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Abstract We study cotilting comodules and f -cotilting comodules and give
a description of localization of f -cotilting comodules and classical tilting
comodules. First, we introduce T -cotilting injective comodules and their
dimensions which are important for researching cotilting comodules. Then we
characterize the localization in f -cotilting comodules, finitely copresented
comodules, and classical tilting comodules. In particular, we obtain a
localizing property about finitely copresented comodules.
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1 Introduction

Simson [11] defined the concepts of cotilting comodules and he hoped developing
a (co)tilting theory for comodule categories. Wang [12] introduced the concepts
of tilting comodules and partial tilting comodules over coalgebras. In particular,
he proved that each tilting comodule induces a torsion theory. In this paper,
we use Wang’s viewpoint and give some properties of cotilting comodules.

It is well known that the localization plays an important role in the
theory of algebras. It has been developed gradually from different aspects. The
canonical process is actually the formulation of rings of fractions and the
associated process of localization which are the most significant technical tools
in commutative algebra. At the same time, Goodearl, Warfield, and others
researched the localization in the noncommutative situation and obtain many
nice results ([3,4]). Also, Gabriel [1] gave a description of the localization
abstractly in Abelian and Grothendieck category. In the process of local-
ization, one usually applies a functor onto the quotient category, which has
a right adjoint, the section functor. That is to say, if T : A → A ′ is an
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exact functor between Abelian categories, and S : A ′ → A is a full and
faithful right adjoint functor of T, then the dense subcategory ker T, with
object class {X ∈ A | T (X) = 0}, is a localizing subcategory of A , and the
category A ′ is equivalent to A /ker T. In particular, the localization in which
A is a Grothendieck category is the same as in Abelian categories. Starting
from the localization of rings, some mathematicians developed a theory of
localization for coalgebras. For example, Jara et al. [5–7] and Navarro [9,10]
elaborated Gabriel’s ideas in comodule categories (Grothendieck categories of
finite type). The key point of the theory lies in the description that quotient
category becomes a comodule category. That is to say, a quotient category
M C/T is a category of comodules M D for certain coalgebra D, where C is
a coalgebra and T is a localizing subcategory of M C . Indeed, this is because
that the category M C of right comodules over a coalgebra C is a locally finite
Grothendieck category in which the theory of localization can be applied. The
advantage of this is that it is better understood than that the case of modules
over an arbitrary algebra. It is worth mentioning that the key point in most
of such applications is the behavior of simple and injective comodules through
the action of the section functor. Therefore, by studying on a set of localized
coalgebras of any coalgebra C, we can obtain some information about C or its
category of comodules M C . Simson studied the localization from another point
of view, and successfully showed that the localising embedding technique via
some functors can be used in researching the Euler defect of coalgebras.

In this paper, we get some interesting properties of cotilting comodules
and give a description of localization of f -cotilting comodules and classical
tilting comodules. In Section 2, we list some notations and basic facts about
coalgebras, cotilting comodules, and localization, in order to make the article
self-contained. In Section 3, we give some properties of a cotilting comodule
by T -cotilting injective comodules and their dimensions. In Section 4, we
characterize the localization in f -cotilting comodules, finitely copresented
comodules, and classical tilting comodules. In particular, we obtain a
localizing property about finitely copresented comodules.

2 Preliminaries

Throughout this paper, K will be a field. Let C be a K-coalgebra, and denote
by M C and M C

f the categories of right C-comodules and right C-comodules
of finite K-dimension, respectively.

Following [7], a full subcategory T of M C is said to be dense (or a Serre
class) if each exact sequence

0 → M1 → M → M2 → 0

in M C satisfies that M belongs to T if and only if M1 and M2 belong to
T . For any dense subcategory T of M C , there exists an abelian category
M C/T and an exact functor T : M C → M C/T , such that T (M) = 0 for
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each M ∈ T , satisfying the following universal property: for any exact functor
F : M C → C such that F (M) = 0 for each M ∈ T , there exists a unique
functor F : M C/T → C verifying that F = FT, where C is an arbitrary
abelian category. The category M C/T is called the quotient category of M C

with respect to T , and T is known as the quotient functor. A dense subcategory
T of M C is said to be localizing if the quotient functor T : M C → M C/T
has a right adjoint functor, S, called the section functor. If the section functor
is exact, T is called perfect localizing. T is said to be colocalizing if T has
a left adjoint functor, H, called the colocalizing functor. T is called a perfect
colocalizing subcategory if the colocalizing functor is exact.

Let us list some properties of the (co)localizing functors (see [1,8]).

Lemma 1 [1,8] Let T be a dense subcategory of the category of right
comodules M C over a coalgebra C. Then the following statements hold.

(a) T is exact.
(b) If T is localizing, then the section functor S is left exact and the

equivalence TS � 1M C/T holds.
(c) If T is colocalizing, then the colocalizing functor H is right exact and

the equivalence TH � 1M C/T holds.

In [7,13], localizing subcategories are described by means of idempotents in
the dual algebra C∗. In particular, it is proved that the quotient category is the
category of right comodules over the coalgebra eCe, where e is the idempotent
associated to the localizing subcategory. The coalgebra structure of eCe is
given by

ΔeCe(exe) =
∑
(x)

ex(1)e ⊗ ex(2)e, εeCe(exe) = e(x),

where
ΔC(x) =

∑
(x)

x(1) ⊗ x(2), ∀ x ∈ C.

If M is a right C-comodule, then eM has a natural structure of right
eCe-comodule given by

ρ(ex) =
∑
(x)

ex(0) ⊗ ex(1)e,

where
ρM (x) =

∑
(x)

x(0) ⊗ x(1), ∀ x ∈ M.

Lemma 2 [7] Let C be a coalgebra, and let e be an idempotent in C∗. Then
the following statements hold.

(a) The quotient functor T : M C → M eCe is naturally equivalent to the
functor e(−). T is also equivalent to the cotensor functor −�CeC.
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(b) The section functor S : M eCe → M C is naturally equivalent to the
cotensor functor −�eCeCe.

(c) If T is a colocalizing subcategory of M C , then the colocalizing functor
H : M eCe → M C is naturally equivalent to the functor CohomeCe(eC,−).

To any coalgebra C, denote by {Sj}j∈IC
and {Ej}j∈IC

a complete set of
pairwise nonisomorphic simple and indecomposable injective right C-comodules,
respectively. From now on, we fix an idempotent element e ∈ C∗. We also
denote by Te the localizing subcategory associated to e and by {Sj}j∈Ie the
set of simple comodules of the quotient category, where Ie is a subset of IC .
In what follows, we will denote by {Ej}j∈Ie a complete set of pairwise non-
isomorphic indecomposable injective right eCe-comodules, and assume that Ej

is the injective envelope of the simple right eCe-comodule Sj for each j ∈ Ie.
Unless otherwise stated, we always assume T (M) �= 0 for a right C-comodule

M.

3 Cotilting comodules

Following [11], given a right C-comodule M, we denote by AddM the full
subcategory of M C , the objects of which are the comodules isomorphic to
direct summands of an arbitrary direct sum of the comodule M ; by add M the
full subcategory of M C , the objects of which are the comodules isomorphic
to finite direct sums of direct summands of the comodule M ; and by ProdM
the subcategory of M C , the objects of which are the comodules isomorphic to
direct summands of an arbitrary product of the comodule M. Given a set L,
we denote by ML the product of L-copies of M, and by M (L) the direct sum
of L-copies of M.

Definition 1 [11] Let M be a right C-comodule for a coalgebra C. We define
M to be a cotilting comodule if M satisfies the following four conditions:

(c1) M is quasi-finite;
(c2) inj.dim(M) � 1;
(c3) Ext1C(ML,M) = 0 for all sets L;
(c4) there exists an exact sequence

0 → M1 → M0 → C → 0, M1,M0 ∈ ProdM.

Definition 2 [11] Let M be a right C-comodule for a coalgebra C. We define
M to be an f -cotilting comodule if M satisfies the following four conditions:

(c1) M is quasi-finite;
(c′2) M admits an injective resolution

0 → M → Ex → Ey → 0,

where the comodules Ex and Ey are injective, quasi-finite, and lie in addC;
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(c′3) Ext1C(M,M) = 0;
(c′4) there exists an exact sequence

0 → M1 → M0 → C → 0, M1,M0 ∈ addM.

Remark 1 Comparing the two definitions, we know that condition (c3)
implies (c′3), but condition (c′3) does not imply (c3).

(a) If dimKM is finite, then condition (c′3) implies (c3). More generally, one
can show that condition (c′3) implies (c3) if the algebra ΛM = EndCM is left
coherent and right perfect, and M viewed as a left module over the algebra ΛM

is finitely presented (see [11]).
(b) For a comodule M, we obtain the following conclusions from [2]:
(1) Ext(−,M) preserves products if and only if M is injective;
(2) Ext(−,M) preserves products from torsion-free group if and only if M

is cotorsion.
Therefore, from above discussion, we get that some f -cotilting comodules

can be cotilting comodules under some conditions.

We consider the following full subcategories of M C and M C
f :

TC(M) = {X ∈ M C ; HomC(X,M) = 0} ⊆ M C ,

T f
C(M) = {X ∈ M C

f ; HomC(X,M) = 0} ⊆ M C
f ,

FC(M) = {Y ∈ M C ; Ext1C(Y,M) = 0} ⊆ M C ,

F f
C(M) = {Y ∈ M C

f ; Ext1C(Y,M) = 0} ⊆ M C
f .

Denote by Cogen M (resp. cogen M) the full subcategory of M C consisting of
all comodules N such that there is a monomorphism N → ML for some set L
(resp. finite set L).

For a comodule M, we have a category of comodules Cogen M, which
cogenerates a torsion theory (torsion pair) (T ,F ), where F is the smallest
torsion-free class containing Cogen M.

Proposition 1 [11] Assume that C is a basic coalgebra.
(a) If M is a cotilting right C-comodule, then
(a1) FC(M) = Cogen M ;
(a2) (TC(M),FC (M)) is a torsion pair in M C and (T f

C(M),F f
C (M)) is

a torsion pair in M C
f .

(b) If M is an f -cotilting right C-comodule, then
(b1) F f

C(M) = cogen M ;
(b2) (T f

C(M),F f
C (M)) is a torsion pair in M C

f .

Proposition 2 Let C be a right semi-perfect coalgebra, and let

FC(M) = Cogen M.
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Then
(i) Cogen M is closed under taking extensions, direct sums, direct products,

and subcomodules. In particular, Cogen M is a torsion-free class.
(ii) Ext1C(ML,M) = 0 for any set L and inj.dim(M) � 1.

Proof (i) It follows from the definition of Cogen M and [12].
(ii) Since

ML ∈ Cogen M = FC(M)

for any set L, we have
Ext1C(ML,M) = 0.

For any Y ∈ M C , there exists an exact sequence

0 → N → P → Y → 0,

where P is projective since C is right semi-perfect. Applying the functor
ExtC(−,M), we have the exact sequence

Ext1C(P,M) = 0 → Ext1C(N,M) → Ext2C(Y,M) → Ext2C(P,M) = 0.

Since
P ∈ Cogen M = FC(M)

and Cogen M is closed under taking subcomodules, we have

Ext1C(N,M) = 0,

and then,
Ext2C(Y,M) = 0, inj.dim(M) � 1. �

Definition 3 Let T be a cotilting comodule. A comodule M is called T -
cotilting injective if HomC(−,M) preserves the exactness of sequence in FC(T ).

Remark 2 Any injective comodule is T -cotilting injective.

Proposition 3 Let C be a right semi-perfect basic coalgebra, and let T be a
cotilting comodule. The following statements are equivalent for a comodule M :

(i) M is T -cotilting injective;
(ii) Ext1C(U,M) = 0 for any U ∈ FC(T );
(iii) for any exact sequence

0 → N1 →h N → N2 → 0, N2 ∈ FC(T ),

and any comodule map f : N1 → M, there exists a comodule map g : N → M
such that g ◦ h = f.

Proof (i) ⇒ (ii). For any U ∈ FC(T ), there is an exact sequence

0 → N → P → U → 0,
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where P is projective. Since

Ext1C(P, T ) = 0, P ∈ FC(T ) = Cogen T,

we have N ∈ FC(T ) because Cogen T is closed under taking subcomodules.
Therefore, this sequence must be in FC(T ) and (ii) follows easily by the
definition.

(ii) ⇒ (iii). Applying the functor HomC(−,M) to the exact sequence

0 → N1 →h N → N2 → 0, N2 ∈ FC(T ),

we obtain

0 → HomC(N2,M) → HomC(N,M) → HomC(N1,M) → Ext1C(N2,M) = 0.

Therefore, for any comodule map f : N1 → M, there exists a comodule map
g : N → M such that g ◦ h = f.

(iii) ⇒ (i). By the condition, HomC(−,M) preserves the exactness of
sequence

0 → N1 →h N → N2 → 0, N2 ∈ FC(T ).

Therefore, HomC(−,M) preserves the exactness of sequence in FC(T ). �
Since M C is a locally finite abelian category, every comodule has an

injective envelope. It follows that every comodule M has a T -cotilting injective
resolution. Like the usual injective dimension of M, we define ct-inj.dim(M) as
the least number n such that there is a T -cotilting injective resolution

0 → M → F0 → F1 → · · · → Fn → 0,

where all Fi are T -cotilting injective. If there exists no such n, we say that the
T -cotilting injective dimension of M is infinity, denoted by

ct-inj.dim(M) = ∞.

Lemma 3 Let C be a right semi-perfect basic coalgebra, and let T be a cotilting
comodule. Then the following conditions are equivalent for a right C-comodule
M :

(i) M is T -cotilting injective;
(ii) ExtnC(A,M) = 0 for any right C-comodule A ∈ FC(T ) and n > 0.

Proof (i) ⇒ (ii). Assume that {Pn, dn} is the projective resolution of A. Let
An = Im dn. Then we have the short exact sequence

0 → An →η Pn−1 →π An−1 → 0.

We conclude that this exact sequence is in FC(T ), because Pn ∈ FC(T ) for
n = 0, 1, . . . and FC(T ) is closed under taking subcomodules. Since M is
T -cotilting injective, we have

0 → HomC(An−1,M) → HomC(Pn−1,M) → HomC(An,M) → 0.
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Then

ExtnC(A,M) = HomC(An,M)/ImHomC(η,M) = 0, n > 0.

(ii) ⇒ (i). For any exact sequence

0 → A1 → A → A2 → 0

in FC(T ), since Ext1C(A2,M) = 0, we have

0 → HomC(A2,M) → HomC(A,M) → HomC(A1,M) → 0

is exact, that is to say, HomC(−,M) is an exact functor in FC(T ). By the
definition, M is T -cotilting injective. �
Theorem 1 Let C be a right semi-perfect basic coalgebra, and let T be a
cotilting comodule. Then the following conditions are equivalent for a right
C-comodule N :

(i) ct-inj.dim(N) � n;
(ii) if there is an exact sequence

0 → N → F0 → F1 → · · · → Fn−1 → X → 0,

where all Fi are T -cotilting injective, then X is T -cotilting injective;
(iii) Extn+1

C (A,N) = 0 for any comodule A ∈ FC(T );

(iv) Extn+j
C (A,N) = 0 for any comodule A ∈ FC(T ) and j = 1, 2, . . . .

Proof (i) ⇒ (iii). We use induction on n. If

ct-inj.dim(N) � 1,

then we have an exact sequence

0 → N → F0 → F1 → 0,

where F0 and F1 are T -cotilting injective. Hence, (iii) holds by Lemma 3.
Inductively, suppose that the result holds for

ct-inj.dim(N) � n − 1.

Since C is right semi-perfect, we have an exact sequence

0 → A′ → P → A → 0

with P projective. Since T is a cotilting comodule, P ∈ FC(T ) and so A′ ∈
FC(T ). We obtain

Extn+1
C (A,N) � ExtnC(A′, N) = 0
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from the sequence.
(iii) ⇒ (ii). It is easy to get from the isomorphism

Extn+1
C (A,N) � Ext1C(A,X)

and Proposition 3.
(ii) ⇒ (i). It holds clearly by the definition of ct-inj.dim(N).
(iii) ⇒ (iv). It follows from the isomorphism

Extn+j
C (A,N) � Extn+j−1

C (A′, N), j = 1, 2, . . . .

(iv) ⇒ (iii). It is obvious. �
Theorem 2 Let C be a right semi-perfect basic coalgebra, and let T be a
cotilting comodule. Then, for an exact sequence

0 → A → B → C → 0,

we have following results.
(1) If ct-inj.dim(A) = ct-inj.dim(C), then ct-inj.dim(B) = ct-inj.dim(C);
if ct-inj.dim(A) < ct-inj.dim(C), then ct-inj.dim(B) � ct-inj.dim(C);
if ct-inj.dim(A) > ct-inj.dim(C), then ct-inj.dim(B) � ct-inj.dim(A).
(2) If ct-inj.dim(A) = ct-inj.dim(B), then ct-inj.dim(C) = ct-inj.dim(B);
if ct-inj.dim(A) < ct-inj.dim(B), then ct-inj.dim(C) � ct-inj.dim(B);
if ct-inj.dim(A) > ct-inj.dim(B), then ct-inj.dim(C) � ct-inj.dim(A).
(3) If ct-inj.dim(B) = ct-inj.dim(C), then ct-inj.dim(A) = ct-inj.dim(B)+

1;
if ct-inj.dim(B) < ct-inj.dim(C), then ct-inj.dim(A) � ct-inj.dim(C) + 1;
if ct-inj.dim(B) > ct-inj.dim(C), then ct-inj.dim(A) � ct-inj.dim(B) + 1.

Proof For any N ∈ FC(T ), we have

· · · → ExtnC(N,C) → Extn+1
C (N,A) → Extn+1

C (N,B) → Extn+1
C (N,C) → · · ·

(1) Suppose

ct-inj.dim(A) � n, ct-inj.dim(C) � m.

If
m = n, Extn+1

C (N,A) � Extn+1
C (N,C) = 0,

then
Extn+1

C (N,B) = 0, ct-inj.dim(B) � n.

If
m > n, Extm+1

C (N,A) � Extm+1
C (N,C) = 0,
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then
Extm+1

C (N,B) = 0, ct-inj.dim(B) � m.

If
m < n, Extn+1

C (N,A) � Extn+1
C (N,C) = 0,

then
Extn+1

C (N,B) = 0, ct-inj.dim(B) � n.

(2) Suppose

ct-inj.dim(A) � n, ct-inj.dim(B) � l.

If
l = n, Extn+j

C (N,A) � Extn+j
C (N,B) = 0,

then
Extn+j

C (N,C) = 0, j = 1, 2, . . . , ct-inj.dim(C) � n.

If
l > n, Extl+j

C (N,A) � Extl+j
C (N,B) = 0,

then
Extl+j

C (N,C) = 0, j = 1, 2, . . . , ct-inj.dim(C) � l.

If
l < n, Extn+j

C (N,A) � Extn+j
C (N,B) = 0,

then
Extn+j

C (N,C) = 0, j = 1, 2, . . . , ct-inj.dim(C) � n.

(3) Suppose

ct-inj.dim(B) � l, ct-inj.dim(C) � m.

If
m = l, Extl+j

C (N,B) � Extl+j
C (N,C) = 0, j = 1, 2, . . . ,

then
Extl+2

C (N,A) = 0, ct-inj.dim(A) � l + 1.

If
m > l, Extm+j

C (N,B) � Extm+j
C (N,C) = 0, j = 1, 2, . . . ,

then
Extm+2

C (N,A) = 0, ct-inj.dim(A) � m + 1.

If
m < l, Extl+j

C (N,B) � Extl+j
C (N,C) = 0, j = 1, 2, . . . ,

then
Extl+2

C (N,A) = 0, ct-inj.dim(A) � l + 1. �
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Corollary 1 Let C be a right semi-perfect basic coalgebra, and let T be a
cotilting comodule. For an exact sequence

0 → A → B → C → 0,

if the T -cotilting injective dimension of two comodules in A, B, and C are
finite, then the T -cotilting injective dimension of the third comodule is also
finite.

4 Localization

Theorem 3 Assume that C is a coalgebra and e ∈ C∗ is the idempotent
associated to the set Ie.

(a) If M is an f -cotilting right C-comodule and X � Ce is a quasi-finite
injective cogenerator, then T (M) is an f -cotilting right eCe-comodule.

(b) If N is an f -cotilting right eCe-comodule and e ∈ C∗ defines a perfect
localization, then S(N) is an f -cotilting right C-comodule.

Proof (a) Following [13, Theorem 1.13], we obtain the fact that the functor
T is an equivalence if and only if X � Ce is a quasi-finite injective cogenerator.
Now, we prove that T (M) satisfies the four conditions of f -cotilting comodule.

(c1). If M is quasi-finite, then, since the functor T : M C → M eCe restricts to
a functor between the categories of quasi-finite which also denoted by T : M C

qf →
M eCe

qf (see [10]), we know that T (M) is quasi-finite.

(c′2). Since T is an equivalence, we get T (M) admits an injective resolution

0 → T (M) → T (Ex) → T (Ey) → 0,

where the comodules T (Ex) and T (Ey) are injective, quasi-finite, and lie in
add T (C). In fact, since Ex lies in add C, that is,

Ex =
⊕
i∈I

Ci,

where I is a finite set and Ci is the direct summand of C, we have

T (Ex) � T

(⊕
i∈I

Ci

)
=

⊕
i∈I

T (Ci)

because the quotient functor T preserves direct sum. Thus, T (Ex) lies in
add T (C). Similarly, T (Ey) lies in addT (C).

(c′3). If Ext1C(M,M) = 0, we have the following diagrams (denote T (·) by
T · for convenience):

0 → M → E
f→ E/M → 0,
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0 → TM → TE
Tf→ TE/TM → 0,

0 → HomC(M, M) → HomC(M, E)
f∗
→ HomC(M, E/M) → Ext1C(M, M) = 0

↓ T ↓ T

0 →HomeCe(TM, TM)→HomeCe(TM, TE)
(Tf)∗→ HomeCe(TM, TE/TM)→Ext1eCe(TM, TM)→ 0

Since T is an equivalence, it follows that

Ext1eCe(T (M), T (M)) = 0.

(c′4). If there is a short exact sequence

0 → M1 → M0 → C → 0, M1,M0 ∈ addM,

then we get

0 → T (M1) → T (M0) → T (C) → 0, T (M1), T (M0) ∈ add T (M),

since T is exact and preserves direct sum.
(b) (c1). Since the section functor S preserves quasi-finite comodules, the

result follows.
(c′2). If N admits an injective resolution

0 → N → Ex → Ey → 0,

where the comodules Ex and Ey are injective, quasi-finite, and lie in add eCe.
Since S is exact and it preserves injective comodules and direct sum, we obtain

0 → S(N) → S(Ex) → S(Ey) → 0,

where the comodules S(Ex) and S(Ey) are injective, quasi-finite, and lie in
add C.

(c′3). Assume Ext1eCe(N,N) = 0. Since the injective envelope of N lies in
add eCe, there is an exact sequence

0 → N → eCe(m) → F → 0,

and we have the following diagram (denote S(·) by S· for convenience):

0 → HomeCe(N, N) →HomeCe(N, eCe(m))→ HomeCe(N, F ) → 0

↓� ↓� ↓�
0 →HomC(SN, SN)→ HomC(SN, C(m)) →HomC(SN, SF )→Ext1C(SN, SN)→ 0

The diagram is communicate because S is fully faithful. Therefore,

Ext1C(S(N), S(N)) = 0.

(c′4). If there is an exact sequence

0 → N1 → N0 → eCe → 0, N1, N0 ∈ add N,
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then
0 → S(N1) → S(N0) → C → 0, S(N1), S(N0) ∈ add S(N),

because S is exact and preserves direct sum of comodules. �
Proposition 4 Assume that C is a basic coalgebra. If M is an f -cotilting
right C-comodule, e ∈ C∗ is the idempotent which associates to the set Ie, and
X � Ce is a quasi-finite injective cogenerator, then

(a) F f
eCe(T (M)) = cogen (T (M));

(b) (T f
eCe(T (M)),F f

eCe(T (M))) is a torsion pair in M eCe
f .

Proof (a) Assume that Z is a comodule in cogen (T (M)), and let

u : Z → (T (M))L

be a monomorphism with a finite set L. Since T is equivalence, there exists a
C-comodule X such that T (X) = Z and

u : T (X) → (T (M))L � T (ML).

u is injective if and only if X → ML is injective, if and only if

Ext1C(X,M) = 0,

if and only if
Ext1eCe(T (X), T (M)) = 0,

that is, Z lies in F f
eCe(T (M)).

(b) We show that (T f
eCe(T (M)),F f

eCe(T (M))) is a torsion pair in M eCe
f

by checking that the following three conditions are satisfied:
(t1) HomeCe(Y,Z) = 0 for all Y ∈ T f

eCe(T (M)) and Z ∈ F f
eCe(T (M));

(t2) HomeCe(Y,−)|F f
eCe(T (M)) = 0 implies Y ∈ T f

eCe(T (M)); and

(t3) HomeCe(−, Z)|T f
eCe(T (M)) = 0 implies Z ∈ F f

eCe(T (M)).

It is easy to see that (b) holds because T is equivalence. �
Next, we consider the localization of classical tilting comodule which was

mentioned in [12].

Definition 4 We call M finitely copresented if there is an exact sequence

0 → M → Ex → Ey

in M C , where Ex and Ey are finite direct sum of indecomposable injective
comodule (or socle-finite).

Definition 5 [12] A finitely copresented comodule M is called a classical
tilting comodule if
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(1) there is an exact sequence

0 → M0 → M1 → C → 0, Mi ∈ add M,

(2) Ext1C(M,M) = 0,
(3) inj.dim(M) � 1.

Proposition 5 Let C be a coalgebra, and let T be a quotient functor. If M
is a finitely copresented right C-comodule, then T (M) is a finitely copresented
right eCe-comodule.

Proof By the hypothesis, there is an exact sequence

0 → M → Ex → Ey

in M C , where Ex and Ey are finite direct sum of indecomposable injective
comodule. Since T is an exact functor, we get an exact sequence

0 → T (M) → T (Ex) → T (Ey).

If T (Ex) and T (Ey) are both injective right eCe-comodule, then T (M) is a
finitely copresented right eCe-comodule since T preserves finite dimensional
comodule. Otherwise, we can construct a minimal injective copresentation of
T (M) :

0 → T (M) → Ex → Ey.

Since M is socle-finite, T (M) is socle-finite, that is,

soc T (M) =
r∐

i=1

Si (r < ∞).

We have

Si ↪→ Ei, soc T (M) ↪→
r∐

i=1

Ei.

Since
∐r

i=1 Ei is injective, the injective envelope Ex of socT (M) is socle-finite.
By the same way, Ey is socle-finite. Thus, T (M) is a finitely copresented right
eCe-comodule. �
Corollary 2 Let C be a coalgebra, and let T be a quotient functor which has
an exact left adjoint H. If M is a finitely copresented right C-comodule, then
T (M) is a finitely copresented right eCe-comodule.

Proof Since H is exact, T carries injective comodules to injective comodules.
By Proposition 5, T (M) is a finitely copresented right eCe-comodule. �
Proposition 6 Let C be a coalgebra, and let S be a section functor. If N is
a finitely copresented right eCe-comodule, then S(N) is a finitely copresented
right C-comodule.
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Proof According to the hypothesis, there is an exact sequence

0 → N → Ex → Ey,

where Ex and Ey are socle-finite injective comodules. Since S is left exact,
socS(Si) = Si, and S preserves injective envelopes, we have

0 → S(N) → S(Ex) → S(Ey),

where S(Ex) and S(Ey) are socle-finite injective comodules. Therefore, S(N)
is a finitely copresented right C-comodule. �

From Propositions 5 and 6, we obtain the following localization property
about finitely copresented comodules.

Theorem 4 Let C be a coalgebra, and let e ∈ C∗ be an idempotent. Then
M is a finitely copresented right C-comodule if and only if T (M) is a finitely
copresented right eCe-comodule.

Proof If M is a finitely copresented right C-comodule, then T (M) is a finitely
copresented right eCe-comodule by Proposition 5. Conversely, if T (M) is a
finitely copresented right eCe-comodule, then ST (M) is a finitely copresented
right C-comodule by Proposition 6. It only needs to prove that M is finitely
copresented. Since M is an essential subcomodule of ST (M), we construct the
minimal injective copresentations of ST (M) and M :

0 → ST (M) → E′ → E′′, 0 → M → Ex → Ey,

where Ex = E′. Since Ex/M is socle-finite, the injective envelope Ey is
socle-finite. Therefore, M is finitely copresented. �
Proposition 7 Let C be a coalgebra, and let e ∈ C∗ be an idempotent defining
a perfect localization. If N is a classical tilting right eCe-comodule, then S(N)
is a classical tilting right C-comodule.

Proof By Proposition 6, S(N) is a finitely copresented right C-comodule. It
is sufficient to prove the three conditions in Definition 5.

(1) By the hypothesis, there exists an exact sequence

0 → N2 → N1 → eCe → 0, Ni ∈ add N.

Since S is an exact functor and preserves direct sum of comodules, we know
that

0 → S(N2) → S(N1) → C → 0

is exact and S(Ni) ∈ add S(N).
(2) The result follows from Theorem 3.
(3) Suppose inj.dim(N) � 1, that is, there is an exact sequence

0 → N → Ex → Ey → 0,
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where Ex and Ey are injective right eCe-comodules. Since S is exact and
preserves injective comodule, we know that

0 → S(N) → S(Ex) → S(Ey) → 0

is exact, where S(Ex) and S(Ey) are injective right C-comodules. Thus, we get

inj.dim(S(N)) � 1. �

Acknowledgements The authors would like to thank the referees for the careful reading

and valuable suggestions. This work was supported by National Natural Science Foundation

of China (Grant Nos. 11271119, 11201314) and the Natural Science Foundation of Beijing

(Grant No. 1122002).

References

1. Gabriel P. Des categories abeliennes. Bull Soc Math France, 1962, 90: 323–448
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