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Abstract Based on a new explicit representation of the solution to the Poisson
equation with respect to single birth processes, the unified treatment for various
criteria on classical problems (including uniqueness, recurrence, ergodicity,
exponential ergodicity, strong ergodicity, as well as extinction probability, etc.)
for the processes are presented.
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1 Introduction

Consider a continuous-time homogeneous Markov chains {X(t) : t � 0}, on a
probability space (Ω,F , P), with transition probability matrix P (t) = (pij(t))
on a countable state space Z+ = {0, 1, 2, . . . }. We call {X(t) : t � 0} a single
birth process if its transition rate (density) matrix Q = (qij : i, j ∈ Z+) is
irreducible and satisfies that qi,i+1 > 0, qi,i+j = 0 for all i ∈ Z+ and j � 2. Such
a matrix Q = (qij) with

∑
j qij = 0 for every i (conservativity) is called a single

birth Q-matrix. Refer to [15]. In the literature, the single birth process is also
called upwardly skip-free process, or birth and death process with catastrophes
(cf. [1–3] for instance).

The single birth process, as a natural extension of birth and death process
which is a simplest Q-process (Markov chain), has its own origins in practice,
refer to the earlier papers [2,13,15], for instance. The exit boundary of the
process consists at most one single extremal point and so the single birth process
is nearly the largest class for which the explicit criteria on classical problems can
be expected. Actually, the study on the object is quite fruited and relatively
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completed (cf. [4–6,15–17]). Based on this advantage, the single birth process
becomes a fundamental comparison tool in studying more complex processes,
such as infinite-dimensional reaction-diffusion processes. Refer to [6; Chapters 3
and 4, Part III] and [15]. Usually, the single birth process is non-symmetric and
hence it is regarded as a representative one of the non-symmetric processes. For
non-symmetric processes, comparing with the symmetric ones, our knowledge
is much limited, except for single birth processes to which much results are
known as just mentioned. Up to now, the known results are all presented in
some recursive forms. This paper introduces a single unified representation, as
well as a unified treatment, of various formulas for single birth processes.

Throughout the paper, we consider only the single birth Q-matrix Q = (qij).
Set qi = −qii for each i ∈ Z+. For a given function c (to be fixed in this and
the next sections, and then to be specified case by case), define an operator Ω
as follows:

Ωg = Qg + cg,

where
(Qg)i =

∑
j

qij(gj − gi).

Clearly, if c � 0, then Ω is an operator corresponding to a single birth process
with killing rates (−ci).

The following sequences are used throughout this paper:

F̃
(i)
i = 1, F̃ (i)

n =
1

qn,n+1

n−1∑
k=i

q̃(k)
n F̃

(i)
k , n > i � 0, (1.1)

q̃(k)
n = q(k)

n − cn :=
k∑

j=0

qnj − cn, 0 � k < n. (1.2)

Note that if c � 0, then q̃
(k)
n � 0 and then F̃

(k)
n � 0 for every n > k � 0. In

what follows, we omit the superscript ‘˜ ’ everywhere in F̃ and q̃ once ci ≡ 0,
and often use the convention that

∑
∅ = 0.

Here is the first of our main results.

Theorem 1.1 Given a single-birth Q-matrix Q = (qij) and functions c and
f, the solution g to the Poisson equation

Ωg = f (1.3)

has the following representation:

gn = g0 +
∑

0�k�n−1

∑
0�j�k

F̃
(j)
k (fj − cjg0)

qj,j+1
, n � 0. (1.4)

In particular, the harmonic function g of Ω (i.e., Ωg = 0) can be represented as

gn = g0

(
1 −

∑
0�k�n−1

∑
0�j�k

F̃
(j)
k cj

qj,j+1

)
, n � 0.
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Conversely, for each boundary/initial value g0 ∈ R, the function (gn) defined
by (1.4) is a solution to (1.3).

For single birth processes, almost all problems we concerned with are
related to the solutions to some specific Poisson equation. Here, we unify these
equations as (1.3) with different functions c and f which are listed as in Table
1.

Table 1

Problem ci ∈ R fi ∈ R

Harmonic function ci ∈ R fi ≡ 0

Uniqueness ci ≡ −λ < 0 fi ≡ 0

Recurrence ci ≡ 0 fi = qi0(1 − δi0)

Extinction/return probability ci ≡ 0 fi = qi0(1 − δi0)(g0 − 1)

Ergodicity ci ≡ 0 fi = qi0(1 − δi0)g0 − 1

Strong ergodicity ci ≡ 0 fi = qi0(1 − δi0)g0 − 1

Polynomial moment ci ≡ 0 f
(�)
i = qii0(1 − δii0)gi0 − �Eiσ

�−1
i0

Exponential moment/ergodicity ci ≡ λ > 0 fi = qi0(1 − δi0)(g0 − 1)

Laplace transform of return time ci ≡ −λ < 0 fi = qi0(1 − δi0)(g0 − 1)

We remark that in the two cases for ergodicity and strong ergodicity, even
though the Poisson equation and the functions c and f are the same, but their
solutions are required to be finite and bounded, respectively.

This paper is organized as follows. The proof of Theorem 1.1 is given in the
next section, using a lemma on the representation of solution to a class of linear
equations. Then, Sections 3–7 are devoted, respectively, to the criteria on the
problems listed in Table 1, and related problems to be specific subsequently.
Roughly speaking, the unified treatment presented in the paper consists of the
following three steps.

(a) Find out the Poisson equation corresponding to the problem we are
interested in.

(b) Apply Theorem 1.1 to get the solution to the Poisson equation.
(c) Work out a criterion for the problem using the solution obtained in (b).

Step (a) is more or less known from the previous study; step (b) is now
automatic; hence, our main work is spent on step (c).

For the reader’s convenience, several key formulas used often in the proofs
are collected into Appendix in a single page which consists the last page of the
paper (so that it can be printed out separately).

2 Poisson equation

In this section, we consider the solutions of the Poisson equation (1.3) for single
birth processes. Let us begin with a simple result for the solution to a class of
linear equations.
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Lemma 2.1 For given real numbers (αnk)n−1�k�0 and (fn)n�0, the solution
(gn)n�0 to the recursive inhomogeneous equations

gn =
∑

0�k�n−1

αnkgk + fn, n � 0, (2.1)

can be represented as

gn =
∑

0�k�n

γnkfk, n � 0, (2.2)

where for fixed k � 0, (γnk)n�k with γkk = 1 is the solution to the recursive
equations

γnk =
∑

k�j�n−1

αnjγjk, n > k. (2.3)

Proof Use induction. For n = 0, we have

g0 = f0 = γ00f0 =
∑

0�k�0

γ0kfk.

Assume that (2.2) holds for all n � m. When n = m + 1, from (2.1), we see
that

gm+1 =
∑

0�k�m

αm+1,k gk + fm+1

=
∑

0�k�m

αm+1,k

∑
0���k

γk� f� + fm+1

=
∑

0���m

( ∑
��k�m

αm+1,kγk�

)
f� + fm+1

=
∑

0���m

γm+1,� f� + fm+1

=
∑

0���m+1

γm+1,� f�.

Hence, (2.2) holds for n = m + 1. By induction, the representation (2.2) holds
for all n � 0. �

Note that the coefficients (αnk) are often fixed and so are (γnk). Then
Lemma 2.1 says that once replacing (αnk) by (γnk), the solution to (2.1) has a
complete representation (2.2), mainly in terms of the inhomogeneous term (fn)
in (2.1).

Without condition γkk = 1, equation (2.3) is clearly homogeneous. However,
it becomes inhomogeneous under condition γkk �= 0 (then one may assume that
γkk = 1):

γnk =
∑

k+1�j�n−1

αnjγjk + αnkγkk, n � k + 1,
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provided αk+1,k �= 0. Otherwise, once αk+1,k = 0, by induction, we actually
have γnk = 0 for all n � k + 1. Thus, under condition γkk = 1, by Lemma 2.1
(for fixed k), we have the following alternative representation of (γnk) :

γnk =
∑

k+1�j�n

γnjαjk, n � k + 1.

In what follows, we will use the following variant of Lemma 2.1. Replacing
the initial 0 by i and the coefficient (αnk) by (αnkβk), respectively, for some
non-zero sequence (βn), and set hn = gn/βn (n � i), we obtain the following
result.

Corollary 2.2 The solution (hn)n�i to the recursive equations

hn =
1
βn

( ∑
i�k�n−1

αnkhk + fn

)
, n � i, (2.4)

can be represented as

hn =
∑

i�k�n

γnk

βk
fk, n � i, (2.5)

where for each fixed i, (γni)n�i with γii = 1 is the solution to the equations

γni =
1
βn

∑
i�k�n−1

αnkγki, n > i.

Equivalently,

γii = 1, γni =
∑

i+1�k�n

γnk

βk
αki, n � i + 1. (2.6)

Specifying βn = qn,n+1 and αnk = q̃
(k)
n in Corollary 2.2 and using the

successive formula of F̃
(k)
n defined in (1.1), we obtain the following result.

Corollary 2.3 For given f, the sequence (hn) defined successively by

hn =
1

qn,n+1

(
fn +

∑
i�k�n−1

q̃(k)
n hk

)
, n � i,

has a unified expression as follows:

hn =
n∑

k=i

F̃
(k)
n

qk,k+1
fk, n � i.

In particular, the sequence
(
F̃

(k)
n

)
defined in (1.1) has the following expression:

F̃
(i)
i = 1, F̃ (i)

n =
n∑

k=i+1

F̃
(k)
n q̃

(i)
k

qk,k+1
, n � i + 1. (2.7)
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Before moving further, let us mention a comparison result for different γnj ,
which may be useful elsewhere but not in this paper.

Proposition 2.4 For each triple n � i > j, the following assertion holds:

γnj =
∑

i�k�n

γnk

βk

∑
j���i−1

αk�γ�j. (2.8)

Furthermore, if αnk � 0 and βn > 0 for all n > k, then γniγij � γnj for all
n � i � j.

Proof The first assertion is simply a consequence of Corollary 2.2. In fact, for
fixed i > j, take

fn =
∑

j���i−1

αn� γ�j, n � i.

Then

γnj =
1
βn

[ ∑
i���n−1

αn,� γ�j+
∑

j���i−1

αn� γ�j

]
=

1
βn

[ ∑
i���n−1

αn� γ�j+fn

]
, n � i.

Hence, by Corollary 2.2, we get

γnj =
∑

i�k�n

γnk

βk
fk =

∑
i�k�n

γnk

βk

∑
j���i−1

αk� γ�j , n � i.

If αnk � 0 and βn > 0 for all n and k, then from (2.8), it follows that for
all n > i > j,

γnj = γniγij +
∑

i+1�k�n

γnk

βk

∑
j���i−1

αk� γ�j � γniγij .

In the cases of n = i or i = j, the conclusion is trivial. �
Now, we turn to prove our first result.

Proof of Theorem 1.1 For each i � 0, we have

(Ωg)i = qi,i+1(gi+1 − gi) −
∑

0�j�i−1

qij

i−1∑
k=j

(gk+1 − gk) + cigi

= qi,i+1(gi+1 − gi) −
∑

0�k�i−1

k∑
j=0

qij(gk+1 − gk) + cigi

= qi,i+1(gi+1 − gi) −
∑

0�k�i−1

( k∑
j=0

qij − ci

)
(gk+1 − gk) + cig0

= qi,i+1(gi+1 − gi) −
∑

0�k�i−1

q̃
(k)
i (gk+1 − gk) + cig0. (2.9)
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Denote gk+1 − gk by wk for k � 0. Then

(Ωg)i = qi,i+1wi −
∑

0�k�i−1

q̃
(k)
i wk + cig0, i � 0.

Now, we rewrite the Poisson equation (1.3) as

wi =
1

qi,i+1

( ∑
0�k�i−1

q̃
(k)
i wk + f̃i

)
, i � 0,

where f̃i = fi − cig0 for i � 0. By Corollary 2.3, we obtain

wi =
i∑

j=0

F̃
(j)
i f̃j

qj,j+1
, i � 0.

So the solution of the Poisson equation (1.3) satisfies

gi = g0 +
i−1∑
k=0

wk = g0 +
i−1∑
k=0

k∑
j=0

F̃
(j)
k f̃j

qj,j+1
, i � 1.

The first assertion is proven. The second assertion is simply a consequence of
the first one.

To prove the last assertion of the theorem, noting that by (1.4), we have

gn+1 − gn =
n∑

j=0

F̃
(j)
n (fj − cjg0)

qj,j+1
, n � 0.

Thus, from (2.9), it follows for each i � 0 that

(Ωg)i = qi,i+1

i∑
j=0

F̃
(j)
i (fj − cjg0)

qj,j+1
−

∑
0�k�i−1

q̃
(k)
i

k∑
j=0

F̃
(j)
k (fj − cjg0)

qj,j+1
+ cig0.

Because (by exchanging the order of sums and using (1.1))

∑
0�k�i−1

q̃
(k)
i

k∑
j=0

F̃
(j)
k (fj − cjg0)

qj,j+1
=

∑
0�j�i−1

fj − cjg0

qj,j+1

i−1∑
k=j

q̃
(k)
i F̃

(j)
k

= qi,i+1

∑
0�j�i−1

F̃
(j)
i (fj − cjg0)

qj,j+1
,

we obtain Ωg = f as required. �
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Remark 2.5 (1) One may obtain (q̃(k)
n , F̃

(k)
n ) from (q(k)

n , F
(k)
n ) easily replacing

the original Q = (qij) by Q̃ = (q̃ij) :{
q̃i0 = qi0 − ci,

q̃ij = qij, j �= 0, i ∈ E.

In other words, only the first column of Q = (qij) is modified. Then the original
Poisson equation Ωg = f can be rewritten as Q̃g = f̃ with f̃i = fi − cig0.

(2) Alternatively, one may enlarge the space E by adding a point, say −1 for
instance. Then introduce suitable q̄−1,i, q̄i,−1, ḡ−1, and f̄−1, so that Q|E = Q,
ḡ|E = g, and f̄ |E = f. In this way, one may rewrite Ωg = f on E as Qḡ = f̄ on
E ∪ {−1}.

(3) To solve the Poisson equation, in view of (2.9), even for the simplest
birth–death type, once c appears, it is necessary to go out to the larger class of
single birth one, one cannot just stay within the class of birth–death processes.
Actually, this observation is crucial to solve the Open Problem 9.13 in [7]. Refer
to [8; Theorem 2.6].

For the remainder of this section, we consider only the processes on a finite
state space {0, 1, . . . , N}. Note that here the rate qN,N+1 is not defined (or
setting to be zero), but we allow cN �= 0. Hence, F̃

(k)
n is defined up to n = N −1

only. The next result is a localized version of Theorem 1.1.

Proposition 2.6 Given a single-birth Q-matrix (qij) and a function c on the
finite state space {0, 1, . . . , N} (N � 1), the following assertions hold.

(i) The solution of the Poisson equation Ωg = f has the following form:

gn = g0 +
∑

0�k�n−1

∑
0�j�k

F̃
(j)
k (fj − cjg0)

qj,j+1
, 0 � n � N, (2.10)

with boundary condition

cNg0 =
N−1∑
k=0

q̃
(k)
N

k∑
j=0

F̃
(j)
k (fj − cjg0)

qj,j+1
+ fN .

(ii) Let c � 0. Then the harmonic equation Ωg = 0 has only the trivial
solution gi ≡ 0 if and only if there exists some ci < 0.

(iii) The unique solution g to the equation Ωg|{0,1,...,N−1} = 0 (locally
harmonic) with g0 = 1 is as follows:

gn = 1 −
∑

0�k�n−1

∑
0�j�k

F̃
(j)
k cj

qj,j+1
, 0 � n � N, (2.11)

which is increasing once c � 0.
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Proof (a) The proof is nearly the same as the one of Theorem 1.1, except we
have to take care for the boundary at N. By (2.9), for 0 � i � N − 1, we have

(Ωg)i = qi,i+1(gi+1 − gi) −
∑

0�k�i−1

q̃
(k)
i (gk+1 − gk) + cig0.

Denote gk+1 − gk by wk for all 0 � k < N. Then

(Ωg)i = qi,i+1wi −
∑

0�k�i−1

q̃
(k)
i wk + cig0, 0 � i < N ;

(Ωg)N = −
N−1∑
k=0

q̃
(k)
N wk + cNg0.

Rewrite the Poisson equation as

wi =
1

qi,i+1

(
f̃i +

∑
0�k�i−1

q̃
(k)
i wk

)
, 0 � i < N, (2.12)

where f̃i = fi − cig0 for all 0 � i � N. By Corollary 2.3, we get

wi =
i∑

j=0

F̃
(j)
i f̃j

qj,j+1
, 0 � i < N. (2.13)

So the solution of the Poisson equation satisfies

gi = g0 +
i−1∑
k=0

wk = g0 +
i−1∑
k=0

k∑
j=0

F̃
(j)
k f̃j

qj,j+1
, 1 � i � N.

Combining this with the boundary condition (Ωg)N = fN and (2.13), we obtain
the first assertion.

(b) We have just seen that the harmonic solution g satisfies

gn = g0

(
1 −

n−1∑
k=0

k∑
j=0

F̃
(j)
k cj

qj,j+1

)
, 1 � n � N, (2.14)

and

g0

(
cN +

N−1∑
k=0

q̃
(k)
N

k∑
j=0

F̃
(j)
k cj

qj,j+1

)
= 0.

When c � 0, by irreducibility, we have not only q̃
(N−1)
N > 0 but also F̃

(j)
N−1 > 0

for every j : 0 � j � N − 1. Hence, if there exists some ci < 0, then we must
have g0 = 0 by the last equation. Furthermore, by (2.14), we indeed have g ≡ 0.

Conversely, if ci ≡ 0, then every constant function g �= 0 is a solution to the
equation Ωg = 0. Hence, the harmonic function g can be non-trivial.
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(c) To prove the third assertion, based on the second one, we have to use
a smaller space {0, 1, . . . , N − 1} instead of the original {0, 1, . . . , N} to avoid
the trivial solution. The assertion now follows from (2.14). �

The next result is exceptional of the paper. Instead of single birth, we
consider single death processes on a finite state space. The result may be
regarded as a dual of Proposition 2.6. It indicates that a large parts of the
study in the paper is meaningful for the single death processes, but we will not
go to the details here.

A matrix Q = (qij) is called of single death if qi,i−j > 0 if and only if j = 1
for i � 1.

Proposition 2.7 Given a single death Q-matrix Q = (qij) and a function (ci)
on the finite state space {0, 1, . . . , N}, define q̃

(k)
n =

∑N
j=k qnj − cn for k > n

and

F̃
(i)
i = 1, F̃ (i)

n =
1

qn,n−1

i∑
k=n+1

q̃(k)
n F̃

(i)
k , 1 � n < i.

Then
(i) the solution g to the Poisson equation Ωg = f has the following

representation:

gn = gN +
∑

n+1�k�N

∑
k�j�N

F̃
(j)
k (fj − cjgN )

qj,j−1
, 0 � n � N,

with boundary condition

c0gN =
N∑

k=1

q̃
(k)
0

N∑
j=k

F̃
(j)
k (fj − cjgN )

qj,j−1
+ f0;

(ii) the unique solution with gN = 1 to equation Qg|{1,2,...,N} = 0 is as
follows:

gn = 1 −
∑

n+1�k�N

∑
k�j�N

F̃
(j)
k cj

qj,j−1
, 0 � n � N,

which is decreasing in n once c � 0.

Proof For 1 � i � N, we have

(Ωg)i = qi,i−1(gi−1 − gi) +
∑

i+1�j�N

qij

j∑
k=i+1

(gk − gk−1) + cigi

= qi,i−1(gi−1 − gi) +
∑

i+1�k�N

N∑
j=k

qij(gk − gk−1) + cigi

= qi,i−1(gi−1 − gi) −
∑

i+1�k�N

q̃
(k)
i (gk−1 − gk) + cigN .
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Denote gk−1 − gk by wk for all 1 � k � N. Then

(Ωg)i = qi,i−1wi −
∑

i+1�j�N

q̃
(k)
i wk + cigN , 1 � i � N ;

(Ωg)0 = −
N∑

k=1

q̃
(k)
0 wk + c0gN .

Now, we rewrite the Poisson equation as

wi =
1

qi,i−1

(
f̃i +

∑
i+1�j�N

q
(k)
i wk

)
, 1 � i � N,

where f̃i = fi − cigN for all 0 � i � N. As an analogue of Corollary 2.3, by
induction, we can verify that

wi =
N∑

j=i

F̃
(j)
i f̃j

qj,j−1
, 1 � i � N.

From the argument above, it follows immediately that

gi = gN +
N∑

k=i+1

wk = gN +
∑

i+1�j�N

∑
k�j�N

F̃
(j)
k f̃j

qj,j−1
, 0 � i � N − 1.

Combining this with the boundary condition (Ωg)0 = f0, we finish the proof
of the first assertion. The second assertion is derived from the first one
immediately. �

3 Uniqueness

Starting from this section, we handle with the problems for single birth
processes, listed at the beginning of the paper. First, we study the uniqueness
problem. To do so, we need a sequence (m̃n) (to be used often subsequently):

m̃0 =
1

q01
, m̃n =

1
qn,n+1

(
1 +

n−1∑
k=0

q̃(k)
n m̃k

)
, n � 1. (3.1)

By Corollary 2.3, we have

m̃n =
n∑

k=0

F̃
(k)
n

qk,k+1
, n � 0. (3.2)

Again, we omit the superscript ‘˜’ everywhere in m̃, F̃ , and q̃ once ci ≡ 0. The
following criterion is taken from [6,15,16].
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Proposition 3.1 Corresponding to a given single birth Q-matrix Q = (qij)
(conservative), the process is unique (non-explosive) if and only if

∞∑
n=0

mn = ∞.

Proof By [6; Theorems 2.47 and 2.40], the single birth process is unique if and
only if the solution (ui) to the equation

(λ + qi)ui =
∑
j �=i

qijuj, i � 0; u0 = 1, (3.3)

is unbounded for some (equivalently for all) λ > 0. Rewrite (3.3) as

Ωu = Qu − λu = 0; u0 = 1.

Applying Theorem 1.1 to ci ≡ −λ and fi ≡ 0, we obtain the unique solution:

un = 1 + λ
∑

0�k�n−1

k∑
j=0

F̃
(j)
k

qj,j+1
= 1 + λ

∑
0�k�n−1

m̃k, n � 0.

Clearly, un is increasing in n and then is unbounded if and only if
∑

n m̃n =
∞. Thus, it remains to show that

∑
n m̃n = ∞ if and only if

∑
n mn = ∞.

Combining m̃n with mn, it is clear that

m̃n =
n∑

j=0

F̃
(j)
n

qj,j+1

⏐
 n∑
k=0

F
(k)
n

qk,k+1
= mn as λ ↓ 0,

since
q̃(k)
n = q(k)

n + λ ↓ q(k)
n as λ ↓ 0.

This already shows that the condition
∑

n mn = ∞ is sufficient. It is nearly
necessary since the conclusion does not depend on λ > 0, except there is a jump
from λ > 0 to λ = 0. Hopefully, we have thus seen some advantage of Theorem
1.1, even though there is still a distance to prove the necessity.

Actually, there are several ways to prove the equivalence∑
n

m̃n = ∞ for a fixed λ > 0 ⇐⇒
∑
n

mn = ∞.

From now on, for simplicity, assume that λ = 1.
(a) Observing that corresponding to the sequence (m̃n), the operator is

Ω = Q − I, which may be regarded as a bounded perturbation of the original
operator Q. Since these two operators are zero-exit or not simultaneously, the
equivalence above holds.
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(b) In the original proof (cf. [6; Proof of Theorem 3.16]), it was proved that
un is unbounded if and only if

∑
n mn = ∞. Combining this with what proved

above, we obtain the required equivalence.
(c) Here is a more direct proof. The idea comes from [20].
Assume that

∑∞
k=0 m̃k = ∞. If

∑∞
k=0 mk < ∞, then there exists N0 large

enough such that for all n � N0,

M̃n :=
n∑

k=0

m̃k > 1 and K := 2
∞∑

k=N0+1

mk < 1.

We now prove that for each n > N0,

m̃k � 2mkM̃n−1, 0 � k � n. (3.4)

Since m̃0 = m0 and M̃n−1 > 1 (due to the fact that n− 1 � N0), (3.4) holds in
the case of k = 0. Assume that (3.4) holds up to k = � − 1 < n. Then,

m̃� =
1

q�,�+1

(
1 +

�−1∑
k=0

q
(k)
� m̃k +

�−1∑
k=0

m̃k

)
(since λ = 1)

� 1
q�,�+1

(
1 +

�−1∑
k=0

q
(k)
� 2mkM̃n−1 + M̃�−1

)
(by assumption)

� 1
q�,�+1

(
1 +

�−1∑
k=0

q
(k)
� mk

)
2M̃n−1

= 2m�M̃n−1.

So (3.4) holds when k = �. By induction, we know that (3.4) holds for every
k : 0 � k � n. Now, for each n > N0, we have

M̃n = M̃N0 +
n∑

k=N0+1

m̃k � M̃N0 +
n∑

k=N0+1

2mkM̃n−1 � M̃N0 + KM̃n−1.

Furthermore, we have

M̃n � M̃N0(1 + K + · · · + Kn−N0−1) + Kn−N0M̃N0

=
M̃N0(1 − Kn−N0)

1 − K
+ Kn−N0M̃N0 .

Thus, as n → ∞, we would have ∞ � M̃N0/(1 − K) which is a contradiction.
Hence, once

∑∞
k=0 m̃k = ∞, we should also have

∑∞
k=0 mk = ∞.

We have therefore completed the proof of the equivalence mentioned above.
�
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To conclude this section, we mention that the uniqueness problem for the
single birth Q-matrix with absorbing set H = {0, 1, . . . , N} (N < ∞) can be
dealt with by the same approach. Refer to [6; Theorem 3.16] and [14].

4 Recurrence and extinction/return probability

For the recurrence, the following criterion is taken from [6; Theorem 4.52 (1)]
and [15].

Proposition 4.1 Assume that the single birth Q-matrix Q = (qij) is non-
explosive and irreducible. Then the process is recurrent if and only if

∑∞
n=0 F

(0)
n

= ∞, where (F (i)
n ) was defined in (1.1) by setting ci ≡ 0.

Proof By [6; Lemma 4.51], we know that the single birth process is recurrent
if and only if the equation

xi =
∑
k �=0

Πikxk, 0 � xi � 1, i � 0, (4.1)

has only zero solution, where Πik = (1−δik)qik/qi. It is easily seen that equation
(4.1) has a non-trivial solution if and only if the equation

xi =
∑
k �=0

Πikxk, i � 0; x0 = 1,

has a nonnegative bounded solution. The following fact will be used several
times below:

xi =
∑

k �=i,i0

qik

qi − λ
xk +

γi

qi − λ
⇐⇒ (Qx)i + λxi = qii0(1 − δii0)xi0 − γi, (4.2)

where λ ∈ R satisfying some suitable condition. Certainly, here we preassume
that xi ∈ R for every i ∈ E. By using this fact with λ = 0 and i0 = 0, we can
rewrite the previous equation as

(Qx)0 = 0, (Qx)i = qi0, i � 1; x0 = 1.

Applying Theorem 1.1 to ci ≡ 0 and fi = qi0(1 − δi0), we obtain the unique
solution as follows:

x0 = 1, xn = 1 +
n−1∑
k=1

k∑
j=1

F
(j)
k qj0

qj,j+1
= 1 +

n−1∑
k=1

k∑
j=1

F
(j)
k q

(0)
j

qj,j+1
, n � 1.

By (2.7), it follows that

xn = 1 +
n−1∑
k=1

F
(0)
k =

n−1∑
k=0

F
(0)
k , n � 1.
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Clearly, (xn) is bounded if and only if
∑∞

k=0 F
(0)
k < ∞. In other words, equation

(4.1) has only a trivial solution if and only if
∑∞

k=0 F
(0)
k = ∞. The assertion is

now proven. �
Extinction/return probability

For the remainder of this section, we study the extinction probability. Here,
the extinction time τ0 is the first hitting time of the state 0. Thus, this topic
is actually a refinement of what studied in the last proposition, in which we
pay attention only on the result either Pn[τ0 < ∞] = 1 or < 1 rather than its
distribution. We will come back this point after the proof of the next proposi-
tion. For the extinction problem, the rates q0j (j �= 0) play no rule, so one may
assume the state 0 to be an absorbing state. In other words, we may reduce
the state space from E to E1 := {1, 2, . . .}, and regard the rate qi0 (i �= 0)
as a killing from i. Then we need to redefine the sequences (q̃(k)

n ) and (F̃ (k)
n )

starting from 1 but not 0. However, for our convenience, we prefer to keep the
notation E, (q̃(k)

n ), (F̃ (k)
n ), and so on. For this, it is better to use the return

time σ0 instead of the hitting time τ0. In the case that the state 0 is really an
absorbing one, we can add a positive rate q01 and assume that the enlarged
process becomes irreducible. Then, the solution of Pn[σ0 < ∞] restricted on
E1 gives us the answer of Pn[τ0 < ∞] on E1 (as a trivial application of the
localization theorem [9; Theorem 3.4.1] or [6; Theorem 2.13]), so we can return
to our original problem.

We remark that in the context of denumerable Markov processes, the topic
of this section and much more problems were well studied in [9; Chapter IX]. In
the present special case, for the single birth processes, the problem was studied
in [1; Chapter 9] or [2], using a different technique.

Proposition 4.2 Let the single birth Q-matrix Q = (qij) be non-explosive
and irreducible. Then the return/extinction probability is as follows:

P0(σ0 < ∞) =
∑∞

k=1 F
(0)
k∑∞

k=0 F
(0)
k

, Pn(σ0 < ∞) =
∑∞

k=n F
(0)
k∑∞

k=0 F
(0)
k

, n � 1.

Furthermore, Pn(σ0 < ∞) = 1 for all n � 0 if and only if P0(σ0 < ∞) = 1,
equivalently, if and only if

∑∞
n=0 F

(0)
n = ∞.

Proof By [6; Lemma 4.46] with H = {0}, (Pi(σ0 < ∞) : i ∈ E) is the minimal
nonnegative solution to the equation

xi =
∑
k �=0,i

qik

qi
xk +

qi0

qi
(1 − δi0), i ∈ E.

The study on recurrence usually starts from here, the lemma [6; Lemma 4.51]
used in the last proof simplifies our study on the recurrence problem, as we
have just seen above. By (4.2), the last equation is equivalent to

(Qx)i = qi0(1 − δi0)(x0 − 1), i � 0.
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Applying Theorem 1.1 to ci ≡ 0 and fi = qi0(1 − δi0)(x0 − 1), we obtain the
solution to the last equation:

xn = x0 +
∑

0�k�n−1

∑
0�j�k

F
(j)
k

qj,j+1
qj0(1 − δj0)(x0 − 1)

= x0

{
1 +

∑
1�k�n−1

∑
1�j�k

F
(j)
k

qj,j+1
q
(0)
j

}
−

∑
1�k�n−1

∑
1�j�k

F
(j)
k

qj,j+1
q
(0)
j

= x0

(
1 +

∑
1�k�n−1

F
(0)
k

)
−

∑
1�k�n−1

F
(0)
k , n � 0 (by (2.7)).

Because xn > 0, it follows that

x0 � sup
n�1

∑n−1
k=1 F

(0)
k∑n−1

k=0 F
(0)
k

= sup
n�1

∑n−1
k=0 F

(0)
k − 1∑n−1

k=0 F
(0)
k

= 1 − 1∑∞
k=0 F

(0)
k

.

From here, we obtain the minimal nonnegative solution:

x∗
0 = 1 − 1∑∞

k=0 F
(0)
k

, x∗
n = 1 −

∑n−1
k=0 F

(0)
k∑∞

k=0 F
(0)
k

, n � 1.

We have thus proved the first assertion. The second one is obvious. �
Rewrite the solution just obtained as follows:

1 − x∗
0 =

1∑∞
k=0 F

(0)
k

, 1 − x∗
n =

∑n−1
k=0 F

(0)
k∑∞

k=0 F
(0)
k

, n � 1.

Renormalize them so that the initial value becomes 1:

x0 = 1, xn =
n−1∑
k=0

F
(0)
k , n � 1,

which is what we obtained in the last proof. We have thus seen the relation
between the last two propositions.

The study on the Laplace transform of extinction/return time is delayed to
Section 7 (Proposition 7.3 which is based on Lemma 7.1).

5 Ergodicity, strong ergodicity, and the first moment of return time

Let E = Z+ and H ⊂ E, H �= ∅, E. Define σH = inf{t � η1 : X(t) ∈ H},
where η1 is the first jump of the process. When H is a singleton, H = {0}, for
instance, denote σ{0} by σ0 for simplicity. We now consider the first moment of
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the return time σ0. To do so, we introduce the following lemma (cf. [9; Lemma
9.4.1]).

Lemma 5.1 Let (qij) be irreducible and assume that its Q-process is recurrent.
Then (x∗

i := EiσH : i ∈ E) is the minimal nonnegative solution (may be infinite)
to the equation

xi =
1
qi

∑
k/∈H∪{i}

qikxk +
1
qi

, i ∈ E,

where 1 · ∞ = ∞ and 0 · ∞ = 0 by convention.

Proof Let (y∗i : i ∈ E) be the minimal nonnegative solution to the equation

yi =
1
qi

∑
k/∈H∪{i}

qikyk +
1
qi

, i ∈ E.

By assumption and [6; Lemma 4.46], the quantity fiH defined there is equal
to 1 for every i ∈ E. Then, (y∗i : i ∈ E) coincides with (eiH(0) : i ∈ E) used in
[6; Lemma 4.48]. Note that

eiH(0) =
∫ ∞

0
Pi(σH > t) dt = EiσH .

The assertion now follows immediately. �
In what follows, we use often another sequence (d̃n) similar to

(
m̃n

)
having

different initial value:

d̃0 = 0, d̃n =
1

qn,n+1

(
1 +

n−1∑
k=0

q̃(k)
n d̃k

)
, n � 1, (5.1)

where q̃
(k)
n is defined in (1.2). By Corollary 2.3, we have

d̃n =
∑

1�j�n

F̃
(j)
n

qj,j+1
, n � 0, (5.2)

which is very much the same as (3.2). Again, we omit the superscript ‘ ˜ ’
everywhere in (d̃n) once ci ≡ 0. Note that if we rewrite

d̃n =
1

qn,n+1

(
1 +

∑
1�k�n−1

q̃(k)
n d̃k

)
, n � 1,

F̃ (0)
n =

1
qn,n+1

(
q̃(0)
n +

∑
1�k�n−1

q̃(k)
n F̃

(0)
k

)
, n � 1,

then it is clear that the sequences (d̃n)n�1 and (F̃ (0)
n )n�1 are also quite close

each other.
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The main result in this section is as follows. Refer to [6; Theorem 4.52 (2)],
[1; Proposition 2.4], and [15,17,18].

Proposition 5.2 Assume that the single birth Q-matrix Q = (qij) is
irreducible and corresponding process is recurrent. Then

E0σ0 =
1

q01
+ d, Enσ0 =

n−1∑
k=0

(F (0)
k d − dk), n � 1,

where

d = lim
k→∞

∑k
n=0 dn∑k

n=0 F
(0)
n

= lim
n→∞

dn

F
(0)
n

if the limit exists.

Furthermore, the process is ergodic (i.e., positive recurrent) if and only if d < ∞;
and it is strongly ergodic if and only if

sup
k∈E

k∑
n=0

(F (0)
n d − dn) < ∞.

Actually, for the last conclusion, the recurrence assumption can be replaced by
the uniqueness one.

Proof Let H = {0}. By Lemma 5.1, (Eiσ0 : i ∈ E) is the minimal nonnegative
solution (x∗

i ) to the equation

xi =
1
qi

∑
k/∈{0,i}

qikxk +
1
qi

, i ∈ E. (5.3)

Suppose for a moment that x∗
i < ∞ first for some i ∈ E and then for all i by

irreducibility. Next, let (xi) be a (finite) solution to (5.3). Then, by (4.2), we
have

(Qx)i = qi0x0 − 1, i � 1; (Qx)0 = −1.

Applying Theorem 1.1 to c = 0 and fi = qi0(1 − δi0)x0 − 1 (i � 0), we obtain
the solution to the last equation:

xn = x0 +
n−1∑
k=0

k∑
j=0

F
(j)
k fj

qj,j+1
= x0

(
1+

n−1∑
k=1

k∑
j=1

F
(j)
k qj0

qj,j+1

)
−

n−1∑
k=0

k∑
j=0

F
(j)
k

qj,j+1
, n � 1.

By (2.7) and (5.2), we obtain

xn = x0

n−1∑
k=0

F
(0)
k −

n−1∑
k=0

(F
(0)
k

q01
+ dk

)
=

n−1∑
k=0

[
F

(0)
k

(
x0 − 1

q01

)
− dk

]
, n � 1.

Since xn > 0, it follows that

x0

n−1∑
k=0

F
(0)
k >

n−1∑
k=0

(F
(0)
k

q01
+ dk

)
, n � 1.
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This gives us

x0 � sup
n�1

∑n−1
k=0(

F
(0)
k

q01
+ dk)∑n−1

k=0 F
(0)
k

=
1

q01
+ sup

n�1

∑n−1
k=0 dk∑n−1

k=0 F
(0)
k

.

Now, the minimal property implies that

x∗
0 =

1
q01

+ sup
n�1

∑n−1
k=0 dk∑n−1

k=0 F
(0)
k

and then

x∗
n =

n−1∑
k=0

(
F

(0)
k sup

n�1

∑n−1
j=0 dj∑n−1

j=0 F
(0)
j

− dk

)
, n � 1,

gives us the solution (Eiσ0 : i ∈ E). We claim that the supremum in the last
line has to achieved at infinity. Otherwise, if it is achieved at some finite n0 :∑n0−1

j=0 dj∑n0−1
j=0 F

(0)
j

= sup
n�1

∑n−1
j=0 dj∑n−1

j=0 F
(0)
j

,

then

x∗
0 =

1
q01

+

∑n0−1
j=0 dj∑n0−1

j=0 F
(0)
j

and furthermore, x∗
n0

= 0, which is a contradiction with x∗
i = Eiσ0 > 0.

Therefore,

sup
n�1

∑n−1
j=0 dj∑n−1

j=0 F
(0)
j

= lim
n→∞

∑n
j=0 dj∑n

j=0 F
(0)
j

=: d,

as required. The next limit in the expression of d is an application of Stolz’s
Theorem. Now, d < ∞ since x∗

0 < ∞ by assumption. To remove the finite-
ness assumption of (x∗

i ), we claim that the expressions in the first assertion
for Enσ0(= x∗

n) still hold even x∗
i = ∞, since then we must have d = ∞. If

otherwise, d < ∞, then by the last assertion of Theorem 1.1 and (4.2), we
would obtain a finite solution to (5.3), which deduces a contradiction to the
assumption x∗

i = ∞ by the comparison theorem for the nonnegative solutions
(cf. [6; Theorem 2.6]). We have thus proved the first assertion.

Let us remark that the trick used above replacing supn�1 by limn→∞ was
missed in the previous publications. This trick and the one assuming the finite-
ness of (x∗

i ), will be used several times below but we may not mention it time
by time.

Finally, by [6; Theorem 4.44], the single process is ergodic if and only if
E0σ0 < ∞ which is now equivalent to d < ∞. By the same cited theorem, the
process is strongly ergodic if and only if supi∈E Eiσ0 < ∞, equivalently,

sup
n∈E

n∑
k=0

(F (0)
k d − dk) < ∞,
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which follows from the first assertion. As mentioned in the proof of the cited
book, for ergodicity, the uniqueness assumption is enough instead of the
recurrence one. The proof is now finished. �

6 Polynomial moments of hitting time and life time

6.1 Polynomial moments of hitting time

We have just studied the first moment of the time of first hitting/return 0 in
the last section. Now, we study the higher-order moments of the first hitting
time.

Fix i0 � 0. Recall that σi0 is the time of first return to i0 after the first
jump. For its higher-moments, we have the following result (cf. [19,21]).

Proposition 6.1 Assume that the single birth Q-matrix Q = (qij) is
irreducible and the corresponding process is (�−1)-ergodic (� � 1), i.e., Eiσ

�−1
i0

<
∞ for every i � 0. When � = 1, assume additionally that the process is unique.
Then we have

Enσ�
i0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�

∑
n�k�i0−1

v
(�)
k +

[
1 −

∑
n�k�i0−1

uk

]
Ei0σ

�
i0 , 0 � n � i0;

−�
∑

i0�k�n−1

v
(�)
k +

[
1 +

∑
i0�k�n−1

uk

]
Ei0σ

�
i0, n > i0,

where

uk =
k∑

j=i0−1

qj,j+1
−1F

(j)
k qji0(1 − δji0), k � i0,

ui0−1 = 1, uk = 0, 0 � k � i0 − 2,

v
(�)
k =

k∑
j=0

F
(j)
k

qj,j+1
Ejσ

�−1
i0

, k � 0,

Ei0σ
�
i0 = � lim

n→∞

( ∑
i0�k�n

v
(�)
k

)[
1 +

∑
i0�k�n

uk

]−1

= � lim
n→∞

v
(�)
n

un
if the limit exists.

Proof By [9; Theorem 9.3.3] (cf. [6; Proposition 4.56], or [10; Theorem 3.1]),
(y∗i := Eiσ

�
i0

: i ∈ E) is the the minimal nonnegative solution to the following
equation:

yi =
∑

k �=i,i0

1
qi

qikyk +
�

qi
Eiσ

�−1
i0

, i ∈ E.
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As remarked in the last section, we may assume that y∗i < ∞ for every i ∈ E.
Then, by (4.2), we obtain the Poisson equation:

(Qy)i = qii0(1 − δii0)yi0 − �Eiσ
�−1
i0

, i ∈ E.

Applying Theorem 1.1 to c = 0 and fi = qii0(1 − δii0)yi0 − �Eiσ
�−1
i0

, it follows
that the solution to the last equation is as follows:

yn = y0 +
∑

0�k�n−1

k∑
j=0

F
(j)
k fj

qj,j+1
= y0 + yi0

∑
0�k�n−1

uk − �
∑

0�k�n−1

v
(�)
k , n � 0.

Here, in the summation of uk, we have used the character of single birth:
qji0(1 − δji0) > 0 only if either j = i0 − 1 or j � i0 + 1. In particular, by
setting n = i0, it follows that

y0 = �
∑

0�k�i0−1

v
(�)
k + yi0

(
1 −

∑
0�k�i0−1

uk

)
.

Return to the original yn, we get

yn = �

[ ∑
0�k�i0−1

v
(�)
k −

∑
0�k�n−1

v
(�)
k

]
+ yi0

[
1 −

∑
0�k�i0−1

uk +
∑

0�k�n−1

uk

]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�

∑
i0�k�n−1

v
(�)
k + yi0

[
1 +

∑
i0�k�n−1

uk

]
, n � i0 + 1,

�
∑

n�k�i0−1

v
(�)
k + yi0

[
1 −

∑
n�k�i0−1

uk

]
, n � i0.

(6.1)

When n � i0, since
∑

k�i0−1 uk � 1 by definition of (uk), it is clear that yn > 0.
When n � i0 + 1, for yn > 0, one requires the condition

yi0 >
�
∑

i0�k�n−1 v
(�)
k

1 +
∑

i0�k�n−1 uk
,

and then

yi0 � sup
n�i0+1

�
∑

i0�k�n−1 v
(�)
k

1 +
∑

i0�k�n−1 uk
.

By a reason explained in the last section, this leads to

y∗i0 = � lim
n→∞

∑
i0�k�n v

(�)
k

1 +
∑

i0�k�n uk
,

which gives us Ei0σ
�
i0

. Combining it with (6.1), we obtain the required assertion.
The limit in Ei0σ

�
i0

is again an application of Stolz’s Theorem since
∑

k uk = ∞
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by the recurrence of the process. To see the last assertion, define a single birth
process on {i0, i0 +1, . . .} (regarding the set {0, 1, . . . , i0} as a single state) with
rates

q̄ij =

⎧⎪⎨⎪⎩
qij if j � i0 + 1,∑
k�i0

qik if j = i0, i � i0.

Then (q̄ij) is irreducible and recurrent because so is (qij). Next, as in (1.1), we

can define a sequence (F (j)
k ) on {i0, i0 +1, . . .}. By induction, it is easy to check

that F
(j)
k = F̃

(j)
k for every k � j � i0. Hence, we have∑

k

F
(i0)
k =

∑
k

F̃
(i0)
k = ∞

by Proposition 4.1. It should be now easy to see that
∑

k uk = ∞ as claimed.
�

6.2 Polynomial moments of life time

Recall that τn is the time of first hitting the state n. If we start from i � n− 1,
then τn coincides with the time of fist hitting the set {n, n + 1, . . .}. For the
remainder of this section, we are going to study the time τ∞ := limn→∞ τn.
Next, because τ∞ is actually equal to the life time η := limn→∞ ηn almost
everywhere, where {ηn} are the successive jumping times:

η0 ≡ 0, ηn = inf{t � ηn−1 : X(t) �= X(ηn−1)}, n � 1,

therefore, τ∞ = ∞ a.e. if the single birth Q-matrix is non-explosive. Thus,
the study on the moments of τ∞ is meaningful only for explosive single birth
Q-matrix. The next result is taken from [21].

Proposition 6.2 Let the single birth Q-matrix Q = (qij) be irreducible and
explosive (i.e.,

∑
n mn < ∞ by Proposition 3.1). Assume that the minimal

process has finite (�−1)-th moments of τ∞ for some integer � � 1 (i.e., Eiτ
�−1∞ <

∞ for all i � 0). Then

Enτ �
∞ = �

∑
k�n

m
(�)
k , n � 0,

where

m(�)
n =

1
qn,n+1

[
Enτ �−1

∞ +
∑

0�k�n−1

q(k)
n m

(�)
k

]
=

n∑
j=0

F
(j)
n Ejτ

�−1∞
qj,j+1

, n � 0.

Proof The last equality of m
(�)
n comes from Corollary 2.3. By [6; Proposition

4.56] or [11], we know that (Eiτ
�∞ : i ∈ E) is the minimal nonnegative solution

(y∗i : i ∈ E) to the following equation:

yi =
∑
k �=i

1
qi

qikyk +
�

qi
Eiτ

�−1
∞ , i ∈ E.
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That is,
(Qy)i = −�Eiτ

�−1
∞ , i ∈ E.

Applying Theorem 1.1 to c = 0 and fi = −�Eiτ
�−1∞ (i � 0), it follows that the

solution to the last equation can be expressed as

yn = y0 − �

n−1∑
k=0

k∑
j=0

F
(j)
k Ejτ

�−1∞
qj,j+1

, n � 1.

Hence,

yn = y0 − �

n−1∑
k=0

m
(�)
k , n � 1.

By the nonnegative and minimal properties, it follows that

y∗0 = sup
n�1

(
�

n−1∑
k=0

m
(�)
k

)
= �

∞∑
k=0

m
(�)
k , y∗n = �

∞∑
k=n

m
(�)
k , n � 1.

Hence, we obtain
Enτ �

∞ = �
∑
k�n

m
(�)
k , n � 0,

which is the required assertion. �

7 Exponential ergodicity and Laplace transform of return time

7.1 Exponential moments of return time and exponential ergodicity

In this section, we consider the exponential moments of return time. At first,
we introduce the following lemma for general Q-matrices.

Lemma 7.1 Let (qij) be irreducible and assume that its Q-process is recurrent.
Next, let λ ∈ R, λ < qi for every i ∈ E. Then for fixed H ⊂ E, H �= ∅, E,
(Ei exp(λσH) : i ∈ E) is the minimal solution to the equation

xi =
1

qi − λ

∑
k/∈H∪{i}

qikxk +
1

qi − λ

∑
k∈H\{i}

qik, i ∈ E. (7.1)

Proof Let (y∗i : i ∈ E) be the minimal nonnegative solution to the equation

yi =
1

qi − λ

∑
k/∈H∪{i}

qikyk +
1

qi − λ
, i ∈ E.

By the recurrent assumption and [6; Lemma 4.46], the quantity fiH defined
there is equal to 1 for every i ∈ E. Then, (y∗i : i ∈ E) coincides with (eiH(λ) : i ∈
E) used in [6; Lemma 4.48]. Moreover, by the proof given on [6; p. 148], we
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have Ei exp(λσH) = 1+λy∗i for every i ∈ E. Besides, it can be checked that (1+
λy∗i : i ∈ E) is a nonnegative solution to equation (7.1). Hence, Ei exp(λσH) =
1 + λy∗i � x∗

i for every i ∈ E, where (x∗
i : i ∈ E) is the minimal nonnegative

solution to equation (7.1). We are now going to prove that Ei exp(λσH) = x∗
i

for all i ∈ E. The proof is split into two parts: either λ � 0 or λ < 0.
First, let λ � 0. It is easily seen that (x∗

i − 1: i ∈ E) is a nonnegative
solution to the equation

yi =
1

qi − λ

∑
k/∈H∪{i}

qikyk +
λ

qi − λ
, i ∈ E.

Hence, x∗
i − 1 � λy∗i since (λy∗i ) is the minimal nonnegative solution to the

equation above, by the linear combination theorem [6; Theorem 2.12 (1)]. That
is, x∗

i � 1 + λy∗i . Combining what we have proved in the last paragraph, it
follows that x∗

i = Ei exp(λσH) for all i ∈ E.
Next, let λ < 0. Denote by (ȳi : i ∈ E) the minimal nonnegative solution to

the equation

yi =
1

qi − λ

∑
k/∈H∪{i}

qikyk +
[
1 − 1

qi − λ

∑
k/∈H∪{i}

qik

]
, i ∈ E. (7.2)

Clearly, we have ȳi � 1 since yi ≡ 1 is a solution to the equation. We claim
that ȳi ≡ 1. To see this, note that (1 − ȳi : i ∈ E) is the maximal solution to
the equation

yi =
1

qi − λ

∑
k/∈H∪{i}

qikyk, 0 � yi � 1, i ∈ E. (7.3)

By a comparison lemma [6; Lemma 3.14], it suffices to show that the equation

yi =
1
qi

∑
k/∈H∪{i}

qikyk, 0 � yi � 1, i ∈ E,

has only trivial (i.e., zero-) solution. Then this follows by the recurrence
assumption and [6; Lemma 4.46]. We remark that there is an alternative way
to prove that ȳi ≡ 1, using the uniqueness rather than the recurrence assump-
tion. Actually, equation (7.3) is an exit equation for a modified Q-matrix (any
local modification of a Q-matrix does not interfere the uniqueness). The exit
solution to (7.3) should be zero by uniqueness assumption.

We now return to our main proof. By the linear combination theorem
[6; Theorem 2.12 (1)], (x∗

i − λy∗i : i ∈ E) is the minimal nonnegative solution to
equation (7.2). Hence, x∗

i − λy∗i = ȳi ≡ 1 as we have just proved in the last
paragraph. Therefore, we conclude that x∗

i = 1 + λy∗i = Ei exp(λσH) for all
i ∈ E. We have thus completed the proof of the lemma. �

Now, we present our results about the exponential moments of the return
time σ0, which can be referred in [18].
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Proposition 7.2 Let the single birth Q-matrix (qij) be irreducible. Assume
that its process is ergodic. Define (F̃ (i)

k ) and (d̃k) by setting ci ≡ λ > 0. Then
for small λ,

E0eλσ0 =
q01(1 + λd̃)

q01 − λ
< ∞, Eneλσ0 = 1 + λ

n−1∑
k=0

(F̃ (0)
k d̃ − d̃k) < ∞, n � 1,

if and only if

d̃ := lim
n→∞�{∑n

k=0 F̃
(0)
k >0

} ∑n
k=0 d̃k∑n

k=0 F̃
(0)
k

< ∞

and

d̃
n−1∑
k=0

F̃
(0)
k >

n−1∑
k=0

d̃k whenever
n−1∑
k=0

F̃
(0)
k � 0 for n � 2. (7.4)

Furthermore, once F̃
(0)
n > 0 for large enough n and

∑
n F̃

(0)
n = ∞, we have

d̃ = lim
n→∞

d̃n

F̃
(0)
n

if the limit exists.

Finally, the process is exponentially ergodic if and only if both d̃ < ∞ and (7.4)
holds.

Proof Let λ ∈ (0, qi) for every i ∈ E and set H = {0}. Then by Lemma 7.1,
(Eieλσ0 : i ∈ E) is the minimal solution (x∗

i ) of the following equation:

xi =
1

qi − λ

∑
k/∈{0,i}

qikxk +
qi0(1 − δi0)

qi − λ
, xi � 1, i ∈ E.

Assume that x∗
i < ∞ for every i ∈ E for a moment, and let (xi) be a finite

nonnegative solution to the last equation. Then, by (4.2), we have

(Qx)i + λxi = qi0(x0 − 1), i � 1; (Qx)0 + λx0 = 0. (7.5)

Applying Theorem 1.1 to ci ≡ λ and fi = qi0(1 − δi0)(x0 − 1) for all i � 0, we
obtain

xn = x0

(
1 − λ

n−1∑
k=0

k∑
j=0

F̃
(j)
k

qj,j+1

)
+ (x0 − 1)

n−1∑
k=1

k∑
j=1

F̃
(j)
k qj0

qj,j+1

= x0

(
1 − λ

n−1∑
k=0

k∑
j=0

F̃
(j)
k

qj,j+1

)
+ (x0 − 1)

n−1∑
k=1

k∑
j=1

F̃
(j)
k (q̃(0)

j + λ)
qj,j+1

, n � 1.

Due to the explicit representation of F̃
(k)
n , m̃n, and d̃n, given in (2.7), (3.2), and

(5.2), respectively, we have not only

m̃n =
∑

0�j�n

F̃
(j)
n

qj,j+1
=

1
q01

F̃ (0)
n + d̃n, n � 0, (7.6)
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but also that

xn = x0

(
1 − λ

n−1∑
k=0

m̃k

)
+ (x0 − 1)

n−1∑
k=1

(F̃ (0)
k + λd̃k)

= x0

(
1 − λ

q01

) n−1∑
k=0

F̃
(0)
k −

n−1∑
k=0

(F̃ (0)
k + λd̃k) + 1, n � 1. (7.7)

Since xn > 1, we get

x0

(
1 − λ

q01

) n−1∑
k=0

F̃
(0)
k >

n−1∑
k=0

(F̃ (0)
k + λd̃k), n � 1.

That is, [
x0

( 1
λ
− 1

q01

)
− 1

λ

] n−1∑
k=0

F̃
(0)
k >

n−1∑
k=0

d̃k, n � 1. (7.8)

Note that on one hand, if x∗
0 = x∗

0(λ0) < ∞, then x∗
0 = x∗

0(λ) < ∞ for every
λ ∈ (0, λ0), by the comparison theorem (cf. [6; Theorem 2.6]). On the other
hand, when λ = 0, we have

n∑
k=0

F̃
(0)
k =

n∑
k=0

F
(0)
k > 0 and

n∑
k=0

d̃k =
n∑

k=0

dk > 0, n � 1.

For each fixed n,
∑n

k=0 F̃
(0)
k and

∑n
k=0 d̃k are analytic in λ, and so should be

positive for sufficient small λ, say λ � λ1 for some λ1 � λ0. Then by (7.8), we
should have

x0

( 1
λ
− 1

q01

)
− 1

λ
> 0, λ ∈ (0, λ1),

independent of n. Therefore, by the minimal property, we have

x∗
0

( 1
λ
− 1

q01

)
− 1

λ
= lim

n→∞�{∑n
k=0 F̃

(0)
k >0

}[ n∑
k=0

d̃k

][ n∑
k=0

F̃
(0)
k

]−1

= d̃,

i.e.,

E0eλσ0 = x∗
0 =

q01(1 + λd̃)
q01 − λ

. (7.9)

Since x∗
0 satisfies (7.8), we obtain condition (7.4). Then

Eneλσ0 = 1 + λ
n−1∑
k=0

(F̃ (0)
k d̃ − d̃k), n � 1.

Conversely, if d̃ < ∞ and (7.4) holds, then starting from x0 = x∗
0 given in

(7.9) and defining xn by (7.7), we obtain a solution (xi > 1: i ∈ E) to (7.5).
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By (4.2), we obtain a finite nonnegative solution to the original equation for
(Eieλσ0 : i ∈ E), and hence the minimal solution (x∗

i = Eieλσ0 : i ∈ E) should
be finite.

Finally, by [6; Theorem 4.44], the process is exponentially ergodic if and
only if E0eλσ0 < ∞, equivalently, d̃ < ∞ and (7.4) holds. The last assertion of
the proposition then follows. �

In contract to the ergodic case, one may study the exponential decay (in
the transient case) for which the Poisson equation becomes

Qg + λg = 0, g > 0.

With ci ≡ λ, by Theorem 1.1, the solution is

gn = g0

[
1 − λ

∑
0�k�n−1

∑
0�j�k

F̃
(j)
k

qj,j+1

]
= g0

[
1 − λ

∑
0�k�n−1

m̃k

]
, n � 0.

This is somehow simpler than the previous one. However, these two exponential
cases are actually much harder than the others, for instance, we do not know
at the moment how to remove condition (7.4). That is showing for some λ > 0,
small enough,

∑n
k=0 F̃

(0)
k > 0 for all n (or equivalently, limn→∞

∑n
k=0 F̃

(0)
k > 0).

This seems necessary for the exponential ergodicity since
∑∞

k=0 F̃
(0)
k = ∞ when

λ = 0 by the recurrence (which is much weaker than exponential ergodicity)
and λ is allowed to be very small. Actually, to figure out a criterion, one needs
much more work using different approaches, refer to [6; Chapter 9] and [7] for
some details.

7.2 Laplace transform of return/extinction time

Note that for negative λ, Eieλσ0 is the Laplace transform of σ0. The proof of
Proposition 7.2 is still available. So we get the following result.

Proposition 7.3 Define (F̃ (i)
k ) and (d̃k) by (1.1) and (5.1), respectively, with

ci ≡ −λ < 0. Let the single birth process be recurrent. Then the Laplace
transform of σ0 is given by

E0e−λσ0 =
q01(1 − λd̃)

q01 + λ
, Ene−λσ0 = 1 − λ

n−1∑
k=0

(F̃ (0)
k d̃ − d̃k), n � 1,

where

d̃ = lim
n→∞

∑n−1
k=0 d̃k∑n−1

k=0 F̃
(0)
k

= lim
n→∞

d̃n

F̃
(0)
n

if the limit exists.

Proof Following the proof of Proposition 7.2, replacing λ by −λ, we arrive at

xn = x0

(
1 +

λ

q01

) n−1∑
k=0

F̃
(0)
k −

n−1∑
k=0

(F̃ (0)
k − λd̃k) + 1,

=: x0αn−1 − βn−1, n � 1.
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By the minimal nonnegative property, x∗
0 = supn�1 βn/αn, and then we indeed

have

x∗
0 = lim

n→∞
βn

αn
.

We now show that we can replace limn→∞ by limn→∞ . Noting that on one
hand, since xn ∈ (0, 1], we have

βn

αn
< x0 � βn + 1

αn
, n � 1.

On the other hand, following the proof for∑
k

m̃k = ∞ ⇐⇒
∑

k

mk = ∞

given in Section 3, we can prove that
∑

k F̃
(0)
k = ∞ since

∑
k F

(0)
k = ∞ by the

recurrent assumption (i.e., γj ≡ 1). Hence, we can rewrite limn→∞ βn/αn as
limn→∞ βn/αn. Therefore, we have

x∗
0 = lim

n→∞

[ n−1∑
k=0

(F̃ (0)
k − λd̃k)

]{[
1 +

λ

q01

] n−1∑
k=0

F̃
(0)
k

}−1

=
q01

q01 + λ
lim

n→∞

[
1 − λ

∑n−1
k=0 d̃k∑n−1

k=0 F̃
(0)
k

]
=

q01

q01 + λ
[1 − λd̃ ].

.

Furthermore,

x∗
n = (1 − λd̃)

n−1∑
k=0

F̃
(0)
k −

n−1∑
k=0

(F̃ (0)
k − λd̃k) + 1 = 1 − λ

n−1∑
k=0

(F̃ (0)
k d̃ − d̃k), n � 1.

The last limit in d̃ is an application of Stolz’s Theorem. �
7.3 Exponential moments and Laplace transform of life time

Now we return to τ∞.

Proposition 7.4 Assume that the single birth Q-matrix Q = (qij) is
explosive and irreducible. Define (m̃k) by (3.1) with ci ≡ λ. For the
corresponding minimal process,

(i) if there exists a λ > 0 such that λ
∑n−1

k=0 m̃k < 1 for every n > 1, then

Eneλτ∞ = 1 + λ

[
c̄

(
1 − λ

n−1∑
k=0

m̃k

)
−

n−1∑
k=0

m̃k

]
, n � 0,
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where

c̄ = lim
n→∞

∑n
k=0 m̃k

1 − λ
∑n

k=0 m̃k
.

Furthermore, the process decays exponentially fast provided c̄ < ∞.

(ii) For λ > 0, the Laplace transform of τ∞ is given by

Ene−λτ∞ =
1 + λ

∑
0�k�n−1 m̃k

1 + λ
∑

k�0 m̃k
, n � 0.

Proof Define

ei∞(λ) =
∫ ∞

0
eλt

Pi(τ∞ > t) dt

with λ < qi for all i � 0. Note that the process is explosive and

Eieλτ∞ = 1 + λei∞(λ).

Because Pm(τn < η) = 1 for every pair m < n, we have Pm(τn < ∞) = 1 and
furthermore Pm(τ∞ < ∞) = 1 for every m, as n goes to ∞. Then by [6; Lemma
4.48], (ei∞(λ)) is the minimal solution to the equation

xi =
qi

qi − λ

∑
k

Πikxk +
1

qi − λ
, i � 0.

By (4.2), we can rewrite the equation as

(Qx)i + λxi = −1, i � 0.

Applying Theorem 1.1 to ci ≡ λ and fi ≡ −1, the solution of the equation has
the form:

xn = x0

(
1 − λ

n−1∑
k=0

k∑
j=0

F̃
(j)
k

qj,j+1

)
−

n−1∑
k=0

k∑
j=0

F̃
(j)
k

qj,j+1

= x0

(
1 − λ

n−1∑
k=0

m̃k

)
−

n−1∑
k=0

m̃k, n � 1.

Note that λ < q0 = q01 and λm̃0 < 1. If there exists a positive λ small enough
so that λ

∑n−1
k=0 m̃k < 1 for every n > 1, then by the argument above and the

minimal property of the solution, one gets

e0∞(λ) = sup
n�1

∑n−1
k=0 m̃k

1 − λ
∑n−1

k=0 m̃k

= lim
n→∞

∑n
k=0 m̃k

1 − λ
∑n

k=0 m̃k
=: c̄

and

en∞(λ) = c̄

(
1 − λ

n−1∑
k=0

m̃k

)
−

n−1∑
k=0

m̃k, n � 1.
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Then the first assertion follows.
For the Laplace transform of τ∞, the argument above still works because

now we deal with the case of −λ < 0. By the explosive property, we know that∑∞
k=0 m̃k < ∞. Hence, we have

e0∞(−λ) = c̄ =
∑∞

k=0 m̃k

1 + λ
∑∞

k=0 m̃k

and

en∞(−λ) = c̄

(
1 + λ

n−1∑
k=0

m̃k

)
−

n−1∑
k=0

m̃k =
∑∞

k=n m̃k

1 + λ
∑∞

k=0 m̃k
, n � 1.

Finally, we have

Ene−λτ∞ = 1 − λ
∑∞

k=n m̃k

1 + λ
∑∞

k=0 m̃k
=

1 + λ
∑

0�k�n−1 m̃k

1 + λ
∑

k�0 m̃k
, n � 0.

The proof for the second assertion is now finished. �
A more careful study on part (i) of Proposition 7.4, refer to Proposition 7.2.

8 Examples

In the special case of birth–death processes, the problems studied here have
rather complete solutions, see, for instance, [6; Theorem 4.55]. As mentioned
in the introduction of the paper, much more models have been studied in the
past years. Here, we make a little addition. The following example is taken
from [3].

Example 8.1 (uniform catastrophes) Let

qi,i+1 = bi, i � 0; qij = a, j = 0, 1, . . . , i − 1;

and qij = 0 for other j > i + 1, where a and b are positive constants. Then the
extinction of the process has an exponential distribution

Ene−λτ0 =
a

a + λ
, λ > 0, n � 1.

It is surprising that the distribution is independent of b and the starting point
n. Redefine q01 = 1. Then the irreducible process is indeed strongly ergodic.

Proof We need to consider the case that q01 > 0 only. With ci ≡ −λ ∈ R and
then q̃

(k)
n = (k + 1)a + λ for k � n− 1, by using (1.1), (5.1), and induction, one

may check that

F̃ (0)
n =

a + λ

nb

∏
1�k�n−1

(
1 +

(k + 1)a + λ

kb

)
,

∏
∅

=: 1,

d̃n =
1
nb

∏
1�k�n−1

(
1 +

(k + 1)a + λ

kb

)
, n � 1.
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Since for each fixed λ ∈ R,

log
(
1 +

(n + 1)a + λ

nb

)
→ log

(
1 +

a

b

)
> 0 as n → ∞,

we have limn→∞ F̃
(0)
n = ∞ and so

∑
n F̃

(0)
n = ∞. As an application of this fact

with λ = 0, it follows that the process is recurrent (Proposition 4.1) and then
should be non-explosive ((7.6) and Proposition 3.1).

Next, because∑
n

F̃ (0)
n = ∞, F̃ (0)

n = (a + λ)d̃n, n � 1,

it follows that

d̃ = lim
n→∞

d̃n

F̃
(0)
n

=
1

a + λ
.

Hence, we have
F̃ (0)

n d̃ = d̃n, n � 1,

From here, when λ = 0 in particular, we obtain

sup
k

k∑
n=0

(F (0)
n d − dn) = d = a−1 < ∞.

Hence, the process is strongly ergodic by Proposition 5.2.
By using Proposition 7.3, we obtain

E0e−λσ0 =
aq01

(a + λ)(q01 + λ)
,

Ene−λσ0 = 1 − λd̃ =
a

a + λ
= Ene−λτ0 , n � 1.

Therefore, we have proved the first assertion.
Even though it is now automatic that the process is exponentially ergodic,

implied by the strongly ergodicity, we would like to check the effectiveness of
Proposition 7.2 for this model. To do so, reset ci ≡ λ > 0. Then

F̃ (0)
n =

a − λ

nb

∏
1�k�n−1

(
1 +

(k + 1)a − λ

kb

)
,

d̃n =
1
nb

∏
1�k�n−1

(
1 +

(k + 1)a − λ

kb

)
,

n � 1.

Clearly, F̃
(0)
n > 0 and so does d̃n for every λ ∈ (0, a). As we have proved above

∑
n

F̃ (0)
n = ∞, d̃ = lim

n→∞
d̃n

F̃
(0)
n

=
1

a − λ
< ∞,
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and hence the process is exponentially ergodic by Proposition 7.2. Actually, we
have

E0eλσ0 =
aq01

(a − λ)(q01 − λ)
,

λ ∈ (0, a ∧ q01).
Eneλσ0 =

a

a − λ
, n � 1, �

Example 8.2 Consider the single birth Q-matrix (qij) with

qi0, qi,i+1 > 0, qij = 0 for all other j �= i.

Let ci ∈ R. Then
(1) we have

F̃
(i)
i = 1,

F̃ (i)
n =

qn0 − cn

qn,n+1

∏
i+1�k�n−1

[
1 +

qk0 − ck

qk,k+1

]
, n > i � 0, (8.1)

where
∏

∅ =: 1, and then (m̃n) and (d̃n) are given by (3.2) and (5.2),
respectively.

(2) In particular, if qn0 − cn ≡ q10 − c1 for every n � 1, then

F̃
(i)
i = 1, F̃ (i)

n =
q10 − c1

qn,n+1

n−1∏
k=i+1

[
1 +

q10 − c1

qk,k+1

]
, n > i � 0,

∏
∅

=: 1,

m̃0 =
1

q01
, m̃n =

1
qn,n+1

n−1∏
k=0

[
1 +

q10 − c1

qk,k+1

]
, n � 1,

d̃0 = 0, d̃n =
1

qn,n+1

∏
1�k�n−1

[
1 +

q10 − c1

qk,k+1

]
, n � 1.

Furthermore, the process is explosive if

κ′ := lim
n→∞

n(qn+1,n+2 − qn,n+1 − q10)
qn,n+1 + q10

> 1

(qn,n+1 = (n+1)γ for γ > 1 for example). Otherwise, if κ′ < 1 (qn,n+1 = (n+1)γ

for some γ � 1 for instance), then the process is unique. If so, the process is
indeed strongly ergodic.

Proof (a) By assumption, we have q̃
(k)
n = qn0 − cn for every k < n. Hence, by

(1.1), we obtain

F̃ (i)
n =

q̃
(0)
n

qn,n+1

n−1∑
k=i

F̃
(i)
k . (8.2)

Thus, to prove (8.1), it suffices to show that
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n−1∑
k=i

F̃
(i)
k =

∏
i+1�k�n−1

[
1 +

q̃
(0)
k

qk,k+1

]
, n > i � 0.

This clearly holds when n = i + 1. Suppose that it holds when n = �. Then

�∑
k=i

F̃
(i)
k =

�−1∑
k=i

F̃
(i)
k + F̃

(i)
�

=
�−1∑
k=i

F̃
(i)
k +

q̃
(0)
�

q�,�+1

�−1∑
k=i

F̃
(i)
k (by (8.2))

=
[
1 +

q̃
(0)
�

q�,�+1

] �−1∑
k=i

F̃
(i)
k

=
∏

i+1�k��

[
1 +

q̃
(0)
�

qk,k+1

]
(by inductive assumption).

Therefore, the required assertion holds for n = � and it then holds for all n > i
by induction. We have thus proved the first assertion.

(b) By assumption, we have q̃
(k)
n = q10− c1 for every k < n. Hence, by (3.1)

and (5.1), we obtain

m̃n =
1

qn,n+1

(
1 + q̃

(0)
1

n−1∑
k=0

m̃k

)
, d̃n =

1
qn,n+1

(
1 + q̃

(0)
1

n−1∑
k=0

d̃k

)
, n � 1.

As in the last proof, by using induction, we obtain the explicit expressions of
(m̃n) and (d̃n).

To study the divergence of
∑

n mn, we adopt the following result.

Kummer Test Let (un) and (vn) be two sequences of positive numbers.
Suppose that

∑∞
0

1
vn

= ∞ and the limit κ := limn→∞ κn exists, where

κn = vn · un

un+1
− vn+1.

Then, the series
∑

un converges or diverges according to κ > 0 or κ < 0,
respectively.

Set vn ≡ n and un = mn :

mn =
1

qn,n+1

∏
0�k�n−1

[
1 +

q10

qk,k+1

]
, n � 0.

Then

vn
un

un+1
− vn+1 =

n(qn+1,n+2 − qn,n+1 − q10)
qn,n+1 + q10

− 1.
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Hence,
∑

n un < ∞ if κ′ > 1 (resp.
∑

n un = ∞ once κ′ < 1). Clearly,
∑

n mn =
∞ implies

∑
n F

(0)
n = ∞. Hence,

d = lim
n→∞

dn

F
(0)
n

=
1

q01
.

Furthermore,

sup
k∈E

k∑
n=0

(F (0)
n d − dn) = F

(0)
0 d = d < ∞.

This gives us the strong ergodicity by Proposition 5.2.
We mention that Proposition 7.2 (with 0 < ci ≡ λ < q10) is also available

for this model. �
Remark 8.3 For exponential ergodicity, the sufficient condition

M := sup
n�1

[ n−1∑
k=1

F
(0)
k

][ ∞∑
j=n

1

qj,j+1F
(0)
j

]
< ∞, (8.3)

introduced in [12], is sufficient for Example 8.1 but is not for Example 8.2.

Proof It is obvious that M < ∞ if and only if

lim
n→∞

[ n−1∑
k=1

F
(0)
k

][ ∞∑
j=n

1

qj,j+1F
(0)
j

]
< ∞. (8.4)

For Example 8.1, because qj,j+1F
(0)
j is growing exponentially fast and so it is

easy to check that M < ∞. For Example 8.2, it suffices to consider qn,n+1 =
b(n + 1) for some b > 0. By Kummer test, one may show that

∞∑
j=n

1

qj,j+1F
(0)
j

= ∞

for suitable b > 0 and then M = ∞. �
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Appendix Key formulas used in proofs

(A) Solution to the Poisson equation Ωg = Qg + cg :

gn = g0 +
∑

0�k�n−1

∑
0�j�k

F̃
(j)
k (fj − cjg0)

qj,j+1
, n � 0.

(B) Three sequences.

(a) F̃ -sequence:

F̃
(i)
i = 1, F̃ (i)

n =
1

qn,n+1

n−1∑
k=i

q̃(k)
n F̃

(i)
k , n > i � 0, (1.1)

where

q̃(k)
n = q(k)

n − cn :=
k∑

j=0

qnj − cn, 0 � k < n. (1.2)

(b) m̃-sequence:

m̃0 =
1

q01
, m̃n =

1
qn,n+1

(
1 +

n−1∑
k=0

q̃(k)
n m̃k

)
, n � 1. (3.1)

(c) d̃-sequence:

d̃0 = 0, d̃n =
1

qn,n+1

(
1 +

n−1∑
k=0

q̃(k)
n d̃k

)
, n � 1. (5.1)

Representation of the three sequences:

F̃
(i)
i = 1, F̃ (i)

n =
n∑

k=i+1

F̃
(k)
n q̃

(i)
k

qk,k+1
, n � i + 1, (2.7)

d̃n =
∑

1�k�n

F̃
(k)
n

qk,k+1
, (5.2)

m̃n =
n∑

k=0

F̃
(k)
n

qk,k+1
, n � 0. (3.2)

Relation of the three sequences:

m̃n =
1

q01
F̃ (0)

n + d̃n, n � 0. (7.6)
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