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Abstract Imaginary Verma modules, parabolic imaginary Verma modules,
and Verma modules at level zero for double affine Lie algebras are constructed
using three different triangular decompositions. Their relations are investigated,
and several results are generalized from the affine Lie algebras. In particular,
imaginary highest weight modules, integrable modules, and irreducibility
criterion are also studied.
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1 Introduction

Let ĝ be the untwisted affine Lie algebra associated to a complex finite-
dimensional simple Lie algebra g with Cartan subalgebra h. The highest weight
irreducible ĝ-module L(λ) of the highest weight λ can be studied with the help
of the Verma module V (λ), which is an induced module of the one-dimensional
module C1λ of the Borel subalgebra b̂ = ĥ + n̂+ such that n̂+1λ = 0. If one
partitions the affine root system using the loop realization of ĝ, the associated
imaginary Verma module [7] behaves quite differently. For example, the new
Verma module can have infinite-dimensional weight subspaces.

Double affine Lie algebras are certain central extensions of maps from a
2-dimensional torus to the Lie algebra g. They are analogous to ĝ but with
two centers, and first appeared in Frenkel’s work [6] on affinization of Kac-
Moody algebras. Moody and Shi [12] have shown that the root systems have
different properties from those of the affine root systems. For example, some
roots cannot be spanned positively or negatively by the ‘simple’ ones. Thus, a
usual highest weight module would blow up beyond control. In this paper, we
generalize imaginary Verma modules (IVM) to double affine Lie algebras and
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use them to produce irreducible modules.
To study these imaginary Verma modules, we consider generalized

imaginary Verma modules, which bare some similarity to the parabolic Verma
modules in classical Lie theory. The structure of IVM’s is characterized by the
generalized IVM’s, and we show that they are irreducible if the second center
is nonzero. When the second center is zero, they are similar to the evaluation
modules of the affine Lie algebras, for which we also generalize several results
from the Tits-Kantor-Koecher algebras [1].

To further understand the situation of trivial centers, we adopt Chari and
Pressley’s technique [3,4] of Weyl modules to modules of double affine Lie
algebras, which has played an important role for loop algebras (see [2] for a
survey). We remark that the triangular decomposition employed in our case is
different from that used in previous work on toroidal Lie algebras (cf. [8,13,14]).
In our modules, the Borel subalgebras are defined by carving out the second
imaginary part to control the growth of the IVM’s.

2 Double affine Lie algebras

Let g be a complex finite-dimensional simple Lie algebra of simply laced type
with h its Cartan subalgebra. Let Δ be the root system generated by the simple
roots αi (i = 1, 2, . . . , s), and let α∨

i ∈ h (i = 1, 2, . . . , s) be the corresponding
simple coroots such that

〈α∨
j , αi〉 = aij ,

the entries of the Cartan matrix of g. Denote by

θ =
s∑

i=1

k′
iαi

the longest root of g, and θ∨ the corresponding dual element in h. For any
positive root

α =
∑

i

ciαi ∈ Δ,

we denote its height by

ht(α) =
s∑

i=1

ci.

The double affine Lie algebra T is the central extension of the 2-loop algebra
defined by

T = g ⊗ C[t1, t−1
1 , t2, t

−1
2 ] ⊕ Cc1 ⊕ Cc2,

where C[t1, t−1
1 , t2, t

−1
2 ] is the ring of Laurent polynomials in two commuting

variables t1 and t2. Writing x ⊗ tm1 tn2 as x(m,n), the Lie bracket is given by

[x(m1, n1), y(m2, n2)]
= [x, y](m1 + m2, n1 + n2) + (x1 | x2)δm1,−n1δm2,−n2(m1c1 + m2c2), (1)
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[c1, x(m1, n1)] = [c2, x(m1, n1)] = 0, (2)

where (m1,m2), (n1, n2) ∈ Z2, x1, x2, x ∈ g, and (x1 | x2) is the g-invariant
bilinear form. Adjoining the derivations, we define the extended double affine
Lie algebra T as

T = g ⊗ C[t1, t−1
1 , t2, t

−1
2 ] ⊕ Cc1 ⊕ Cc2 ⊕ Cd1 ⊕ Cd2.

The derivations act on T via

[di, x(m1,m2)] = mix(m1,m2), [di, cj ] = 0, i, j = 1, 2. (3)

Let
ĥ = h ⊕ Cc1 ⊕ Cc2 ⊕ Cd1 ⊕ Cd2

be the Cartan subalgebra of T, and let ĥ∗ be the dual space. For β ∈ ĥ∗, the
root subspace

Tβ = {x ∈ T | [h, x] = β(h)x, ∀h ∈ ĥ}
is defined in the usual way. We then define the root system ΔT to be the set
of all nonzero β ∈ ĥ∗ such that Tβ �= 0. It is known that [12] the root system
is different from the usual root system in that a root is no longer a positive or
negative sum of the ‘simple’ roots.

To be specific, we let δi ∈ ĥ∗ such that

δi(h) = δi(cj) = 0, δi(dj) = δij , i, j = 1, 2.

Then the extended root system

ΔT = {α + Zδ1 + Zδ2 | α ∈ Δ} ∪ ({Zδ1 + Zδ2} \ {0}),
where the first and second subsets form the real and imaginary roots, denoted
by Δre

T and Δim
T , respectively. The corresponding root subspaces are

Tmδ1+nδ2 = h ⊗ tm1 tn2 , (m,n) �= (0, 0),

Tα+mδ1+nδ2 = gα ⊗ tm1 tn2 , (m,n) ∈ Z × Z.

Then one has the root space decomposition

T = ĥ ⊕
⊕

β∈ΔT

Tβ.

Obviously, the extended double affine Lie algebra T contains two affine Lie
algebras as subalgebras:

ĝi = g ⊗ C[ti, t−1
i ] ⊕ Cci ⊕ Cdi, i = 1, 2.

Recall that [10] α0 = δ1 − θ, α1, α2, . . . , αs are the simple roots of ĝ1. Similarly,
the roots α−1 = δ2 − θ, α1, α2, . . . , αs are simple roots for ĝ2. Following [12], we
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call the elements α−1, α0, α1, . . . , αs the ‘simple’ roots of T. However, not all
roots can be represented as non-negative or non-positive linear combination of
the ‘simple’ roots. The corresponding coroots are α∨

−1, α
∨
0 , α∨

1 , . . . , α∨
s , where

α∨
−1 = c2 − θ∨ ⊗ 1, α∨

0 = c1 − θ∨ ⊗ 1.

Consequently, the Cartan subalgebra ĥ is spanned by α∨
−1, α

∨
0 , α∨

1 , . . . , α∨
s , d1, d2.

3 Imaginary Verma modules of T

Verma modules of affine Lie algebras are defined with the help of a triangular
decomposition, which is constructed by a choice of the base in the root system.
Since the root system for the extended double affine algebras cannot be divided
into positive and negative roots in the usual sense, we use a closed subset
to partition the root system. For affine Lie algebras, Futorny [7] studied a
new class of Verma modules called the imaginary Verma modules (IVM) [5,15]
associated with a closed subset defined by a function. For finite-dimensional
simple Lie algebras, the partition derived from the closed subset coincides with
the usual partition of positive and negative roots. In this section, we introduce
the imaginary Verma modules for the extended double affine Lie algebras and
derive their important properties.

3.1 Imaginary Verma modules

Set

ϕ =
s∑

i=0

α∗
i − ht(θ)α∗

−1,

where α∗
i ∈ ĥ such that α∗

i (αj) = δij (i, j = −1, 0, . . . , s). Clearly,

ϕ(αi) = 1, i = 0, 1, . . . , s, ϕ(δ2) = 0, ϕ(δ1) = 1 + ht(θ).

Let
I = {α ∈ ΔT | ϕ(α) > 0} ∪ Nδ2.

Then it is closed under the addition.
Recall [10] that the root system of ĝ1 is

Δĝ1
= {α + Zδ1 | α ∈ Δ} ∪ ({Zδ1}\{0}),

and its positive roots are

Δĝ1+ = {±α + Nδ1 | α ∈ Δ} ∪ Δ+ ∪ Nδ1.

Note that for any α ∈ Δĝ1+, ϕ(α) = ht(α). Then I can be written as

I = {α + Zδ2 | α ∈ Δĝ1+} ∪ Nδ2.
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Subsequently,
I ∪ (−I ) = ΔT, I ∩ (−I ) = ∅.

Denote by Q(I ) the Z-span of I .
Let

TI =
⊕
β∈I

Tβ, T−I =
⊕

β∈−I

Tβ.

Then
T = T−I ⊕ ĥ ⊕ TI (4)

is a triangular decomposition of T associated with the closed subset I . The
Poincaré-Birkhoff-Witt (PBW) theorem implies that the universal enveloping
algebra

U(T) = U(T−I ) ⊗ U(ĥ) ⊗ U(TI ).

Let bI = ĥ ⊕ TI be the imaginary Borel subalgebra, which is a solvable
Lie algebra. A vector space V is called a weight module of T if

V =
⊕
μ∈ĥ∗

Vμ,

where
Vμ = {v ∈ V | hv = μ(h)v, ∀h ∈ ĥ}.

Set
P(V ) = {μ ∈ ĥ∗ | Vμ �= 0}.

We say that λ � μ (λ, μ ∈ ĥ∗) with respect to ϕ if λ−μ is a non-negative linear
combination of roots in I . For simplicity, we will omit the reference to ϕ if no
confusion arises from the context. For example, both T and U(T) are weight
modules for T.

Definition 1 Let λ ∈ ĥ∗. A nonzero vector v is called an imaginary highest
vector with weight λ if TI .v = 0 and h.v = λ(h)v for all h ∈ ĥ. If V = U(T)v,
then V is called a highest weight module of highest weight λ.

If V is a highest weight module of weight λ, then

V = U(T−I )v =
⊕

η∈Q(I )+

Vλ−η, (5)

where Q(I )+ = Z+-span of I .

For λ ∈ ĥ∗, let C1λ be the one-dimensional bI -module defined by

(x + h).1λ = λ(h) · 1λ, x ∈ TI , h ∈ ĥ.

The imaginary Verma module is the induced module

M (λ) = U(T) ⊗U(bI ) C1λ.
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3.2 Properties of IVM

Based on the theory of the standard Verma modules [10] and IVM’s for the
affine Lie algebras [7], the following result can be proved similarly.

Proposition 1 For any λ ∈ ĥ∗, one has the following statements.
(i) M(λ) is a U(T−I )-free module generated by the imaginary highest vector

1 ⊗ 1λ of weight λ.

(ii) (a) dimM(λ)λ = 1;
(b) 0 < dim M(λ)λ−kδ2 < +∞ for every positive integer k;
(c) If M (λ)μ �= 0 and μ �= λ − kδ2 for any nonnegative integer k, then we

have dim M(λ)μ = +∞.

(iii) Any imaginary highest weight T-module of highest weight λ is a quotient
of M(λ).

(iv) M(λ) has a unique maximal submodule J .

(v) If μ ∈ ĥ∗, then any nonzero homomorphism M(λ) → M(μ) is injective.

We denote by L(λ) the irreducible quotient M(λ)/J .

3.3 Irreducibility criterion for IVM

Futorny [7] found that the affine imaginary Verma module is irreducible if and
only if the center acts nontrivially. It turns out that a similar result can be
obtained for M(λ) (see Theorem 1 below).

Lemma 1 Let

M =
+∞⊕
j=0

M(λ)λ−jδ2 .

For any nonzero v ∈ M(λ),

U(T)v ∩ M �= 0.

Proof Write λ = λ − rδ2, where λ is the component of Δĝ1
. We can assume

that r is minimum so that vλ �= 0, otherwise we can replace λ by λ′ and
M(λ) = M(λ′), where λ ≡ λ′ (mod Zδ2). Therefore, h ⊗ t−n

2 vλ �= 0 for any
n � 0. Assume that v ∈ M(λ)λ−μ, where

μ =
s∑

i=0

niαi + kδ2, ni ∈ Z+, k ∈ Z.

Define the height

ht(μ) =
s∑

i=0

ni

and use induction on ht(μ). If ht(μ) = 0, then the weight of v is λ − kδ2 for
some k ∈ Z+ by assumption, so the result clearly holds.
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Let ei, fi, α
∨
i (0 � i � s) be the Chevalley generators of the derived affine Lie

algebra ĝ1. If ht(μ) > 0, then there exists i0 ∈ {0, 1, . . . , s} such that ei0v �= 0.
In fact, when ht(μ) = 1, say v = fi ⊗ t−k

2 vλ. If k < 0, then

α∨
i ⊗ tk−1

2 v = −2fi ⊗ t−1
2 vλ �= 0.

Then let
v′ = α∨

i ⊗ tk−1
2 v, eiv

′ = −2α∨
i ⊗ t−1

2 vλ �= 0.

The case of ht(μ) � 2 is treated similarly. Moreover, ei0(h ⊗ t−m
2 ).v′ �= 0 for

all m � 0. Hence, Tαi0
−mδ2 .v

′ �= 0, and any of its nonzero element has weight
λ − μ + αi0 − (m + 1)δ2. As ht(μ − αi0) = ht(μ) − 1, by inductive hypothesis,
we have

U(T)(Tαi0
−mδ2 .v

′) ∩ M �= 0.

Since U(T)(Tαi0
−mδ2 .v

′) ⊂ U(T)v, it follows that U(T)v ∩ M �= 0. �
Let

M(λ)+ = {v ∈ M(λ) | TI .v = 0}
be the space of extremal vectors. Clearly, M (λ)+ is ĥ-invariant. For any nonzero
element v ∈ M(λ)+, U(T).v generates a submodule of M(λ). The following
result describes the form of extremal vectors.

Corollary 1 M(λ)+ ⊂ M.

Proof Suppose on the contrary that there exists a nonzero v ∈ M(λ)+ ∩
M(λ)λ−μ such that

μ =
s∑

i=0

niαi + kδ2, ht(μ) =
s∑

i=0

ni > 0.

Note that U(T)v = U(T−I )v. Then the weight of any homogeneous vector in
U(T)v is λ − μ − ν for ν ∈ Q(I )+. As ht(μ) > 0, λ − μ − ν �= λ (mod Zδ2).
Hence, U(T)v ∩ M = 0, which contradicts with Lemma 1 on M(λ)λ−μ. �

Define the Heisenberg subalgebra

Ĥ2 =
⊕

n∈Z×
h ⊗ tn2 + Cc2.

Then the space

M =
+∞⊕
j=0

M(λ)λ−jδ2

is a Verma module for Ĥ2. The following result is well known from Stone-von
Neumann’s theorem.

Lemma 2 M is irreducible as a Verma module for Ĥ2 if and only if λ(c2) �= 0.
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Theorem 1 The imaginary Verma module M(λ) is irreducible if and only if
λ(c2) �= 0.

Proof Let vλ be the highest weight vector of M(λ). By definition, M(λ) is
irreducible if and only if the space of extremal vectors M(λ)+ = Cvλ.

Suppose that M(λ) is irreducible but λ(c2) = 0. Since M is reducible as an
Ĥ2-module by Lemma 2, there exists w �= 0 with weight λ − kδ2 (k > 0) such
that Tlδ2.w = 0 for any l > 0. It is clear that Tβ.w = 0 for all β ∈ {α ∈ ΔT |
ϕ(α) > 0}, because the weight of Tβ.w is larger than λ. Thus, w /∈ Cvλ is also
an imaginary highest vector in M(λ), which is a contradiction. So we must
have λ(c2) �= 0.

When λ(c2) �= 0, Lemma 2 implies that the Ĥ2-module M is irreducible.
Consider any nonzero submodule U(T)v, where v ∈ M(λ). Lemma 1 says that
U(T)v ∩ M �= 0. Note that U(T)v ∩ M is then a non-trivial Ĥ2-submodule of
M. Consequently, U(T)v ∩ M = M, and thus, M ⊂ U(T)v. Because vλ ∈ M,
we have U(T)v = M(λ), i.e., M (λ) is irreducible. �

4 Generalized IVM M(λ, A ) and highest weight modules

In this section, we give a new class of modules M(λ,A ) generalizing the
previous IVM’s to study the structure of IVM. They are similar to parabolic
Verma modules.

4.1 Definition of M(λ, A )
Let A ⊂ B = {0, 1, 2, . . . , s}, the index set of ĝ1. We denote A ∗ = A \{0} and
B∗ = B\{0}. Define

fA =

⎧⎪⎨
⎪⎩

∑
i∈B\A

α∗
i −

( ∑
i∈B∗\A ∗

k′
i

)
α∗
−1, A �= B,

0, A = B.

Then fA (δ2) = 0. Set

Q(A ) = {α ∈ ΔT | fA (α) � 0},
which is closed under addition. Then

Q(A ) = I ∪
{
−

∑
i∈A

liαi + Zδ2

∣∣∣ li � 0,
∏

i

li �= 0
}
∪ {−Nδ2}.

Note that I � Q(A ).
The following result is clear.

Proposition 2

Q(A ) ∩ (−Q(A )) =
{ ∑

i∈A

Zαi + Zδ2

}
∩ ΔT.
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Recall that the Cartan matrix is given by

〈α∨
j , αi〉 = aij, i = −1, 0, 1, . . . , s, j = 0, 1, . . . , s.

Let ĥA ⊂ ĥ be the space spanned by α∨
i (i ∈ A ). Consider the subspaces TQ(A )

and T−Q(A ), where

Q(A ) = Q(A )\(−Q(A )).

Then T decomposes itself as

T = T−Q(A ) ⊕ ĥ ⊕ TQ(A ).

Let λ ∈ ĥ∗ such that
λ(ĥA ⊕ Cc2) = 0.

Let C1λ be the one-dimensional ĥ ⊕ TQ(A )-module such that

(x + h).1λ = λ(h) · 1λ, x ∈ TQ(A ), h ∈ ĥ.

Define the induced T-module associated with I , A , and λ as follows:

M(λ,A ) = U(T) ⊗U(ĥ⊕TQ(A ))
C1λ.

4.2 Properties of M(λ, A )
The following result is similar to Proposition 1.

Proposition 3 For any λ ∈ ĥ∗ such that λ(ĥA ⊕ Cc2) = 0, one has the
following statements.

(i) M(λ,A ) is a U(T−Q(A ))-free module generated by 1 ⊗ 1λ.

(ii) dim M(λ,A )μ = 0, 1 for

μ = λ −
∑
i∈A

kiαi − αj + kδ2, ki ∈ Z+, k ∈ Z, j ∈ B\A .

Otherwise, dim M(λ,A )μ = +∞.

(iii) The T-module M(λ,A ) has a unique irreducible quotient L(λ,A ).
(iv) Let A ′′ ⊂ A . Then there exists a chain of surjective homomorphisms:

M(λ) → M(λ,A ′′) → M(λ,A ).

(v) Let λ, μ ∈ ĥ∗. Then every nonzero map in HomT(M(λ,A ),M(μ,A ))
is injective.

(vi) Let A ⊂ B. Then the module M(λ,A ) is irreducible if and only if
λ(α∨

i ) �= 0 for any i ∈ A ′ \ A , A � A ′, i.e., A is the maximal set such that
λ(α∨

i ) = 0.
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Remark 1 If A = B, then M(λ,A ) = L(λ,A ) is a trivial one-dimensional
module.

Corollary 2 Let λ ∈ ĥ∗, A ⊂ B, and ĥA ⊕ Cc2 ⊂ ker λ. Also assume that
λ(α∨

i ) �= 0 for any i ∈ A ′ \ A , A � A ′. Then

L(λ) ∼= M(λ,A ) = L(λ,A ) ∼= L(λ,A ′′), ∀A ′′ ⊂ A .

Proof Proposition 3 (vi) implies M(λ,A ) = L(λ,A ). Meanwhile, Proposition
3 (iv) implies

L(λ,A ) ∼= L(λ), L(λ,A ′′) ∼= L(λ,A ), ∀A ′′ ⊂ A .

This completes the proof. �
Corollary 3 Let λ ∈ ĥ∗ and λ(c2) = 0. If λ(α∨

i ) �= 0 for any i ∈ B, then
M(λ)+ = M.

Proof By Corollary 1, it suffices to show M ⊂ M (λ)+. If λ(α∨
i ) �= 0 for any

i ∈ B, then
L(λ) ∼= M(λ, ∅) = L(λ, ∅).

The result follows by comparing the definition of L(λ) and that of M(λ, ∅). �
The following result is a consequence of Corollary 3.

Theorem 2 Suppose that λ ∈ ĥ∗, λ(c2) = 0, and λ(α∨
i ) �= 0 for any i ∈ B.

Then one has the following statements.
(i) M(λ) has infinitely many proper submodules:

M(λ) ⊃ M(λ − δ2) ⊃ M(λ − 2δ2) ⊃ · · · ,

where
dim M(λ − kδ2)λ−kδ2 = dim M(λ)λ−kδ2 = mk

are finite. Moreover,
L(λ) = M(λ)/M (λ − δ2).

(ii) The root multiplicities dimM (λ)λ−kδ2 = mk for all k � 0, and M(λ −
kδ2, ∅) exhaust all irreducible subquotients of M(λ).

(iii) For any integer k � 0,

dim HomT(M(λ − kδ2),M (λ)) = mk.

One can describe general highest weight modules as follows.

Corollary 4 Let V be a highest weight T-module of highest weight λ. If c2

acts trivially and λ(α∨
i ) �= 0 for i = 0, 1, . . . , s, then V � M(λ)/M (λ− kδ2) for

some k.
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5 Highest weight modules of T

In this section, we construct another class of highest weight T-modules by
slightly modifying the triangular decomposition for IVM. Using the method of
[1], we generalize some results of TKK modules to the highest weight T-modules
under the condition that λ(c1) = λ(c2) = 0.

These centerless modules are introduced to understand our earlier IVMs
and parabolic IVMs. We remark that our construction differs from [13,14] in
that the Cartan subalgebra is purely generated by the imaginary root δ2.

5.1 Definition of M(λ)
Let

Φ+ = I \Nδ2, Φ− = −Φ+, Φ0 = Zδ2.

Correspondingly, the root spaces are

T0 =
⊕
α∈Φ0

Tα, T± =
⊕

α∈Φ+

T±α.

Obviously,

T = T+ ⊕ T− ⊕ T0, ΔT = Φ+ ∪ Φ− ∪ (Φ0\{0}).
We define a new module structure on C1λ such that

h.1λ = λ(h) · 1λ (h ∈ T0), T+.1λ = 0.

Similarly, we define the induced module M(λ) of T :

M(λ) = U(T) ⊗U(T0⊕T+) C1λ.

5.2 Properties of M(λ)
The following result describes the relations among IVM’s, generalized IVM’s,
and highest weight modules.

Proposition 4 For any λ ∈ ĥ∗, one has the following statements.
(i) M(λ) is a U(T−)-free module generated by 1 ⊗ 1λ =: vλ.

(ii) M(λ) has a unique irreducible quotient L(λ).

(iii) Let λ ∈ ĥ∗, ĥA ⊕Cc2 ⊂ ker λ, and A ′′ ⊂ A . Then there exists a chain
of surjective homomorphisms:

M(λ) → M(λ) → M(λ,A ′′) → M(λ,A ).

(iv) Let μ ∈ ĥ∗. Then every nonzero element of HomT(M(λ),M(μ)) is
injective.

(v) Let A ⊂ B and ĥA ⊕ Cc2 ⊂ ker λ. If

λ(α∨
i ) �= 0, ∀ i ∈ A ′ \ A , A � A ′,
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then
L(λ) ∼= L(λ) ∼= L(λ,A ).

Remark 2 (i) If A = ∅, then M(λ) = M(λ,A ).
(ii) L(0) is one-dimensional.

5.3 Irreducible module L(λ)
In this subsection, we study the integrability of L(λ) and its weight subspaces.

Definition 2 A T-module M is called integrable if M is a weight module and
xα(m,n) ∈ T (α ∈ Δ; m,n ∈ Z) are locally nilpotent on every nonzero v ∈ M,
i.e., there exists a positive integer N = N(α,m, n) such that xα(m,n)N .v = 0.

We write x(α, n) = xα ⊗ tn2 for α ∈ Δĝ1
. The following result is clear.

Lemma 3 T± is generated by {x(±αi, n) | i = 0, 1, . . . , s; n ∈ Z}, respectively.

For an arbitrary Lie algebra g, we recall the following results.

Proposition 5 [10] Let v1, v2, . . . be a system of generators of a g-module V,
and suppose that each x ∈ g is locally ad-nilpotent on g and xNi(vi) = 0 for
some positive integers Ni (i = 1, 2, . . .). Then x is locally nilpotent on V.

Proposition 6 [11] Let π : g → gl(V ) be a representation of g. If both ad x
and π(x) are locally nilpotent for any x ∈ g, then

π(exp(ad x)(y)) = (exp π(x))π(y)(exp π(x))−1, ∀ y ∈ g. (6)

For a real root γ ∈ Δre
ĝ1

= {α + nδ1 | α �= 0, n ∈ Z}, define the reflection rγ

on ĥ∗ by
rγ(λ) = λ − λ(γ∨)γ,

where γ∨ = α∨ + nc1 if γ = α + nδ1. Let Wa be the affine Weyl group of ĝ1

generated by the reflections rγ , γ ∈ Δre
ĝ1

. Then Wa is a Coxeter group.

Lemma 4 Suppose that x(−αi, n) (i = 0, 1, . . . , s, n ∈ Z) are locally nilpotent
on the highest weight vector vλ in L(λ). Then all x(m,n) (m ∈ Z) are locally
nilpotent on L(λ).

Proof Since x(−αi, n) (i = 0, 1, . . . , s) are locally nilpotent on vλ, they act
locally nilpotent on any x(m,n) via the adjoint representation. By Proposition
5, the elements x(−αi, n) are locally nilpotent on L(λ). So L(λ) is integrable
for each of the sl2-algebras: 〈x(αi, n), x(−αi,−n), α∨

i 〉, i = 1, 2, . . . , s, as well as
〈x(α0, n), x(−α0,−n), α∨

0 = −θ∨〉 (note that we assume that c1, c2 act as zero).
Suppose that

β = α + mδ1 + nδ2 ∈ Δre
T

is the root of x(m,n). Let γ = α + mδ1. Then

γ = β − nδ2 ∈ Δre
ĝ1

.
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For any i ∈ {0, 1, . . . , s}, there exists a w ∈ Wa such that w(γ) = αi [10]. Since
w(δ2) = δ2, we have w(β) = αi + nδ2. Let sw be the linear automorphism of
T associated with w. Up to a nonzero constant, we have sw(x(m,n)) = Y for
Y ∈ Tαi+nδ2 . It follows from Proposition 6 that all x(m,n) are locally nilpotent
on L(λ). �

We now recall Weyl modules [4] for the loop algebra

ŝl2(C) = sl2 ⊗ C[t, t−1].

Let a1, a2, . . . , an ∈ C× and λ1, λ2, . . . , λn ∈ Z+ with |λ| =
∑

i λi. We define
B(a, λ) to be the cyclic ŝl2(C)-module generated by w such that

e(m)w = f(0)|λ|+1w = 0, ∀m,

h(m)w =
n∑

j=1

λja
m
j w, ∀m.

The following result was proved by Chari and Pressley.

Proposition 7 [4] The ŝl2(C)-module B(a, λ) is finite dimensional. If B′ is
a finite-dimensional ŝl2(C)-module generated by w′ such that

dim U(α∨ ⊗ C[t, t−1])w′ = 1,

then B′ is a quotient of some B(a, λ) constructed above.

We also need the following remarkable formula proved by Garland.

Lemma 5 [9] Let

β = α + r1δ1 ∈ Δĝ1+, r1 ∈ Z.

Then, for any t � 1, we have

x(β,±1)tx(−β, 0)t+1 =
t∑

m=0

x(−β,±m)Λ±(β∨, t − m) + X,

x(β,±1)t+1x(−β, 0)t+1 = Λ±(β∨, t + 1) + Y,

where X and Y are in the left ideal of T generated by the subalgebra T+ and
Λ±(β∨, j) is the coefficient of uj in

Λ±(β∨, u) = exp
(
−

+∞∑
j=1

β∨t±j
2 uj

j

)
.

Remark 3 By definition of Λ±(β∨, u), it follows that every element h⊗tm2 (h ∈
h, m ∈ Z×) is a polynomial in the variables Λ±(α∨

i , j) (i = 1, 2, . . . , s; j ∈ N).
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Theorem 3 For each p = 1, 2, . . . , s, let λp,i ∈ Z+, ap,i ∈ C×, i = 1, 2, . . . , kp.
If λ satisfies

λ(α∨
p (0, n)) =

kp∑
i=1

λp,ia
n
p,i (7)

and λ(c1) = λ(c2) = 0, then
(i) L(λ) is integrable;
(ii) L(λ) = U(n̂1−⊗C[t2]).vλ, where n̂1− is the negative nilpotent subalgebra

of ĝ1.

Moreover, if L(λ) and L(λ′) are nonzero irreducible modules, then

L(λ) ∼= L(λ′) ⇐⇒ λ = λ′. (8)

Proof (i) By Lemma 4, it suffices to show that x(−αi, n) are locally nilpotent
on L(λ) for i = 0, 1, . . . , s and n ∈ Z. Since L(λ) is irreducible, one only needs
to prove that there exists N � 0 such that

x(αj ,m)x(−αi, n)N .vλ = 0, i, j = 0, 1, . . . , s, m, n ∈ Z. (9)

If j �= i, then αj − αi + (m + n)δ2 is not a root. So (9) holds.
When j = i, denote

xn = x(αi, n), yn = x(−αi, n), hn = α∨
i (0, n).

Then we have

[xm, yn] = hm+n, [hp, xm] = 2xp+m, [hp, yn] = −2yp+n.

So {xn, yn, hn : n ∈ Z} is a basis of the loop algebra ŝl2(C). We consider the sub-
space U(ŝl2(C))vλ inside M(λ). It follows from Proposition 7 that x(−αi, n)Nvλ

belongs to a proper submodule of U(ŝl2(C))vλ for some N � 0. In fact, if
x(−αi, n)Nvλ does not belong to the proper maximal submodule M of
U(ŝl2(C))vλ for any N � 0, then each x(−αi, n)Nvλ + M (N ∈ N) is non-
zero in the irreducible quotient U ′ = U(ŝl2(C))vλ/M. Therefore, U ′ is infinite
dimensional, but it is also isomorphic to some B(a, λ). This is a contradiction
by Proposition 7. Applying PBW theorem to M(λ), we get Eq. (9), which
finishes the proof.

(ii) We consider the action of real root vectors x(−αi,−r), where i =
0, 1, . . . , s and r ∈ Z+. By (i), there exists a (minimal) positive integer Ni such
that

x(−αi, 0)Ni+1vλ = 0. (10)

Let x(αi, 1)Ni act on Eq. (10) and by Lemma 5, we get

Ni∑
m=0

x(−αi,m)Λ+(α∨
i , Ni − m).vλ = 0. (11)
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Applying α∨
i ⊗ t−r

2 to Eq. (11), we get

Ni∑
m=0

x(−αi,m − r)Λ+(α∨
i , Ni − m).vλ = 0. (12)

Therefore, x(−αi,−r).vλ is written as a linear combination of the elements in
the set {x(−αi,m).vλ, m > −r}. We claim that

Λ+(α∨
i , Ni).vλ �= 0.

In fact, applying α∨
i (0,−1) to Eq. (10), one gets

x(−αi,−1)x(−αi, 0)Nivλ = 0.

Note that the subalgebra {x(αi, 1), x(−αi,−1), α∨
i } is isomorphic to sl2. Then

x(αi, 1)qx(−αi, 0)Nivλ �= 0, 0 � q � Ni,

by properties of sl2-modules. When Ni = 0,

Λ+(α∨
i , 0) = 1.

When Ni = 1, note that

x(αi, 1)x(−αi, 0)vλ �= 0.

Then
Λ+(α∨

i , 1).vλ = −α∨
i (0, i).vλ �= 0.

When Ni > 1, we choose q = Ni in the previous equation. Then Lemma 5
implies that

Λ+(α∨
i , Ni).vλ �= 0.

Using induction on r, one shows that for arbitrary r > 0, the element
x(−αi,−r).vλ can be represented by the elements of the form

{x(−αi,m).vλ, m � 0}.
This completes the proof by Lemma 3. The last statement is easily seen. �

IVM’s have both finite- and infinite-dimensional weight subspaces. In the
following, we study the weight spaces of an irreducible L(λ) as a module for

ĥ′ = h ⊕ Cc1 ⊕ Cc2 ⊕ Cd1.

Let
T′ = g ⊗ C[t±1

1 , t±1
2 ] ⊕ Cc1 ⊕ Cc2 ⊕ Cd1.

Set
ĥ′[t±2 ] = span{h(0, n), c1, c2, d1; n ∈ Z},
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which is abelian. Note that T0 = ĥ′[t±2 ] ⊕ Cd2. Hence,

T′ = T+ ⊕ T− ⊕ ĥ′[t±2 ].

Theorem 4 If λ satisfies the conditions of Theorem 3 (cf. (7)), then the weight
spaces of L(λ) are finite dimensional as T′-modules with respect to

ĥ′ = h ⊕ Cc1 ⊕ Cc2 ⊕ Cd1.

Proof Let λ|ĥ′ = λ1. Since d2 is removed, the root δ2 can be viewed as nullified,
and thus, the weight set

P (L(λ)) ⊂ λ1 −
( s∑

i=0

Z+αi

)
.

Consider the weight space L(λ)λ1−ε, where ε ∈ ∑s
i=0 Z+αi. By PBW theorem,

L(λ)λ1−ε is spanned by

x(β1, n1)x(β2, n2) · · · x(βk, nk).vλ, (13)

where β1, β2, . . . , βk are negative roots of the affine Lie algebra ĝ1 such that
ε = −∑k

i=0 βi and ni ∈ Z. There are only finitely many βi for a given ε.
For fixed βi’s, x(β1, n1)x(β2, n2) · · · x(βk, nk).vλ (ni ∈ Z) generate a finite-

dimensional subspace. In fact, define

ep(t2) =
kp∏

j=1

(t2 − ap,j) =
kp∑
i=0

εp,it
i
2.

Let
Ep = ep(t2)C[t2, t−1

2 ].

By ep(ap,j) = 0, it is easy to check that

λ(α∨
p ⊗ Ep) = 0, p = 1, 2, . . . , s.

Let

e(t2) =
s∏

p=1

ep(t2) =
k∑

i=0

εit
i
2, k =

s∑
p=1

kp.

Set
E = e(t2)C[t2, t−1

2 ] ⊂ Ep.

Then
λ(α∨

p ⊗ E) = 0. (14)

First, we show that, for any negative affine root β of ĝ1,

k∑
i=0

εix(β,m + i).vλ = 0, ∀m ∈ Z, (15)
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in L(λ). Since L(λ) is irreducible, it is enough to check that T+ annihilates the
left-hand side (LHS) of (15). By Lemma 3, this means that x(αj , n) kills the
LHS of (15) for any j ∈ {0, 1, . . . , s}. We use induction on ht(−β).

First of all, let us consider the case of ht(−β) = 1 say β = −αp. If p �= j,
then, clearly, x(αj , n) annihilates the LHS of (15). Also

x(αp, n)
( k∑

i=0

εix(−αp,m + i).vλ

)
=

k∑
i=0

εiα
∨
p (0,m + n + i).vλ = 0

by (14), where α∨
0 = −θ∨ as c1 acts as 0. Hence, Eq. (15) holds for ht(−β) = 1.

Now, consider general β of ht(−β) > 1. There exists a simple root αj such
that αj + β is a negative affine root and ht(−αj − β) < ht(−β). Therefore,

x(αj , n)
( k∑

i=0

εix(β,m + i).vλ

)
=

k∑
i=0

εix(αj + β, n + m + i).vλ = 0

by the induction hypothesis.
Next, we show that

k∑
i=0

εix(γ1, n1) · · · x(γj ,m + i)x(γj+1, nj+1) · · · x(γl, nl).vλ = 0 (16)

for any fixed γ1, γ2, . . . , γl in Δĝ1−. This is again proved by another induction
on ht(−γj+1 − · · · − γl).

If the height of −(γj+1 + · · · + γl) is 0, Eq. (16) is clear. Then

k∑
i=0

εix(γ1, n1) · · · x(γj ,m + i)x(γj+1, nj+1) · · · x(γl, nl).vλ

=
k∑

i=0

εix(γ1, n1) · · · [x(γj ,m + i), x(γj+1, nj+1)] · · · x(γl, nl).vλ

+
k∑

i=0

εix(γ1, n1) · · · x(γj+1, nj+1)x(γj ,m + i) · · · x(γl, nl).vλ.

Each term of the right-hand side is zero by induction hypothesis. Therefore,
Eq. (16) holds.

For fixed β1, β2, . . . , βk, the vectors of form (13) generate a finite-dimensional
weight space due to the fact that

dimC[t2, t−1
2 ]/E < +∞.

This finishes the proof. �
Theorem 5 If L(λ) is irreducible as a T′-module with finite-dimensional
weight spaces and the action of c1 and c2 are zero, then λ satisfies the
conditions of Theorem 3 (cf. (7)).
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Proof For p �= 0, the algebra L generated by {xαp , x−αp , α
∨
p } is isomorphic to

sl2. Let V be the irreducible quotient of U(L̂).vλ, where

L̂ = L ⊗ C[t2, t−1
2 ] ⊕ Cc2.

Since the weight spaces of L(λ) are finite dimensional, the set

{x(−αp, n).vλ, n ∈ Z}

is linearly dependent. Thus, there exists a nonzero polynomial g =
∑

i git
i
2 such

that
x−αp ⊗ g.vλ = 0.

Let
G(t2) = gC[t2, t−1

2 ].

Then
x−αp ⊗ G.vλ = 0.

In fact,

0 = (α∨
p ⊗ tm2 )x−αp ⊗ g.vλ = (x−αp ⊗ g)α∨

p ⊗ tm2 .vλ − 2x−αp ⊗ tm2 g.vλ

and
α∨

p ⊗ tm2 .vλ = λ(α∨
p ⊗ tm2 ).vλ.

Naturally,
α∨

p ⊗ G.vλ = 0.

Subsequently,
(L ⊗ G ⊕ Cc2).vλ = 0.

Set
W = {v ∈ V | (L ⊗ G ⊕ Cc2).v = 0}.

Clearly, W is a nonzero submodule of V. Thus, V = W due to irreducibility of
V. Then V is an L̂/L⊗G⊕Cc2-module, and thus, dim V < +∞. By Proposition
7, λ satisfies the conditions of Theorem 3. �
Remark 4 The above proof also shows that when c1 and c2 act trivially, the
irreducible T′-module L(λ) has finite-dimensional weight spaces if and only if
there is an ideal S of C[t2, t−1

2 ] such that

λ(α∨
p ⊗ S ) = 0, p = 1, 2, . . . , s.

Corollary 5 Let L(λ) be an irreducible T′-module with finite-dimensional
weight spaces and suppose that the centers c1 and c2 act trivially. Then there
exists an ideal S of C[t2, t−1

2 ] such that

g̃1 ⊗ S .L(λ) = 0,
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where
g̃1 = g ⊗ C[t1, t−1

1 ].

Proof First, there exists an ideal S of C[t2, t−1
2 ] such that

λ(α∨
i ⊗ S ) = 0, i = 1, 2, . . . , s.

By the definition of L(λ), we have

xαi ⊗ S.vλ = 0, i = 0, 1, 2, . . . , s.

The next step is to show

yαi ⊗ S.vλ = 0, i = 0, 1, 2, . . . , s.

Since

xαj ⊗ tm2 .yαi ⊗ S .vλ = δjiα
∨
i ⊗ S .vλ = 0, j, i = 0, 1, 2, . . . , s, m ∈ Z,

where we set α∨
0 = −θ∨, and L(λ) is irreducible, one sees that

yαi ⊗ S.vλ = 0, i = 0, 1, 2, . . . , s.

Hence, g̃1 ⊗ S .vλ = 0 by induction.
Now, consider

W = {w ∈ L(λ), g̃1 ⊗ S .w = 0},
which is a submodule of L(λ). Then L(λ) = W by the irreducibility of L(λ).
Therefore,

g̃1 ⊗ S .L(λ) = 0. �
Since λ(c1) = λ(c2) = 0, L(λ) can be viewed as a module for the loop

algebra g ⊗ C[t1, t−1
1 , t2, t

−1
2 ]. The following proposition is easily derived from

Corollary 5 and [15, Proposition 3.8].

Proposition 8 Let S1,S2 be co-prime and co-finite ideals of C[t2, t−1
2 ], and

suppose that λ and μ satisfy the conditions in Theorem 3. Then

L(λ + μ) ∼= L(λ) ⊗ L(μ).

Rao [14] and Chang-Tan [1] have shown, respectively, that irreducible
integrable modules for toroidal and TKK modules with finite-dimensional weight
spaces and c1 > 0, c2 = 0 are highest weight modules. In general, our modules
do not seem to be of highest weight type when c1 = c2 = 0.
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