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Abstract Let (Xt)t�0 be a symmetric strong Markov process generated by
non-local regular Dirichlet form (D,D(D)) as follows:

D(f, g) =
∫

Rd

∫
Rd

(f(x) − f(y))(g(x) − g(y))J(x, y)dxdy, f, g ∈ D(D),

where J(x, y) is a strictly positive and symmetric measurable function on
R

d×R
d. We study the intrinsic hypercontractivity, intrinsic supercontractivity,

and intrinsic ultracontractivity for the Feynman-Kac semigroup

T V
t (f)(x) = E

x

(
exp

(
−

∫ t

0
V (Xs)ds

)
f(Xt)

)
, x ∈ R

d, f ∈ L2(Rd; dx).

In particular, we prove that for J(x, y) � |x−y|−d−α
�{|x−y|�1}+e−|x−y|

�{|x−y|>1}
with α ∈ (0, 2) and V (x) = |x|λ with λ > 0, (T V

t )t�0 is intrinsically
ultracontractive if and only if λ > 1; and that for symmetric α-stable
process (Xt)t�0 with α ∈ (0, 2) and V (x) = logλ(1 + |x|) with some λ > 0,
(T V

t )t�0 is intrinsically ultracontractive (or intrinsically supercontractive) if and
only if λ > 1, and (T V

t )t�0 is intrinsically hypercontractive if and only if λ � 1.
Besides, we also investigate intrinsic contractivity properties of (T V

t )t�0 for the
case that lim inf |x|→+∞ V (x) < +∞.
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1 Introduction and main results

1.1 Setting and assumptions

Let ((Xt)t�0,P
x) be a symmetric strong Markov process on R

d generated by
the following non-local symmetric regular Dirichlet form:

D(f, g) =
∫

Rd

∫
Rd

(f(x) − f(y))(g(x) − g(y))J(x, y)dxdy,

D(D) = C1
c (Rd)

D1
.

Here, J(x, y) is a strictly positive and symmetric measurable function on R
d×R

d

satisfying that there exist constants α1, α2 ∈ (0, 2) with α1 � α2 and positive
constants κ, c1, c2 such that

c1|x− y|−d−α1 � J(x, y) � c2|x− y|−d−α2 , 0 < |x− y| � κ, (1.1)

J(x, y) > 0, |x− y| > κ, (1.2)

and

sup
x∈Rd

∫
{|x−y|>κ}

J(x, y)dy < +∞; (1.3)

C1
c (Rd) denotes the space of C1 functions on R

d with compact support, and

C1
c (Rd)

D1
denotes the closure of C1

c (Rd) under the norm

‖f‖D1 :=

√
D(f, f) +

∫
f2(x)dx .

According to [1, Theorems 1.1, 1.2], (Xt)�0 has a symmetric, bounded, and
positive transition density function p(t, x, y) defined on [0,+∞) × R

d × R
d,

whence the associated strongly continuous Markov semigroup (Tt)t�0 is given
by

Ttf(x) = E
x(f(Xt)) =

∫
Rd

p(t, x, y)f(y)dy, x ∈ R
d, t > 0, f ∈ Bb(Rd),

where E
x denotes the expectation under the probability measure P

x.
Throughout this paper, we further assume that for every t > 0, the function
(x, y) �→ p(t, x, y) is continuous on R

d × R
d, see [1,5–8] and references therein

for sufficient conditions ensuring this property. For symmetric Lévy process
(Xt)t�0, the continuity of density function is equivalent to e−tΨ0(·) ∈ L1(Rd; dx)
for any t > 0, where Ψ0 is the characteristic exponent or the symbol of Lévy
process (Xt)t�0,

E
x(ei〈ξ,Xt−x〉) = e−tΨ0(ξ), ξ ∈ R

d, t > 0.
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Let V be a non-negative and locally bounded measurable (potential)
function on R

d. Define the Feynman-Kac semigroup (T V
t )t�0 :

T V
t (f)(x) = E

x

(
exp

(
−

∫ t

0
V (Xs)ds

)
f(Xt)

)
, x ∈ R

d, f ∈ L2(Rd; dx).

It is easy to check that (T V
t )t�0 is a bounded symmetric semigroup on

L2(Rd; dx). By assumptions of (Xt)t�0, for each t > 0, T V
t is also bounded

from L1(Rd; dx) to L∞(Rd; dx), and there exists a symmetric, bounded, and
positive transition density function pV (t, x, y) such that for every t > 0, the
function (x, y) �→ pV (t, x, y) is continuous, and for every 1 � p � +∞,

T V
t f(x) =

∫
Rd

pV (t, x, y)f(y)dy, x ∈ R
d, f ∈ Lp(Rd; dx),

see, e.g., [10, Section 3.2]. Suppose that for every r > 0,

|{x ∈ R
d : V (x) � r}| < +∞, (1.4)

where |A| denotes the Lebesgue measure of Borel set A. According to
[4, Proposition 1.1] (which is essentially based on [21, Corollary 1.3]), the
semigroup (T V

t )t�0 is compact. By general theory of semigroups for compact
operators, there exists an orthonormal basis in L2(Rd; dx) of eigenfunctions
{φn}+∞

n=1 associated with corresponding eigenvalues {λn}+∞
n=1 satisfying

0 < λ1 < λ2 � λ3 � · · · , lim
n→+∞λn = +∞.

That is,
LV φn = −λnφn, T V

t φn = e−λntφn,

where (LV ,D(LV )) is the infinitesimal generator of the semigroup (T V
t )t�0.

The first eigenfunction φ1 is called ground state in the literature. Indeed, in
our setting, there exists a version of φ1 which is bounded, continuous, and
strictly positive, see, e.g., [4, Proposition 1.2].

In the following, we always assume that (1.1)–(1.4) hold, and that the
ground state φ1 is bounded, continuous, and strictly positive.

1.2 Previous work and motivation

We are concerned with intrinsic contractivity properties for the semigroup
(T V

t )t�0. We first recall the definitions of these properties introduced in [11].
The semigroup (T V

t )t�0 is intrinsically ultracontractive if and only if for any
t > 0, there exists a constant Ct > 0 such that for all x, y ∈ R

d,

pV (t, x, y) � Ctφ1(x)φ1(y).

Define

T̃ V
t f(x) =

eλ1t

φ1(x)
T V

t ((φ1f))(x), t > 0, (1.5)
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which is a Markov semigroup on L2(Rd;φ2
1(x)dx). Then, (T V

t )t�0 is intrinsically
ultracontractive if and only if (T̃ V

t )t�0 ultracontractive, i.e., for every t > 0, T̃ V
t

is a bounded operator from L2(Rd;φ2
1(x)dx) to L∞(Rd;φ2

1(x)dx). If for every
p ∈ (2,+∞), there exists a constant t0(p) � 0 such that for all t > t0(p),
T̃ V

t is a bounded operator from L2(Rd;φ2
1(x)dx) to Lp(Rd;φ2

1(x)dx), then we
say that (T̃ V

t )t�0 is hypercontractive, and equivalently, (T V
t )t�0 is intrinsically

hypercontractive. If one can take t0(p) = 0, then we say that (T̃ V
t )t�0 is

supercontractive, and equivalently, (T V
t )t�0 is intrinsically supercontractive. In

particular, the intrinsic ultracontractivity is stronger than the intrinsic super-
contractivity, which is in turn stronger than the intrinsic hypercontractivity.

The intrinsic ultracontractivity of (T V
t )t�0 associated with pure jump

symmetric Lévy process (Xt)t�0 has been investigated in [12–14]. The
approach of all these cited papers is based on two-sided estimates for ground
state φ1 corresponding to the semigroup (T V

t )t�0, for which some restrictions on
the density function of Lévy measure and the potential function V are needed,
see [13, Assumptions 2.1, 2.5] or assumptions (H1)–(H3) below. Recently, the
authors make use of super Poincaré inequalities with respect to infinite measure
developed in [16,17] and functional inequalities for non-local Dirichlet forms
recently studied in [3,20,23] to investigate the intrinsic ultracontractivity of
Feynman-Kac semigroups for symmetric jump processes in [4]. The main result
[4, Theorem 1.3] applies to symmetric jump process such that associated jump
kernel is given by

J(x, y) � |x− y|−d−α
�{|x−y|�1} + e−|x−y|γ

�{|x−y|>1}

with α ∈ (0, 2) and γ ∈ (1,+∞], for which the approach of [12–14] does not
work. In particular, when γ = +∞,

J(x, y) � |x− y|−d−α
�{|x−y|�1},

which is associated with the truncated symmetric α-stable-like process.
As already mentioned in [4], in the model above, finite range jumps play an

essential role in the behavior of the associated process. In the present setting,
the argument of [4] may lead to obtain some sufficient conditions for intrinsic
ultracontractivity of (T V

t )t�0. However, as we will see from examples below, the
conclusions yielded by the approach of [4] are far from optimality because of
the large range jumps. This explains the motivation of our present paper.

The main purpose of this paper is to derive explicit and sharp criterion for
intrinsic contractivity properties of Feynman-Kac semigroups for symmetric
jump processes with infinite range jumps. We will use the intrinsic super
Poincaré inequalities introduced in [16,17] which have been applied in [15,19] to
investigate the intrinsic ultracontactivity for diffusion processes on Riemannian
manifolds. Our method to establish the intrinsic super Poincaré inequality is
efficient for a large class of jump processes. Indeed, our main results not only
work for jump processes of infinite range jumps without technical restrictions
used in [12–14], but also apply to space-inhomogeneous jump processes and
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the corresponding Feynman-Kac semigroup with potential V (x) not necessarily
going to infinity as |x| → +∞.

1.3 Main results

We assume that (1.1)–(1.4) hold in all results of this paper. To state our main
result, we need some necessary assumptions and notations. For x ∈ R

d, define

J∗(x) =

{
inf

y−z∈B(x,3/2)
J(y, z), |x| � 3,

1, |x| < 3,

and
V ∗(x) = sup

z∈B(x,1)
V (z), ϕ(x) =

J∗(x)
1 + V ∗(x)

.

For any s, r > 0, set

α(r, s) = inf
{ 2
|B(0, t)| infx∈B(0,r+t) ϕ2(x)

: t � r,
2 sup0<|x−y|�t J(x, y)−1

|B(0, t)| � s
}
.

In particular, by (1.1),

lim
t↓0

sup0<|x−y|�t J(x, y)−1

|B(0, t)| = 0,

which implies that the set of infimum in the definition of α(r, s) is not empty
for all r, s > 0.
1.3.1 Regular potential function: lim|x|→+∞ V (x) = +∞
Without loss of generality, we assume that in the result below

inf
x∈Rd

V (x) = 0,

otherwise, one can take

Ṽ (x) := V (x) − inf
z∈Rd

V (z)

instead of V.

Theorem 1.1 Suppose that

lim
|x|→+∞

V (x) = +∞.

For any s, δ1, δ2 > 0, define

Φ(s) = inf
|x|�s

V (x)

and
β(s) = β(s; δ1, δ2) = δ1α

(
Φ−1

( 4
s ∧ δ2

)
,
s ∧ δ2

4

)
, (1.6)
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where Φ−1 is the generalized inverse of Φ, i.e.,

Φ−1(r) = inf{s � 0: Φ(s) � r}.
(The set {s � 0: Φ(s) � r} is not empty for every r > 0 since lim|x|→+∞ V (x) =
+∞ and infx∈Rd V (x) = 0.) Let β−1(s) be the generalized inverse of β(s). Then
we have the following three statements.

(1) If for any constants δ1 and δ2 > 0,∫ +∞

t

β−1(s)
s

ds < +∞, t > inf β,

then the semigroup (T V
t )t�0 is intrinsically ultracontractive.

(2) If for any constants δ1 and δ2 > 0,

lim
s→0

s log β(s) = 0,

then the semigroup (T V
t )t�0 is intrinsically supercontractive.

(3) If for any constants δ1 and δ2 > 0,

lim sup
s→0

s log β(s) < +∞,

then the semigroup (T V
t )t�0 is intrinsically hypercontractive.

For symmetric Lévy process, due to the space-homogeneous property, it
holds that

J(x, y) = J(0, x− y) = ρ(x− y), x 	= y,

where ρ is the density function of the associated Lévy measure. Obviously,
in this case, Theorem 1.1 excludes the following assumptions used in [13] (see
Assumptions 2.1, 2.3, and 2.5 therein):

(B1) there are constants c3 and c4 � 1 such that

c−1
3 sup

B(x,1)
ρ(z) � ρ(x) � c3 inf

z∈B(x,1)
ρ(z), |x| > 2, (H1)

and ∫
{|z−x|>1, |z−y|>1}

ρ(x− z)ρ(z − y)dz � c4ρ(x− y), |x− y| > 1; (H2)

(B2) for all 0 < r1 < r2 < r � 1,

sup
x∈B(0,r1)

sup
y∈Bc(0,r2)

GB(0,r)(x, y) < +∞,

where B(0, r) denotes the ball with center 0 and radius r, and GB(0,r)(x, y) is
the Green function for the killed process of (Xt)t�0 on domain B(0, r);
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(B3) there exists a constant c5 � 1 such that

sup
z∈B(x,1)

V (z) � c5V (x). (H3)

In particular, assumption (B2) is less explicit as it is given by the Green function
rather than the jump rate.

To illustrate the optimality of Theorem 1.1, we consider the following two
examples.

Example 1.2 Let

J(x, y) � |x− y|−d−α
�{|x−y|�1} + e−|x−y|γ

�{|x−y|>1},

where α ∈ (0, 2) and γ ∈ (0, 1]. Let V (x) = |x|λ for some λ > 0. Then, there is
a constant C1 > 0 such that for all x ∈ R

d,

φ1(x) � C1

(1 + |x|)λe|x|γ
,

and the associated semigroup (T V
t )t�0 is intrinsically ultracontractive if and

only if λ > γ. Furthermore, if λ > γ and for every x ∈ R
d,∫

{|z|�1}
|z| |J(x, x + z) − J(x, x− z)|dz < +∞, (1.7)

then there is a constant C2 > 0 such that for all x ∈ R
d,

φ1(x) � C2

(1 + |x|)λe|x|γ
.

Remark 1.3 (1) For symmetric Lévy process, (1.7) is automatically satisfied.
(2) When V (x) = |x|λ with λ > 1, one can also use the argument in [4] to

prove the intrinsic ultracontractivity of (T V
t )t�0. However, the condition λ > 1

is much stronger than λ > γ ∈ (0, 1] required by the first assertion in Example
1.2.

Example 1.4 Let (Xt)t�0 be a symmetric α-stable process with some α ∈
(0, 2), i.e.,

J(x, y) = ρ(x− y) := c(d, α)|x − y|−d−α,

where c(d, α) is a constant only depending on d and α. Let

V (x) = logλ(1 + |x|)

for some λ > 0. Then,
(1) the semigroup (T V

t )t�0 is intrinsically ultracontractive if and only if
λ > 1;
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(2) the semigroup (T V
t )t�0 is intrinsically supercontractive if and only if

λ > 1;
(3) the semigroup (T V

t )t�0 is intrinsically hypercontractive if and only if
λ � 1.

1.3.2 Irregular potential function: lim inf |x|→+∞ V (x) < +∞
We make the following assumption as in [4].

(A) There exists a constant K > 0 such that

lim
R→+∞

ΦK(R) = +∞,

where
ΦK(R) = inf

|x|�R,V (x)>K
V (x), R > 0.

Let
ΘK(R) = |{x ∈ R

d : |x| � R, V (x) � K}|, R > 0,

where K is the constant given in (A). Then, by (1.4),

lim
R→+∞

ΘK(R) = 0.

Similar to Theorem 1.1, in Theorem 1.5 below, we can assume that

inf
x∈Rd, V (x)>K

V (x) = 0,

otherwise, V is replaced by

Ṽ (x) := V (x) − (
inf

z∈Rd, V (z)>K
V (z)

)
�{z∈Rd, V (z)>K}(x).

In particular, under such assumption and (A), for any r > 0, the Borel set
{s � 0: ΦK(s) � r} is not empty.

Theorem 1.5 Suppose that assumption (A) holds, and that d > α1, where
α1 ∈ (0, 2) is given in (1.1). For any s, δi > 0 with 1 � i � 4, define

β̂(s) = β̂(s; δ1, δ2, δ3, δ4) = δ1α
(
Ψ−1

K

( 8
s ∧ δ2

)
∧ δ3, s ∧ δ28

)
, (1.8)

where

ΨK(R) =
[ 1
ΦK(R)

+ δ4ΘK(R)α1/d
]−1

, Φ−1
K (r) = inf{s � 0: ΦK(s) � r},

and Φ−1
K denotes the generalized inverse of ΦK . Then all assertions in Theorem

1.1 hold with β(s) replaced by β̂(s).

Note that, when
lim

|x|→+∞
V (x) = +∞,
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for any constant K > 0, there exists R0 > 0 such that

ΘK(R) = 0, ΨK(R) = ΦK(R), R � R0.

Therefore, by (1.8) and (1.6), in this case, Theorem 1.5 reduces to Theorem 1.1.
To show that Theorem 1.5 is sharp, we reconsider symmetric α-stable process
both with irregular potential function.

Example 1.6 Let (Xt)t�0 be a symmetric α-stable process on R
d with d > α,

and let V be a nonnegative measurable function defined by

V (x) =

{
logλ(1 + |x|), x /∈ A,

1, x ∈ A,
(1.9)

where λ > 1 and A is a unbounded set on R
d such that infx/∈A V (x) = 0.

(1) Suppose that

|A ∩B(0, R)c| � c1

logθ R
, R > 1,

holds with some constants c1, θ > 0. Then, the associated semigroup (T V
t )t�0 is

intrinsically ultracontractive (and also intrinsically supercontractive) if θ > d/α;
(T V

t )t�0 is intrinsically hypercontractive if θ � d/α.

(2) For any ε > 0, let

A =
+∞⋃
m=1

B(xm, rm),

where xm ∈ R
d with |xm| = emk0 , and rm = m− k0

α
+ 1

d for some k0 > 2/ε. Then

|A ∩B(0, R)c| � c2

log
d
α
−εR

, R > 1, (1.10)

holds for some constant c2 > 0; however, the semigroup (T V
t )t�0 is not

intrinsically ultracontractive.

The reminder of this paper is arranged as follows. In the next section,
we will present some preliminary results, including lower bound estimate for
the ground state and intrinsic local super Poincaré inequalities for non-local
Dirichlet forms with infinite range jumps. Section 3 is devoted to the proofs of
all the theorems and examples.

2 Some technical estimates

2.1 Lower bound for ground state

In this subsection, we consider lower bound estimate for the ground state φ1.
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Recall that for x ∈ R
d,

J∗(x) =

{
inf

y−z∈B(x,3/2)
J(y, z), |x| � 3,

1, |x| < 3,

and

V ∗(x) = sup
z∈B(x,1)

V (z), ϕ(x) =
J∗(x)

1 + V ∗(x)
.

Proposition 2.1 Let ϕ be the function defined above. Then there exists a
constant C0 > 0 such that for all x ∈ R

d,

C0φ1(x) � ϕ(x). (2.1)

The proof of Proposition 2.1 is mainly based on the argument of
[14, Theorem 1.6] (in particular, see [14, pp. 5054, 5055]). For the sake of
completeness, we present the details here.

First, for any Borel set D ⊆ R
d, let τD := inf{t > 0: Xt /∈ D} be the first

exit time from D of the process (Xt)t�0. The following result is a consequence
of [2, Theorem 2.1], and the reader can refer to [4, Lemma 3.1] for the proof of
it.

Lemma 2.2 There exist constants c0 := c0(κ) > 0 and r0 := r0(κ) ∈ (0, 1]
such that for every r ∈ (0, r0] and x ∈ R

d,

P
x
(
τB(x,r) � c0r

α2+
(α2−α1)d

α1

)
� 1

2
.

In the following, we will fix r0, c0 in Lemma 2.2 and set

t0 = c0r
α2+

(α2−α1)d
α1

0 .

Lemma 2.3 Let 0 � t1 < t2 � t0, x ∈ R
d with |x| � 3, D = B(0, r0), and

B = B(x, r0). Then we have

P
x(XτB

∈ D/2, t1 � τB < t2) � c1(t2 − t1)J∗(x) (2.2)

for some constant c1 > 0.

Proof Denote by pB(t, x, y) the density of the process (Xt)t�0 killed on exiting
the set B, i.e.,

pB(t, x, y) = p(t, x, y) − E
x(τB � t; p(t− τB ,X(τB), y)).

According to the Ikeda-Watanabe formula for (Xt)t�0 (see, e.g., [14, Proposition
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2.5]), we have

P
x(X(τB) ∈ D/2, t1 � τB < t2)

=
∫

B

∫ t2

t1

pB(s, x, y)ds
∫

D/2
J(y, z)dzdy

� |D/2| inf
y−z∈B(x,3r0/2)

J(y, z)
∫ t2

t1

∫
B
pB(s, x, y)dyds

� c2 inf
y−z∈B(x,3r0/2)

J(y, z)
∫ t2

t1

P
x(τB � s)ds

� c2
(

inf
|z|�3

P
z(τB(z,r0) � t0)

)
(t2 − t1) inf

y−z∈B(x,3r0/2)
J(y, z)

� c2
2

(t2 − t1) inf
y−z∈B(x,3/2)

J(y, z)

� c2
2

(t2 − t1)J∗(x),

where, in the forth inequality, we have used Lemma 2.2 and the fact that r0 � 1.
This completes the proof. �

Now, we are in a position to present the proof of Proposition 2.1.

Proof of Proposition 2.1 We only need to consider x ∈ R
d with |x| � 3. Still

let B = B(x, r0) and D = B(0, r0). First, we have

φ1(x) = eλ1t0T V
t0 (φ1)(x)

� eλ1t0T V
t0 (�Dφ1)(x)

� eλ1t0
(

inf
x∈D

φ1(x)
)
T V

t0 (�D)(x)

� c2T
V
t0 (�D)(x),

where, in the last inequality, we have used the fact that φ1 is strictly positive
and continuous.

Second, by the strong Markov property, it holds that

T V
t0 (�D)(x)

= E
x
(
Xt0 ∈ D; e−

∫ t0
0 V (Xs)ds

)
� E

x
(
XτB

∈ D/2, τB < t0, Xs ∈ D, ∀ s ∈ [τB , t0]; e−
∫ τB
0 V (Xs)ds−∫ t0

τB
V (Xs)ds)

� e−t0 supz∈D V (z)
E

x
(
XτB

∈ D/2, τB < t0, Xs ∈ D, ∀ s ∈ [τB, t0]; e−
∫ τB
0 V (Xs)ds

)
� e−t0 supz∈D V (z)

E
x
(
XτB

∈ D/2, τB < t0; e−
∫ τB
0 V (Xs)ds · PXτB (τD > t0)

)
� e−t0 supz∈D V (z)

(
inf

|z|�r0/2
P

z(τB(z,r0/2) > t0)
)

· E
x
(
XτB

∈ D/2, τB < t0; e−
∫ τB
0 V (Xs)ds

)
� c3E

x
(
XτB

∈ D/2, τB < t0; e−
∫ τB
0 V (Xs)ds

)
,
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where, in the last inequality, we have used Lemma 2.2.
Third, according to (2.2),

E
x
(
XτB

∈ D/2, τB < t0; e−
∫ τB
0 V (Xs)ds

)
�

+∞∑
j=1

E
x
(
XτB

∈ D/2,
t0

j + 1
� τB <

t0
j

; e−
∫ τB
0 V (Xs)ds

)

�
+∞∑
j=1

e−
t0
j

supz∈B(x,r0) V (z)
E

x
(
XτB

∈ D/2,
t0

j + 1
� τB <

t0
j

)

� c1J
∗(x)

+∞∑
j=1

t0
j(j + 1)

e−
t0
j

supz∈B(x,r0) V (z)

� c4J
∗(x)

1 + supz∈B(x,r0) V (z)

� c4J
∗(x)

1 + supz∈B(x,1) V (z)
,

where the forth inequality follows from [14, Lemma 5.2], i.e.,

+∞∑
j=1

e−r/j

j(j + 1)
� e−1

r + 1
, r � 0.

Combining all the conclusions above, we prove the desired assertion. �
2.2 Intrinsic local super Poincaré inequality

In this subsection, we are concerned with the local intrinsic super Poincaré
inequality for DV (f, f).

Proposition 2.4 Let ϕ be a strictly positive measurable function on R
d. Then

for any s, r > 0 and any f ∈ C2
c (Rd),∫

B(0,r)
f2(x)dx � sDV (f, f) + α(r, s)

( ∫
|f |(x)ϕ(x)dx

)2

, (2.3)

where

α(r, s) = inf
{ 2
|B(0, t)| infx∈B(0,r+t) ϕ2(x)

: t � r,
2 sup0<|x−y|�t J(x, y)−1

|B(0, t)| � s
}
.

Proof Since V � 0,

D(f, f) =
∫

Rd

∫
Rd

(f(x) − f(y))2J(x, y)dxdy � DV (f, f), f ∈ C2
c (Rd),

it suffices to prove (2.3) with DV (f, f) replaced by D(f, f).
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We can follow step (1) of the proof of [6, Theorem 3.1] or [23, Lemma 2.1]
to verify that for any 0 < s � r and f ∈ C2

c (Rd),

∫
B(0,r)

f2(x)dx �
(2 sup0<|x−y|�s J(x, y)−1

|B(0, s)|
)∫∫

{|x−y|�s}
(f(x) − f(y))2

·J(x, y)dxdy +
2

|B(0, s)|
(∫

B(0,r+s)
|f(x)|dx

)2

. (2.4)

Note that, if (2.4) holds, then for any 0 < s � r and f ∈ C2
c (Rd),

∫
B(0,r)

f2(x)dx �
(2 sup0<|x−y|�s J(x, y)−1

|B(0, s)|
)
D(f, f)

+
2

|B(0, s)| infx∈B(0,r+s) ϕ2(x)

(∫
B(0,r+s)

|f(x)|ϕ(x)dx
)2

.

This immediately yields (2.3) by the definition of α(s, r).
Next, we turn to the proof of (2.4). For any 0 < s � r and f ∈ C2

c (Rd),
define

fs(x) =
1

|B(0, s)|
∫

B(x,s)
f(z)dz, x ∈ B(0, r).

We have

sup
x∈B(0,r)

|fs(x)| � 1
|B(0, s)|

∫
B(0,r+s)

|f(z)|dz,

and ∫
B(0,r)

|fs(x)|dx �
∫

B(0,r)

1
|B(0, s)|

∫
B(x,s)

|f(z)|dzdx

�
∫

B(0,r+s)

(
1

|B(0, s)|
∫

B(z,s)
dx

)
|f(z)|dz

�
∫

B(0,r+s)
|f(z)|dz.

Thus, ∫
B(0,r)

f2
s (x)dx �

(
sup

x∈B(0,r)
|fs(x)|

) ∫
B(0,r)

|fs(x)|dx

� 1
|B(0, s)|

(∫
B(0,r+s)

|f(z)|dz
)2

.
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Therefore, for any f ∈ C2
c (Rd) and 0 < s � r,∫

B(0,r)
f2(x)dx

� 2
∫

B(0,r)
(f(x) − fs(x))2dx+ 2

∫
B(0,r)

f2
s (x)dx

� 2
∫

B(0,r)

1
|B(0, s)|

∫
B(x,s)

(f(x) − f(y))2dxdy

+
2

|B(0, s)|
(∫

B(0,r+s)
|f(z)|dz

)2

�
2 sup0<|x−y|�s J(x, y)−1

|B(0, s)|
∫∫

{|x−y|�s}
(f(x) − f(y))2J(x, y)dxdy

+
2

|B(0, s)|
(∫

B(0,r+s)
|f(z)|dz

)2

�
2 sup0<|x−y|�s J(x, y)−1

|B(0, s)|
∫∫

{|x−y|�s}
(f(x) − f(y))2J(x, y)dxdy

+
2

|B(0, s)|
(∫

B(0,r+s)
|f(z)|dz

)2

.

This proves the desired assertion (2.4). �

3 Proofs of theorems and examples

We begin with proofs of Theorems 1.1 and 1.5.

Proof of Theorem 1.1 (1) For all r > 0 and f ∈ C2
c (Rd),∫

B(0,r)c

f2(x)dx � 1
Φ(r)

∫
B(0,r)c

f2(x)V (x)dx � 1
Φ(r)

DV (f, f).

This, along with (2.3) and (2.1), gives us that for any r, s̃ > 0,∫
f2(x)dx �

( 1
Φ(r)

+ s̃
)
DV (f, f) + C2

0α(r, s̃)
(∫

|f |(x)φ1(x)dx
)2

.

For any s > 0, taking r = Φ−1 (2/s) and s̃ = s/2 in the inequality above, we
arrive at∫

f2(x)dx � sDV (f, f) + C2
0α

(
Φ−1

(2
s

)
,
s

2

)(∫
|f |(x)φ1(x)dx

)2

. (3.1)

(2) Let (T̃ V
t )t�0 be the strongly continuous Markov semigroup defined

by (1.5). Due to the fact that LV φ1 = −λ1φ1, the (regular) Dirichlet form
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(Dφ1 ,D(Dφ1)) associated with (T̃ V
t )t�0 enjoys the properties that, C2

c (Rd) is a
core for (Dφ1 ,D(Dφ1)), and for any f ∈ C2

c (Rd),

Dφ1(f, f) = DV (fφ1, fφ1) − λ1

∫
Rd

f2(x)φ2
1(x)dx. (3.2)

Let
μφ1(dx) = φ2

1(x)dx.

Combining (3.2) with (3.1) gives us the following intrinsic super Poincaré
inequality:

μφ1(f
2) � s(Dφ1(f, f) + λ1μφ1(f

2)) + C2
0α

(
Φ−1

(2
s

)
,
s

2

)
μ2

φ1
(|f |).

In particular, for any s ∈ (0, 1/(2λ1)),

μφ1(f
2) � 2sDφ1(f, f) + 2C2

0α
(
Φ−1

(2
s

)
,
s

2

)
μφ1(|f |)2, f ∈ C2

c (Rd),

which implies that

μφ1(f
2) � sDφ1(f, f) + β(s)μφ1(|f |)2, f ∈ C2

c (Rd), s > 0,

where β(s) is the rate function defined by (1.6) with some proper constants
δ1, δ2 > 0.

Therefore, the desired assertions for the ultracontractivity, super-
contractivity, and hypercontractivity of the semigroup (T̃ V

t )t�0 (or,
equivalently, the intrinsic ultracontractivity, intrinsic supercontractivity,
and intrinsic hypercontractivity of the semigroup (T V

t )t�0) follow from
[18, Theorem 3.3.13] and [16, Theorem 3.1]. �
Proof of Theorem 1.5 By (1.1) and d > α1, there is a constant c1 := c1(κ) > 0
such that the following Sobolev inequality holds:

‖f‖2
L2d/(d−α1)(Rd;dx)

� c1(D(f, f) + ‖f‖2
L2(Rd;dx)), f ∈ C∞

c (Rd), (3.3)

see [4, Proposition 3.7].
For the constant K in (A), let

A1 := {x ∈ R
d : V (x) > K}, A2 := R

d \ A1.

Then, for any R > 0 and f ∈ C∞
c (Rd),∫

B(0,R)c

f2(x)dx =
∫

B(0,R)c∩A1

f2(x)dx+
∫

B(0,R)c∩A2

f2(x)dx

� 1
ΦK(R)

∫
B(0,R)c∩A1

f2(x)V (x)dx

+ |B(0, R)c ∩A2|α1/d ‖f‖2
L2d/(d−α1)(Rd;dx)

� 1
ΦK(R)

DV (f, f) + ΘK(R)α1/d‖f‖2
L2d/(d−α1)(Rd;dx)

.
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This, along with (2.1), (2.3), and (3.3), gives us that for any R, s̃ > 0,∫
f2(x)dx �

( 1
ΦK(R)

+ s̃+ c1ΘK(R)α1/d
)
DV (f, f)

+ C2
0α(R, s̃)

(∫
|f |(x)φ1(x)dx

)2

+ c1ΘK(R)α1/d

∫
f2(x)dx

� (ΨK(R)−1 + s̃)DV (f, f) + C2
0α(R, s̃)

( ∫
|f |(x)φ1(x)dx

)2

+ ΨK(R)−1

∫
f2(x)dx,

where ΨK is defined in the theorem with δ4 = c1.
For any s > 0, taking

R = Ψ−1
K

(4
s

)
∧ Ψ−1

K (2)

and s̃ = s/4 in the inequality above, we arrive at∫
f2(x)dx � sDV (f, f) + 2C2

0α
(
Ψ−1

K

(4
s

)
∧ Ψ−1

K (2),
s

4

)
·
(∫

|f |(x)φ1(x)dx
)2

. (3.4)

According to the intrinsic super Poincaré inequality (3.4) and the argument
of Theorem 1.1 (2), we can obtain the desired conclusions. �

Finally, we present the proofs of Examples 1.2, 1.4, and 1.6.

Proof of Example 1.2 Let V (x) = (1 + |x|)λ for some λ > 0. Then, according
to Theorem 1.1, the rate function β given by (1.6) satisfies that

β(s) = c1 exp(c2(1 + s−γ/λ)).

Therefore, by Theorem 1.1 (1), the semigroup (T V
t )t�0 is intrinsically

ultracontractive for any λ > γ. To verify that the semigroup (T V
t )t�0 is not

intrinsically ultracontractive for λ ∈ (0, γ], we can follow the proof of Example
1.4 (1) below, by using [8, (1.18)] instead. We omit the details here.

The lower bound estimate for φ1 follows from Proposition 2.1. Now, we
turn to the upper bound estimate. It is easy to check that for any r > 0 large
enough,

x �→ �B(0,2r)c

∫
{|x+z|�r}

J(x, x+ z)dz ∈ L2(Rd; dx), (3.5)

According to [22, Theorem 1.1], (1.7), and (3.5), C2
c (Rd) ⊂ D(LV ) and for any
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f ∈ C2
c (Rd),

LV f(x) =
∫

Rd

(f(x+ z) − f(x) − 〈∇f(x), z〉�{|z|�1})J(x, x+ z)dz

+
1
2

∫
{|z|�1}

〈∇f(x), z〉(J(x, x + z) − J(x, x− z))dz − V (x)f(x)

=: Lf(x) − V (x)f(x).

Let

ψ(x) =
e−(1+|x|2)γ/2

C0 + (1 + |x|2)λ/2
,

where C0 � 1 is a constant to be determined later. By the approximation
argument, it is easy to verify that ψ ∈ D(LV ). Next, we set

ρ(z) = |z|−d−α
�{|z|�1} + e−|z|γ

�{|z|>1}.

Then, for any x ∈ R
d with |x| > 3,

Lψ(x) =
∫
{|z|�1}

(ψ(x+ z) − ψ(x) − 〈∇ψ(x), z〉)J(x, x + z)dz

+
∫
{|z|>1}

(ψ(x + z) − ψ(x))J(x, x + z)dz

+
1
2

∫
{|z|�1}

〈∇ψ(x), z〉(J(x, x + z) − J(x, x− z))dz,

� c3ψ(x) +
∫
{|z|>1}

c4e−(1+|x+z|2)γ/2

C0 + V (x+ z)
ρ(z)dz

� c3ψ(x) +
c4
C0

∫
{|x+z|�1}

ρ(z)dz +
c4
C0

∫
{|z|>1, |x+z|>1}

ρ(z)ρ(x + z)dz

� c3ψ(x) +
c5
C0

sup
z∈B(x,1)

ρ(z) +
c6
C0

ρ(x)

� c3ψ(x) +
c7
C0

ρ(x),

where the constants ci (i = 3, 4, . . . , 7) are independent of the choice of C0.
Here, in the first inequality, we have used (1.7) and the fact that there exists a
constant c0 > 0 such that for all x ∈ R

d with |x| � 3,

sup
z∈B(x,1)

(|∇ψ(x)| + |∇2ψ(x)|) � c0ψ(x),

and the third and the forth inequalities follow from (H1) and (H2) (they have
been verified in [13, Example 4.1]). Thus, for any x ∈ R

d with |x| large enough,

LV ψ(x) � c3ψ(x) +
c7
C0

ρ(x) − V (x)e−(1+|x|2)γ/2

C0 + (1 + |x|2)λ/2
.
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In particular, taking C0 � 1 + 2c7 large enough in the inequality above, by the
fact that

V (x) = |x|λ → +∞, |x| → +∞,

we get
LV ψ(x) � 0

for |x| large enough. On the other hand, since ψ ∈ C2
b (Rd), it is easy to check

that the function x �→ LV ψ(x) is locally bounded. Therefore, there exists λ > 0
such that for any x ∈ R

d,
LV ψ(x) � λψ(x),

which implies that

T V
t ψ(x) � eλtψ(x), x ∈ R

d, t > 0.

Furthermore, according to [11, Theorem 3.2], the intrinsic ultracontractivity
of (T V

t )t�0 implies that for every t > 0, there is a constant ct > 0 such that

pV (t, x, y) � ctφ1(x)φ1(y), x, y ∈ R
d.

Therefore,
ψ(x) � e−λT V

1 ψ(x)

= e−λ

∫
pV (1, x, y)ψ(y)dy

� c8e−λ

∫
ψ(y)φ1(y)dyφ1(x)

= c9φ1(x),

which yields the required upper bound for the ground state φ1. �
Proof of Example 1.4 (1) Let V (x) = logλ(1 + |x|) for some λ > 0. Then,
according to Theorem 1.1, the rate function β given by (1.6) satisfies

β(s) = c1 exp(c2(1 + s−1/λ)). (3.6)

Therefore, by Theorem 1.1 (1), the semigroup (T V
t )t�0 is intrinsically

ultracontractive for any λ > 1.
To prove that for any λ ∈ (0, 1], the semigroup (T V

t )t�0 is not
intrinsically ultracontractive, we mainly follow the proof of [14, Theorem 1.6]
(see [14, pp. 5055, 5056]). Let p(t, x, y) be the heat kernel for the symmetric
α-stable process (X)t�0. It is well known that for any fixed t ∈ (0, 1] and |x−y|
large enough,

p(t, x, y) � c3t

|x− y|d+α
.

Set D = B(0, 1). For |x| large enough,

T V
t (�D)(x) �

∫
D
p(t, x, y)dy � c4t

|x|d+α
. (3.7)
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On the other hand, since λ ∈ (0, 1], for |x| large enough and t ∈ (0, 1],

T V
t (�B(x,1))(x) � E

x

(
τB(x,1) > t; exp

(
−

∫ t

0
V (Xs)ds

))
� c5P

x(τB(x,1) > t)e−t logλ |x|

� c5P
x(τB(x,1) > 1)e−t logλ |x|

� c6P
x(τB(x,1) > 1)e−t log |x|

� c7
|x|t .

Combining both conclusions above, we get that for any fixed t ∈ (0, d + α),
there is not a constant Ct > 0 such that for |x| large enough,

T V
t (�D)(x) � CtT

V
t (�B(x,1))(x),

which contradicts with [14, Condition 1.3]. Hence, according to the remark
below [14, Condition 1.3], the semigroup (T V

t )t�0 is not intrinsically
ultracontractive.

(2) According to (3.6) and Theorem 1.1 (2), we know that if λ > 1, then
the semigroup (T V

t )t�0 is intrinsically supercontractive. Now, suppose that
the semigroup (T V

t )t�0 is intrinsically supercontractive for some λ ∈ (0, 1],
which is equivalently saying that the semigroup (T̃ V

t )t�0 defined by (1.5) is
supercontractive for some λ ∈ (0, 1]. Then, by [18, Theorem 3.3.13 (2)], we
know that the super Poincaré inequality∫

f(x)2φ2
1(x)dx � rDφ1(f, f) + β(r)

(∫
|f |(x)φ2

1(x)dx
)2

,

r > 0, f ∈ C2
c (Rd), (3.8)

holds with some rate function β such that

lim
r→0

r log β(r) = 0,

where the bilinear form Dφ1 is given by (3.2).
For a fixed strictly positive φ ∈ C2

b (Rd) and any ε > 0, define

L̂εf(x) =
1

φ(x)

∫
{|x−y|�ε}

(f(y) − f(x))φ(y)
c(d, α)

|x− y|d+α
dy, f ∈ C2

c (Rd).

Then

LV (φf)(x) = c(d, α) p.v.
∫

((φf)(y) − (φf)(x))
1

|x − y|d+α
dy − V (x)(φf)(x)

= φ(x) lim
ε→0

L̂εf(x)

+ f(x)
[
c(d, α) p.v.

∫
(φ(y) − φ(x))

1
|x − y|d+α

dy − V (x)φ(x)
]

= φ(x) lim
ε→0

L̂εf(x) + f(x)LV φ(x),
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where p.v. denotes the principal value integral. Therefore, for the probability
measure μ(dx) = φ2(x)dx, we get

DV (φf, φf) = − 〈φf,LV (φf)〉L2(Rd;dx)

= −
〈
f,

1
φ
LV (φf)

〉
L2(Rd;μ)

= − lim
ε→0

〈f, L̂εf〉L2(Rd;μ) −
〈
f,
f

φ
LV φ

〉
L2(Rd;μ)

= − lim
ε→0

∫∫
{|x−y|�ε}

c(d, α)(f(y) − f(x))f(x)
|x− y|d+α

φ(y)φ(x)dxdy

−
〈
f,
f

φ
LV φ

〉
L2(Rd;μ)

=
c(d, α)

2

∫∫
(f(y) − f(x))2

|x− y|d+α
φ(y)φ(x)dxdy −

〈
f,
f

φ
LV φ

〉
L2(Rd;μ)

,

where, in the third equality, we have used the dominated convergence theorem,
and the last equality follows from the symmetry of kernel c(d, α)/|x− y|d+α.
Whence, if φ1 ∈ C2

b (Rd), then we have

Dφ1(f, f) =
c(d, α)

2

∫∫
(f(x) − f(y))2

|x− y|d+α
φ1(x)φ1(y)dxdy

−
〈
f,

f

φ1
LV φ1

〉
L2(Rd;μ)

+ λ1

∫
Rd

f2(x)φ2
1(x)dx

=
c(d, α)

2

∫∫
(f(x) − f(y))2

|x− y|d+α
φ1(x)φ1(y)dxdy. (3.9)

Since C2
c (Rd) is a core for (LV ,D(LV )) and φ1 ∈ D(LV ), by the standard

approximation argument, we get that (3.9) is still true for ground state φ1

without the assumption that φ1 ∈ C2
b (Rd).

Second, according to [13, Corollary 2.2] (in this case, [13, Assumption 2.3]
holds true and so [13, Corollary 2.2] applies), there exists a constant c1 > 1
such that

c−1
1

(1 + |x|)d+α logλ(1 + |x|) � φ1(x) � c1

(1 + |x|)d+α logλ(1 + |x|) . (3.10)

Third, we consider the following reference function gn ∈ C2
b (Rd) for n � 1

such that

gn(x)

⎧⎪⎨⎪⎩
= 0, |x| � n,

∈ [0, 1], n � |x| � 2n,

= 1, |x| � 2n,

and |∇gn(x)| � 2/n for all x ∈ R
d. It is easy to see that∫

gn(x)2φ2
1(x)dx � c2

nd+2α log2λ(1 + n)
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and (∫
|gn|(x)φ2

1(x)dx
)2

� c3

n2d+4α log4λ(1 + n)

hold for some constants c2, c3 > 0. On the other hand,

Dφ1(gn, gn) = c(d, α)
∫∫

{|x|�n, |y|�n}

(gn(x) − gn(y))2

|x− y|d+α
φ1(x)φ1(y)dxdy

+ c(d, α)
∫∫

{|x|>n}

(gn(x) − gn(y))2

|x− y|d+α
φ1(x)φ1(y)dxdy

=: I1 + I2.

Then, by (3.10),

I1 � c∗1
nd+α logλ(1 + n)

[
1
n2

∫∫
{|x−y|�n}

|x− y|2
|x− y|d+α

dyφ1(x)dx

+
∫∫

{|x−y|�n}

1
|x− y|d+α

dyφ1(x)dx
]

� c∗2
nd+2α logλ(1 + n)

.

Similarly,

I2 � c∗3
nd+α logλ(1 + n)

[
1
n2

∫∫
{|x−y|�n}

|x− y|2
|x− y|d+α

dxφ1(y)dy

+
∫∫

{|x−y|�n}

1
|x− y|d+α

dxφ1(y)dy
]

� c∗4
nd+2α logλ(1 + n)

.

Combining all the conclusions above, we obtain

c2

logλ(1 + n)
� c4r +

c3β(r)
nd+2α log3λ(1 + n)

for some constant c4 > 0. Taking

r = rn :=
c2

2c4 logλ(1 + n)
,

we get
β(rn) � c2

2c3
nd+2α log2λ(1 + n).

In particular, due to λ ∈ (0, 1],

lim sup
r→0

r log β(r) � lim sup
r→0

r1/λ log β(r) � lim inf
n→+∞ r1/λ

n log β(rn) > 0,
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which contradicts with
lim
r→0

r log β(r) = 0.

This proves the second desired assertion.
(3) By (3.6) and Theorem 1.1 (3), the semigroup (T V

t )t�0 is intrinsically
hypercontractive for λ � 1. Assume that the semigroup (T V

t )t�0 is intrinsically
hypercontractive for some λ ∈ (0, 1). Then, by [18, Theorem 3.3.13 (1)], the
super Poincaré inequality (3.8) holds with

β(r) � exp(c(1 + r−1)), r > 0. (3.11)

Now, we can follow the proof of part (2) above, and obtain

lim inf
n→+∞ r1/λ

n log β(rn) > 0,

where rn is the same sequence as that in (2). In particular, rn → 0 as n→ +∞,
and

β(rn) � exp(c1r−1/λ
n )

for n large enough and some constant c1 > 0. This is a contradiction with
(3.11), also thanks to the fact that λ ∈ (0, 1). Hence, we complete the proof. �
Proof of Example 1.6 (1) Take K = 1 in assumption (A). Then

ΦK(r) = logλ(1 + r), ΘK(r) = c1 log−θ(1 + r)

for r � 1 large enough. Thus, according to Theorem 1.5, the rate function β̂
given by (1.8) satisfies

β̂(s) � c2 exp
(
c3

(
1 + s−max( 1

λ
, d
θα

)
))
.

This, along with Theorem 1.5 again, yields the first desired assertion.

(2) For any R > 0 with emk0 � R � e(m+1)k0 for some m � 1, we have

|A ∩B(0, R)c| �
+∞∑
k=m

|B(xk, rk)|

= c0

+∞∑
k=m

k−
dk0
α

+1

� c1m
− dk0

α
+2

� c2(m+ 1)k0(− d
α

+ 2
k0

)

� c2

log
d
α
−εR

.

This proves (1.10).
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Let D = B(0, 1) and t = 1. According to (3.7), for all m large enough,

T V
1 (�D)(xm) � c3

|xm|d+α
= c3 exp(−(d+ α)mk0). (3.12)

On the other hand, by the definition of V and the space-homogeneous property
and scaling property of symmetric α-stable process, for m large enough,

T V
1 (�B(xm,1))(xm) � T V

1 (�B(xm,rm))(xm)

� E
xm

(
τB(xm,rm) > 1; exp

(
−

∫ 1

0
V (Xs)ds

))
= e−1

P
xm(τB(xm,rm) > 1)

= e−1
P

0(τB(0,rm) > 1)

= e−1
P

0(τB(0,1) > r−α
m ).

Let pB(t, x, y) be the Dirichlet heat kernel of symmetric α-stable process killed
on exiting B. We find that the right-hand side of the inequality above is just∫

B(0,1)
pB(0,1)(r

−α
m , 0, z)dz � c4e−λr−α

m = c4e−λmk0−α
d

for some positive constants c4 and λ, where the inequality above follows from
[9, Theorem 1.1 (ii)]. Hence, we have

T V
1 (�B(xm,1))(xm) � c4e−λmk0−α

d . (3.13)

According to (3.12) and (3.13), we know that for any constant C > 0, the
inequality

T V
1 (�B(x,1))(x) � CT V

1 (�D)(x).

does not hold for x = xm with m large enough. In particular, [14, Condition
1.3] is not satisfied, and so the semigroup (T V

t )t�0 is not intrinsically
ultracontractive. �
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(to appear), also see arXiv: 1209.4220

14. Kulczycki T, Siddeja B. Intrinsic ultracontractivity of the Feynman-Kac semigroup for
relativistic stable processes. Trans Amer Math Soc, 2006, 358: 5025–5057

15. Ouhabaz E M, Wang F -Y. Sharp estimates for intrinsic ultracontractivity on
C1,α-domains. Manuscripta Math, 2007, 112: 229–244

16. Wang F -Y. Functional inequalities for empty spectrum estimates. J Funct Anal, 2000,
170: 219–245

17. Wang F -Y. Functional inequalities and spectrum estimates: the infinite measure case.
J Funct Anal, 2002, 194: 288–310

18. Wang F -Y. Functional Inequalities, Markov Processes and Spectral Theory. Beijing:
Science Press, 2005

19. Wang F -Y. Intrinsic ultracontractivity on Riemannian manifolds with infinite volume
measures. Sci China Math, 2010, 53: 895–904

20. Wang F -Y, Wang J. Functional inequalities for stable-like Dirichlet forms. J Theoret
Probab (to appear), also see arXiv: 1205.4508v3

21. Wang F -Y, Wu J -L. Compactness of Schrödinger semigroups with unbounded below
potentials. Bull Sci Math, 2008, 132: 679–689
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