t ∈ I} be an (N, d)-Gaussian field defined
by (1.1), and assume that X0 satisfies (C1) and (C2) with index H ∈ (0, 1)N .
Then the following statements hold:

(i) L(0, I,X) ∈ D1 if and only if
∑N

j=1
1

Hj
> d + 2;

(ii) if
∑N

j=1
1

Hj
> d + 2, then L(x, I,X) ∈ D1 for every x ∈ R

d\{0}.
Proof By Theorem 2.6 and Lemma 2.9, it is sufficient for us to verify that

∫
I2

[E(X0(s)X0(t))]2

[det Cov(X0(t),X0(s))]
d
2
+1

dsdt < +∞ (2.45)

if and only if
∑N

j=1
1

Hj
> d+2. This follows from Proposition 2.4 with γ = d+2

and λ = 2 immediately. �
Remark 2.11 As we mentioned in Section 1, the class of Gaussian random
fields that satisfy (C1) and (C2) is large, including fractional Brownian sheets
and the solutions to stochastic heat equation driven by various space-time
Gaussian noises. In particular, Theorem 2.10 recovers [7, Theorem 11] and
[9, Theorem 2.1] with α = 1.

In the following, we apply Theorems 2.6 and 2.10 to study the collision
and intersection local times of independent Gaussian fields. Theorems 2.12 and
2.13 below generalize the results of [4,34,35] for fractional Brownian motion and
related Gaussian processes.

2.2 Smoothness of collision local time

Given

H = (H1,H2, . . . ,HN ) ∈ (0, 1)N , K = (K1,K2, . . . ,KN ) ∈ (0, 1)N ,

let
XH = {XH(s), s ∈ R

N}, XK = {XK(t), t ∈ R
N}

be two independent Gaussian random fields with values in R
d as defined in

(1.1). We assume that the associate real-valued random fields XH
0 and XK

0
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satisfy conditions (C1) and (C2) on interval I ⊆ R
N , respectively, with indices

H and with indices K.
The collision local time of XH and XK on I is formally defined by

LC(XH ,XK) :=
∫

I
δ(XH (s) − XK(s))ds. (2.46)

Theorem 2.12 Let LC(XH ,XK) be the collision local time of XH and XK

as above. Then
(i) LC(XH ,XK) ∈ L2(Ω, P) if and only if

∑N
j=1

1
Hj∧Kj

> d;

(ii) LC(XH ,XK) ∈ D1 if and only if
∑N

j=1
1

Hj∧Kj
> d + 2.

Proof Consider the (N, d) Gaussian field Z = {Z(t), t ∈ I} defined by

Z(t) := XH(t) − XK(t), ∀ t ∈ I.

Then the collision local time of XH and XK on I is nothing but L(0, I, Z), the
local time of Z on I at x = 0. Hence, the theorem follows from Theorems 2.6
and 2.10 once we verify that the real-valued Gaussian field Z0(t) = X0(t)−Y0(t)
satisfies (C1) and (C2) in the interval I with indices

(H1 ∧ K1,H2 ∧ K2, . . . ,HN ∧ KN ) ∈ (0, 1)N .

Since it is easy to show that Z0 satisfies (C1), we verify (C2) only. By the
definition of conditional variance and independence of XH and XK , we have

Var(Z0(t) | Z0(s))

= inf
a∈R

E[(XH
0 (t) − aXH

0 (s))2 + (XK
0 (t) − aXK

0 (s))2]

� inf
a∈R

E[(XH
0 (t) − aXH

0 (s))2] + inf
b∈R

E[(XK
0 (t) − bXK

0 (s))2]

= Var(XH
0 (t) | XH

0 (s)) + Var(XK
0 (t) | XK

0 (s))

� c

( N∑
j=1

min{|sj − tj|2Hj , t
2Hj

j } +
N∑

j=1

min{|sj − tj |2Kj , t
2Kj

j }
)

� c
N∑

j=1

min{|sj − tj|2(Hj∧Kj), t
2(Hj∧Kj)
j }, ∀ s, t ∈ I,

for some constant c > 0. This verifies that Z0 satisfies condition (C2). �
2.3 Smoothness of intersection local time

Let

H = (H1,H2, . . . ,HN1) ∈ (0, 1)N1 , K = (K1,K2, . . . ,KN2) ∈ (0, 1)N2

be two constant vectors. Let

XH = {XH(s), s ∈ R
N1}, XK = {XK(t), t ∈ R

N2}
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be two independent Gaussian random fields with values in R
d as defined in

(1.1). We assume that the associate real-valued random fields XH
0 and XK

0
satisfy conditions (C1) and (C2), respectively, on interval I1 ⊆ R

N1 with indices
H = (H1,H2, . . . ,HN1) and on I2 ⊆ R

N2 with indices K = (K1,K2, . . . ,KN2).
Then the intersection local time of XH and XK is formally defined by

LI(XH ,XK) :=
∫

IN1
×IN2

δ(XH (s) − XK(t))dsdt. (2.47)

Theorem 2.13 Let LI(XH ,XK) be the intersection local time of XH and
XK as above. Then

(i) LI(XH ,XK) ∈ L2(Ω, P) if and only if

N1∑
j=1

1
Hj

+
N2∑
j=1

1
Kj

> d;

(ii) LI(XH ,XK) ∈ D1 if and only if

N1∑
j=1

1
Hj

+
N2∑
j=1

1
Kj

> d + 2.

Proof Let
U = {U(s, t), (s, t) ∈ IN1 × IN2}

be the (N1 + N2, d)-Gaussian random field with mean 0 defined by

U(s, t) = XH(s) − XK(t), ∀ s ∈ IN1 , ∀ t ∈ IN2 .

Clearly, the intersection local time of XH and XK is nothing but L(0, IN1 ×
IN2 , U), the local time of U on IN1 × IN2 at x = 0. One can verify that the
Gaussian random field

U0(s, t) = XH
0 (s) − XK

0 (t)

satisfies conditions (C1) and (C2) on the interval IN1 × IN2 with indices

(H1,H2, . . . ,HN1 ,K1,K2, . . . ,KN2) ∈ (0, 1)N1+N2 .

Therefore, the conclusions follow from Theorems 2.6 and 2.10. �

3 Self-intersection local times

In this section, we study the existence and smoothness of self-intersection
local times of an (N, d)-Gaussian random field X = {X(t), t ∈ R

N} as in (1.1).
These problems are more involved than the collision or intersection local times of
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independent Gaussian random fields, due to complexity of dependence
structures of X. For earlier results for the Brownian sheet, fractional Brownian
motion and related self-similar Gaussian processes, we refer to [11,16–18]. Their
methods rely on special properties of the Brownian sheet or fractional Brownian
motion. Our approach below is based on a weak form of local nondeterminism
and is more general.

For any two compact intervals I, J ⊆ R
N , the self-intersection local times

of X = {X(t), t ∈ R
N} on I and J is formally defined by

LS(X, I × J) =
∫

I×J
δ(X(s) − X(t))dsdt. (3.1)

Define a (2N, d)-Gaussian random field

V = {V (s, t), (s, t) ∈ R
2N}

by
V (s, t) := X(s) − X(t), s, t ∈ R

N . (3.2)

Then the self-intersection local time of X is L(0, I × J, V ), the local time of V
on I × J at x = 0.

Under the condition that X0 satisfies conditions (C1) and (C2) on both
intervals I and J, the Gaussian field

V0(s, t) = X0(s) − X0(t)

may not satisfy the corresponding (C2) on I × J. Therefore, we cannot apply
Theorems 2.6 and 2.10 directly. To overcome this difficulty, we will make use
of the following condition:

(C3) there exists a positive constant c12 such that for all u, t1, t2, t3 ∈ [0, 1]N ,

Var(X0(u) | X0(t1),X0(t2),X0(t3)) � c12

N∑
j=1

min
0�k�3

|uj − tkj |2Hj , (3.3)

where t0j = 0, j = 1, 2, . . . , N.

Clearly, condition (C2) is a special case of condition (C3). It is known that
multiparameter fractional Brownian motion and fractional Brownian sheets
satisfy conditions (C1) and (C3); see [23,29]. More examples can be found
in [32].

For two compact intervals I, J ⊆ [0, 1]N , we call them separated if

inf
s∈I, t∈J

|sj − tj| > 0 for some j = 1, 2, . . . , N. (3.4)

Let S ⊆ {1, 2, . . . , N} be the collection of all j’s that satisfy (3.4) and let
Sc = {1, 2, . . . , N} \ S. Because I and J are compact, there exists ε0 > 0 such
that

inf
s∈I, t∈J

|sj − tj | � ε0, j ∈ S. (3.5)



Smoothness of (self-intersection) local times of Gaussian random fields 795

We further call I and J partially separated if both S and Sc are nonempty,
well separated if Sc = ∅, and not separated if S = ∅. Clearly, I and J are not
separated if and only if I ∩ J �= ∅.

Similar to Imkeller and Weisz [17] for the Brownian sheet, we consider the
self-intersection local times of X on I and J by distinguishing three cases:
Case 1 I, J ⊆ [0, 1]N are well separated;
Case 2 I, J ⊆ [0, 1]N are partially separated;
Case 3 I, J ⊆ [0, 1]N are not separated.

In Case 1, we have the following theorem.

Theorem 3.1 Let X = {X(t), t ∈ R
N} be an (N, d)-Gaussian random field

defined by (1.1) with X0 satisfying conditions (C1) and (C3), and let LS(X, I ×
J) be the self-intersection local time of X on I and J. If I and J are well
separated, then the following statements hold:

(i) LS (X, I × J) ∈ L2(Ω, P) if and only if 2
∑N

j=1
1

Hj
> d;

(ii) LS (X, I × J) ∈ D1 if and only if 2
∑N

j=1
1

Hj
> d + 2.

Proof Since the Gaussian field X0 satisfies (C1) on I and J, we see that for
any (s, t), (s′, t′) ∈ I × J,

E[(V0(s, t) − V0(s′, t′))2] � c

( N∑
j=1

|sj − s′j|2Hj +
N∑

j=1

|tj − t′j|2Hj

)
. (3.6)

Thus, the Gaussian field

V0(s, t) = XH
0 (s) − XH

0 (t)

satisfies (C1) on I×J with indices (H1,H2, . . . ,HN ,H1,H2, . . . ,HN ) ∈ (0, 1)2N .
To verify that V0 also satisfies (C2), we see that (C3) implies

Var(V0(s, t) | V0(s′, t′)) � Var(X0(t) | X0(s),X0(s′),X0(t′))

� c12

N∑
j=1

min{|tj − sj|2Hj , |tj − s′j|2Hj , |tj − t′j|2Hj , t
2Hj

j }

� c13

N∑
j=1

min{|tj − t′j |2Hj , t
2Hj

j }

thanks to the facts that |tj − sj| � ε0 and |tj − s′j | � ε0. Here, the constant c13

depends on ε0. By the same token, we have

Var(V0(s, t) | V0(s′, t′)) � c13

N∑
j=1

min{|sj − s′j|2Hj , s
2Hj

j }.
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Adding up these two inequalities shows

Var(V0(s, t) | V0(s′, t′))

� c13

2

( N∑
j=1

min{|sj − s′j |2Hj , s
2Hj

j } +
N∑

j=1

min{|tj − t′j |2Hj , t
2Hj

j }
)

.

This proves that V0 satisfies (C2) on I × J with

(H1,H2, . . . ,HN ,H1,H2, . . . ,HN ) ∈ (0, 1)2N .

Therefore, the conclusions follow from Theorems 2.6 and 2.10. �
Now, we consider Case 2, e.g., the two compact intervals I and J are

partially separated. In this case, both S and Sc are nonempty sets. For
concreteness, we may assume that

I = [a, a + 〈h〉], J = [b, b + 〈h〉],
where bj > aj + h for j ∈ S and aj = bj for j ∈ Sc. Then (3.5) holds with

ε0 = min{bj − aj − h, j ∈ S}.
Note that, when X is the (N, d) Brownian sheet, the existence condition in (i)
in the following theorem coincides with that in Theorem 3 of [16,17].

Theorem 3.2 Let X = {X(t), t ∈ R
N} be an (N, d)-Gaussian random field

as in Theorem 3.1. Let I and J be partially separated as described above. Then
the following statements hold:

(i) LS(X, I × J) ∈ L2(Ω, P) if

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

> d;

(ii) LS(X, I × J) /∈ L2(Ω, P) if

2
N∑

j=1

1
Hj

� d;

(iii) LS(X, I × J) ∈ D1 if

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

> d + 2;

(iv) LS(X, I × J) /∈ D1 if

2
N∑

j=1

1
Hj

� d + 2.
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Proof We prove part (i) at first. By Lemma 2.5, we only need to prove that if

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

> d,

then

J :=
∫

(I×J)2

dsdtds′dt′

[detCov(V0(s, t), V0(s′, t′))]d/2
< +∞. (3.7)

By the definition of conditional variance and (C3), we see that for any (s, t),
(s′, t′) ∈ I × J,

Var(V0(s, t) | V0(s′, t′))
� Var(X0(t) | X0(s),X0(s′),X0(t′))

� c12

N∑
j=1

min{|tj − sj|2Hj , |tj − s′j|2Hj , |tj − t′j |2Hj , t
2Hj

j }

� c14

(∑
j∈S

min{|tj − t′j |2Hj , t
2Hj

j }

+
∑
j∈Sc

min{|tj − sj|2Hj , |tj − s′j|2Hj , |tj − t′j|2Hj , t
2Hj

j }
)

, (3.8)

thanks to the fact that if j ∈ S, then |tj − sj | � ε0 and |tj − s′j| � ε0. By the
same token, we have

Var(V0(s, t) | V0(s′, t′))

� c14

(∑
j∈S

min{|sj − s′j|2Hj , s
2Hj

j }

+
∑
j∈Sc

min{|sj − tj |2Hj , |sj − s′j|2Hj , |sj − t′j|2Hj , s
2Hj

j }
)

. (3.9)

Combining (3.8) and (3.9), we have

Var(V0(s, t) | V0(s′, t′))

� c14

[∑
j∈S

(min{|tj − t′j |2Hj , t
2Hj

j } + min{|sj − s′j|2Hj , s
2Hj

j })

+
∑
j∈Sc

min{|sj − tj |2Hj , |sj − s′j|2Hj , |sj − t′j|2Hj , s
2Hj

j }
]
. (3.10)

Note that, in (3.10), only one sum over Sc in (3.8) and (3.9) is kept. This is
due to the fact that, when integrating dsj for j ∈ Sc, all the other variables,
s′j, tj, and t′j, will disappear (see Lemma 2.2). This situation is different from
the case when we integrate dsj for j ∈ S.
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Since I and J are partially separated (i.e., S �= ∅), we have

Var(V0(s′, t′)) = E[(X0(s′) − X0(t′))2] � 1, ∀ s′ ∈ I, ∀ t′ ∈ J. (3.11)

It follows from (3.10) and (3.11) that the integral J in (3.7) is at most
∫

(I×J)2

[∑
j∈S

(min{|tj − t′j |Hj , t
Hj

j } + min{|sj − s′j|Hj , s
Hj

j

}
)

+
∑
j∈Sc

min{|sj − tj|Hj , |sj − s′j|Hj , |sj − t′j|Hj , s
Hj

j }
]−d

dsdtds′dt′. (3.12)

Similar to the argument in the proofs of (2.13) and (2.22), we integrate
iteratively and apply Lemmas 2.1–2.3 to show that the integral in (3.12) is
finite if

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

> d.

This proves the sufficiency in part (i).
Next, we prove part (ii). For any (s, t), (s′, t′) ∈ I×J, condition (C1) implies

that

Var(V0(s, t)|V0(s′, t′)) � E[(X0(s) − X0(t) − X0(s′) + X0(t′))2]

� c

N∑
j=1

(|sj − s′j|2Hj + |tj − t′j |2Hj ). (3.13)

It follows from (3.11) and (3.13) that

det Cov(V0(s, t), V0(s′, t′)) � c
N∑

j=1

(|sj − s′j|2Hj + |tj − t′j |2Hj ). (3.14)

This implies, by using Lemma 2.1 repeatedly, that the integral J in (3.7) is
infinite if 2

∑N
j=1

1
Hj

� d.

In order to prove part (iii), by Lemma 2.9, it suffices to show that, if

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

> d + 2,

then

K =
∫

(I×J)2

[E(V0(s, t)V0(s′, t′))]2

[det Cov(V0(s, t), V0(s′, t′))](d+2)/2
dsdtds′dt′ < +∞. (3.15)

For any (s, t), (s′, t′) ∈ I × J, we use the Cauchy-Schwarz inequality and
(C1) again to show that

[E(V0(s, t)V0(s′, t′))]2 � E[V 2
0 (s, t)]E[V 2

0 (s′, t′)] � c. (3.16)
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Similar to the argument in (3.11) and (3.12), we derive from (3.16) that the
integral K in (3.15) is, up to a constant, bounded from above by
∫

(I×J)2

[∑
j∈S

(min{|tj − t′j |Hj , t
Hj

j } + min{|sj − s′j |Hj , s
Hj

j })

+
∑
j∈Sc

min{|sj − sj|Hj , |sj − s′j|Hj , |sj − t′j|Hj , s
Hj

j }
]−(d+2)

dsdtds′dt′. (3.17)

Again, exactly like what we did in the proof of (2.13), we can show that the
integral in (3.17) is finite provided

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

> d + 2.

This proves part (iii).
Since the function E(V0(s, t)V0(s′, t′)) is uniformly continuous for (s, t, s′, t′)

∈ (I × J)2 and (3.11) holds, there exist positive constants δ and c such that

E(V0(s, t)V0(s′, t′)) � c

for all (s, t, s′, t′) ∈ (I × J)2 stisfying |(s, t) − (s′, t′)| � δ. Hence, the proof of
part (iv) is quite similar to the proof of part (ii). We leave the details to the
interested reader. �

Parts (ii) and (iv) in Theorem 3.2 can be improved if we have more
information on the dependence structure of V0(s, t) = X0(s)− X0(t), as shown
by the following theorem.

Theorem 3.3 If, in addition to the assumptions of Theorem 3.2, X0 satisfies
the following condition:

(C4) there exists a positive constant c15 such that for all (s, t), (s′, t′) ∈ I×J,

Var(X0(s) − X0(t) | X0(s′) − X0(t′))

� c15

(∑
j∈S

(|tj − t′j|2Hj + |sj − s′j|2Hj ) +
∑
j∈Sc

|sj − tj |2Hj

)
, (3.18)

then the following statements hold:
(i) LS(XH , I × J) ∈ L2(Ω, P) if and only if

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

> d;

(ii) LS(XH , I × J) ∈ D1 if and only if

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

> d + 2.
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Remark 3.4 Observe that condition (C4) is automatically satisfied if S = ∅.
If X0 = {X0(t), t ∈ R

N} is an ‘additive fractional Brownian motion’ defined by

X0(t) = BH1(t1) + BH2(t2) + · · · + BHN (tN ), ∀ t ∈ R
N ,

where BH1, BH2 , . . . , BHN are independent fractional Brownian motions with
indices H1,H2, . . . ,HN , respectively. Then it is easy to see that condition (C4)
is satisfied. If X0 is the Brownian sheet, then by using the independence of
increments over intervals, one can check that (C4) also holds.

Proof of Theorem 3.3 Sufficiencies of the conditions in (i) and (ii) have been
proved in Theorem 3.2. Note that (C4) and (3.11) imply

J �
∫

(I×J)2

dsdtds′dt′

[
∑

j∈S(|sj − s′j|Hj + |tj − t′j|Hj ) +
∑

j∈Sc |sj − tj |Hj ]d
. (3.19)

By applying Lemma 2.1, it can be verified that the last integral diverges when

2
∑
j∈S

1
Hj

+
∑
j∈Sc

1
Hj

� d.

This proves the necessity in (i). The proof of necessity in (ii) is similar and is
omitted. �

Finally, we consider Case 3, e.g., the two compact intervals I and J are
not separated in any direction. So S = ∅. Compared with Case 2, we note
that, on one hand, (3.11) fails and, on the other hand, condition (C4) holds
automatically. For concreteness, we assume that I = J = [0, 1]N .

Theorem 3.5 Let X = {X(t), t ∈ R
N} be an (N, d)-Gaussian random field

as in Theorem 3.1. Then the following statements hold:
(i) LS(X, I × I) ∈ L2(Ω, P) if and only if

∑N
j=1

1
Hj

> d;

(ii) LS(X, I × I) ∈ D1 if
∑N

j=1
1

Hj
> d + 2;

(iii) LS(XH , I × I) /∈ D1 if

N∑
j=1

1
Hj

� max
{d + 2

2
,
2d
3

}
. (3.20)

Before proving this theorem, we compare its conditions with the results in
[16,17,11].

Remark 3.6 (a) If X is the (N, d) Brownian sheet, then our existence
condition in (i) coincides with that in Theorem 1 of [16,17]. When X is
a fractional Brownian motion BH = {BH(t), t ∈ R}, our condition in (ii)
becomes H(d + 2) < 1, which is stronger than that in [11, Theorem 3.2].

(b) Little has been known about optimal necessary condition for LS(X,
I × I) ∈ D1 for a Gaussian random field X. Our condition (3.20) is the first
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general result of this kind. When X is a fractional Brownian motion BH , (3.20)
becomes

H � min
{ 3

2d
,

2
d + 2

}
,

which is the complement of the sufficient condition of [11, Theorem 3.2]. Hence,
we have proven that, for fractional Brownian motion BH = {BH(t), t ∈ R} in
R

d and I = [0, 1], LS(BH , I × I) ∈ D1 if and only if

H < min
{ 3

2d
,

2
d + 2

}
.

Proof of Theorem 3.5 We prove part (i) at first. Notice that by Lemma 2.5,
we only need to prove that

J =
∫

I4

dsdtds′dt′

[det Cov(V0(s, t), V0(s′, t′))]d/2
< +∞ (3.21)

if and only if
∑N

j=1
1

Hj
> d. For any (s, t), (s′, t′) ∈ I × I, we use condition (C1)

to obtain that

detCov(V0(s, t), V0(s′, t′)) � E(V 2
0 (s, t))E(V 2

0 (s′, t′))

� c

( N∑
j=1

|sj − tj|2Hj

)( N∑
j=1

|s′j − t′j|2Hj

)
. (3.22)

This, together with (3.21), implies

J � c

∫
I2

dsdt

(
∑N

j=1 |sj − tj |2Hj )d/2

∫
I2

ds′dt′

(
∑N

j=1 |s′j − t′j|2Hj )d/2

� c

(∫
I

dt

(
∑N

�=1 tH�
� )d

)2

. (3.23)

By using Lemma 2.1, it is elementary to verify that the last integral in (3.23)
is infinite provided

∑N
j=1 1/Hj � d. Hence, we prove the necessity of part (i).

To prove the sufficiency in parts (i), we apply condition (C3) to see that for
any (s, t), (s′, t′) ∈ I × I,

Var(V0(s, t) | V0(s′, t′)) � Var(X0(t)|X0(s),X0(s′),X0(t′))

� c
N∑

j=1

min{|tj − sj|2Hj , |tj − s′j|2Hj , |tj − t′j|2Hj , t
2Hj

j }.

Moreover, we also have

Var(V0(s′, t′)) � Var(X0(t′) | X0(s′)) � c

N∑
j=1

min{|t′j − s′j|2Hj , t′2Hj

j }.
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Combining the above two inequalities with (3.21) yields

J � c

∫
I4

( N∑
j=1

min{|tj − sj|Hj , |tj − s′j|Hj , |tj − t′j|Hj , t
Hj

j }
)−d

×
( N∑

j=1

min{|t′j − s′j|Hj , t′Hj

j }
)−d

dsdtds′dt′. (3.24)

Similar to the proof of (2.13), we integrate dt1,dt2, . . . ,dtN ,dt′1,dt′2, . . . ,dt′N to
show that the integral in (3.24) is finite provided

∑N
�=1 1/H� > d. This proves

the sufficiency of part (i).
In order to prove part (ii), by Lemma 2.9, it suffices to verify that if

N∑
j=1

1
Hj

> d + 2,

then

K =
∫

I4

[E(V0(s, t)V0(s′, t′))]2

[det Cov(V0(s, t), V0(s′, t′))](d+2)/2
dsdtds′dt′ < +∞. (3.25)

For any (s, t), (s′, t′) ∈ I×I, the Cauchy-Schwarz inequality and (C1) imply

[E(V0(s, t)V0(s′, t′))]2 � E[V 2
0 (s, t)]E[V 2

0 (s′, t′)] � c. (3.26)

Similar to the argument in part (i), we derive from (3.26) that

J � c

∫
I4

( N∑
j=1

min{|tj − sj|Hj , |tj − s′j |Hj , |tj − t′j|Hj , t
Hj

j }
)−(d+2)

×
( N∑

j=1

min{|t′j − s′j|Hj , t′Hj

j }
)−(d+2)

dsdtds′dt′. (3.27)

Again, we integrate in the order of dt1,dt2, . . . ,dtN ,dt′1,dt′2, . . . ,dt′N to show
that the integral in (3.27) is finite provided

∑N
�=1 1/H� > d + 2. This proves

(3.25) and hence part (ii).
Finally, we prove part (iii). By taking two disjoint sub-intervals and argue

as in the proof of Theorem 3.1, one can see easily that if 2
∑N

j=1
1

Hj
� d + 2,

then the integral K in (3.25) diverges and, consequently, LS(XH , I × I) /∈ D1.

It remains to show that the integral K also diverges if 3
∑N

j=1
1

Hj
� 2d. To

this end, we write
ρ(s, t) =

√
E(V0(s, t)2) .

It will be useful to note that ρ(s, t) is a pseudo-metric on R
2N . Since

E((V0(s, t) − V0(s′, t′))2) � 2(ρ(s, t)2 + ρ(s′, t′)2),
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we see that, if

ρ(s, s′) � 1
2

ρ(s, t), ρ(t, t′) � 1
2

ρ(s, t),

then

E(V0(s, t)V0(s′, t′)) =
1
2

[E(V0(s, t)2) + E(V0(s′, t′)2) − E((V0(s, t) − V0(s′, t′))2)]

� 1
2

E(V0(s′, t′)2). (3.28)

Let

Bρ(s, t) =
{

(s′, t′) ∈ I2 : ρ(s, s′) � 1
2

ρ(s, t), ρ(t, t′) � 1
2

ρ(s, t)
}

.

It follows from (3.25), (3.22), and (3.28) that

K � c

∫
I2

dsdt

ρ(s, t)d+2

∫
Bρ(s,t)

ds′dt′

ρ(s′, t′)d−2
�

∫
I2

dsdt

ρ(s, t)2(d−Q)
, (3.29)

where

Q =
N∑

j=1

1
Hj

.

In obtaining the last inequality, we have used the fact that

ρ(s′, t′) � 2ρ(s, t), ∀ (s′, t′) ∈ Bρ(s, t),

and the Lebesgue measure of Bρ(s, t) is c ρ(s, t)2Q. Under conditions (C1),

ρ(s, t) � c1

N∑
j=1

|sj − tj|Hj , ∀ s, t ∈ IN .

We can apply Lemma 2.1 to show that the last integral in (3.29) diverges if
and only if Q � 2(d − Q). This proves K = +∞ when 3Q � 2d. The proof of
Theorem 3.5 is finished. �

The following are concluding remarks.

Remark 3.7 (a) It is known that conditions (C1) and (C3) are satisfied
by a large class of Gaussian random fields including N -parameter fractional
Brownian motion [23], fractional Brownian sheets [29,32], and stochastic heat
equation driver by space-time Gaussian noises [6,26]. Hence, Theorems 3.1
and 3.2 can be applied directly to these Gaussian random fields. However,
despite the conditions given by Theorems 3.3 and 3.5, the problem for finding
necessary and sufficient conditions for LS(X, I × I) ∈ D1 is still open for a
general Gaussian random field. It would be interesting to solve this problem.

(b) Another interesting question is to remove the i.i.d. assumption on
the coordinate random fields X1,X2, . . . ,Xd in (1.1). While the results of
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this paper can be extended to Gaussian random fields with independent, but
non-identically distributed components, it seems more difficult to remove the
independence assumption. Some preliminary results have been proved by
Eddahbi et al. [7,8] for vector-valued fractional Brownian sheets, but their
conditions may not be optimal.
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