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Abstract In this paper, the super &-operators of Jordan superalgebras are
introduced and the solutions of super Jordan Yang-Baxter equation are
discussed by super @-operators. Then pre-Jordan superalgebras are studied as
the algebraic structure behind the super &-operators. Moreover, the relations
among Jordan superalgebras, pre-Jordan superalgebras, and dendriform super-
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1 Introduction

Jordan algebras were first introduced by Jordan [8] in the context of axiomatic
quantum mechanics. They were originally called ‘r-number systems’, but were
renamed as ‘Jordan algebras’ by Albert [1,2], who began the systematic study
of general Jordan algebras. Jordan algebras have become by far an important
branch of algebras and appeared in many areas of mathematics like differential
geometry ([3,4,13]), Lie theory ([7,14]), and analysis ([5,16]). It is well known
that associative, Jordan, and Lie algebras are three kinds of strongly related
algebras. A Jordan algebra can be regarded as an ‘opposite’ of a Lie algebra
in the sense that the commutator of an associative algebra is a Lie algebra
and the anticommutator of an associative algebra is a Jordan algebra, although
not every Jordan algebra is isomorphic to the anticommutator of an associative
algebra (such a Jordan algebra is called special).
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The notion of Jordan D-bialgebras was introduced by Zhelyabin [17] as an
analogue of Lie bialgebras. A kind of Jordan D-bialgebras (coboundary cases)
is obtained from the solutions of an algebraic equation in Jordan algebras. This
algebraic equation is called Jordan Yang-Baxter equation (JYBE), which is an
analogue of the classical Yang-Baxter equation (CYBE) in Lie algebra ([18]).
The original form of a JYBE is given in the tensor form, so it is natural to
consider operator form of the JYBE which satisfies certain conditions ([6]). It
was proved that a skew-symmetric solution of the JYBE was exactly a special
operator, which was called &-operator.

Now, Jordan superalgebras have been rapidly developed ([9-12,15]). Jordan
superalgebras were first studied in [9] by classifying finite-dimensional simple
Jordan superalgebras over an algebraically closed field of characteristic 0. In
this paper, super JYBE in Jordan superalgebras and super &-operators are
introduced. Moreover, we exploit pre-Jordan superalgebras which are the
algebraic structures behind the super J-operators and study their relations
with Jordan superalgebras and dendriform superalgebras. Though the results
we give are mainly generalizations of the results for Jordan algebras, it seems
to us that it is still worth presenting them here.

This paper is organized as follows. In Section 2, we give some fundamental
results on Jordan superalgebras and super JYBE. In Section 3, we introduce
the notion of super ¢-operators of Jordan superalgebras, and then constuct
a direct relation between super O-operator and super JYBE. In Section 4,
we introduce pre-Jordan superalgebras and give their relations with super
O-operators, Jordan superalgebras, and dendriform superalgebras.

Throughout this paper, all algebras are finite-dimensional and over a field
F of characteristic 0.

2 Preliminaries

In this section, we will give the definitions and some results for superspaces and
Jordan superalgebras in order to be self-contained.
A vector space V is called a super vector space if

V=V,+V

is Zg-graded. The elements in V; U V] are called homogeneous. We use the
expression |z| to denote the parity index of the homogeneous element z, where

0, zelV,,
|| =
1, zeV,.

It is assumed in this paper that all elements are the homogeneous of their
corresponding super vector spaces.
Let V* be the dual space of V, and let its Zo-gradation be given by

Va={f V| f(V,41) =0, a € Zo}.
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Let
(,): V*xV =T

be the canonical pairing. Then we identify V' with V* by the pairing
f) = {f,0) = (D", f), YoeV, v eV,

Let U and V be two super vector spaces. Then the tensor product U ® V
has a natural Zs-gradation defined as

UeV).= P U.0V), abcée s
a+b=c

Next, we define a linear operator
o VeV-VeV

by
clvew)=(-)"wev, VoweV.

The element r € V ® V is called skew-supersymmetric if

r+o(r)=0.
Definition 1 A Jordan superalgebra is a super vector space

J=J,®J;
equipped with a bilinear product: J x J — J satisfying

Jodpg C Jayp, Y a,B € Zy,
and the following conditions:
ay = (=D Wy vz y e, (1)
((zy)2)t + (_1)|y\(IZI+\tI)+|2| |t‘((xt)z)y + (_1)\w\(|2|+\t|+\y|)+|2| \tl((yt)z)$

= (ey)(z) + (1) @2) (o) + (DD ) (y2), Vayzte o (2)

Let J be a Jordan superalgebra, and let V' be a super vector space. The
space gl(V) consisting of all linear transformations on V has a natural
Zo-gradation as

gl(V)a = {f S gl(V) | f(%) - Va-l—ba CL,b € ZZ}

A J-representation is a vector space V with an even linear map p: J — gl(V)
(i.e., |p| = 0) such that for any x,y, z € J,

play)p(z) + (=) p(z2)ply) + (= 1) 10H1=D p(y2) p(2)
= p(@)p(y)p(2) + ()l p((z2)y) + (—1)l WD o2 p(y) p(2),



588 Junna NI et al.

[p(x), p(y2)] + (=)W [p(y), p(z2)] + (~=1)FEFD (), pay)] = 0,

where [, -] is the commutator. We denote it by (p, V). Furthermore, there is a
Jordan superalgebra structure on the direct sum J @V of the underlying vector
space of J and V' given by

(z+u)(y+v) =zy+ plx)v+ (=)W p()u, Ya,yed YVuoveV,

and denoted by J x, V.
For = € J, define the left and right actions L(x), R(z): J — J by

L(z)y =zy, R(x)y=(-DlWyz, vye,

respectively. From (1), it is obvious that

In addition, we define
L:J— gl(J),
x— L(z).

Then (L, J) is a representation of .J, which is called the regular representation
of J.
Let (p,V) be a J-representation, and let V* denote the dual space of V.
Define a linear map
o T = gl(V)

by

(p*(x)u*,v) = (=Dl p(x)), Vaeld YveV, Vu' eV
Then (p*, V*) is also a J-representation, which is called the dual representation
of (p,V).

For a Jordan superalgebra J and r € J ® J, the standard form of the super
Jordan Yang-Baxter equation (super JYBE) is given as follows:

r12713 + 113723 — 112723 = 0, (3)

where 7 is called a solution of the super JYBE. For

r=>Y a;@bejel

note that

T12:Zaz‘®bi®1, T13:Zai®1®bi7 7“23:21®ai®bi,

and
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712713 = Z(—l)‘aﬂ |bi‘aiaj & bi & bj,

iij
713723 = Z(—l)‘aﬂ |bi‘a,~ (= aj & bibj,
iij
12723 = Z a; & biaj & bj,

i?j

where 1 is a unit element in J.

3 Super J-operators and super Jordan Yang-Baxter equations

Let V be a super vector space. For any r € V ® V., r can be regarded as a map
from V* to V in the following way:

W*@u,r)y = (=)l e, Vot ot e VE (4)
Equation (3) gives the tensor form of super JYBE. What we will do next is
to replace the tensor form by a linear operator satisfying some conditions.

Theorem 1 Let J be a Jordan superalgebra and r € J & J be skew-
supersymmetric with |r| = 0. Then r is a solution of the super JYBE in J
if and only if

r(@*)r(y*) = r(L*(r(z®)y" + (=D)L ey N2, ¥ a* g e J. (5)

Proof Let {e1,...,em, fi,..., fu} be a basis of J, where ¢; € J;, (1 < i < m)
and fi € J; (1 <k < n). Denote by {e},... e, fr,..., [} the dual basis with
e; € Jy (1 <i<m)and f; € J/ (1 <k<n) Since r is skew-supersymmetric
and |r| = 0, we can set

r = Z a;je; @ ej + Z bri fr ® fi,

1<i,j<m 1<k, I<n

where
ajj = —aji, br = by.

Now, we have

7“127"13—( Y agei®e @1+ Y bklfk®fl®1>

1<ij<m 1<k i<n
( Z apgep @ 1 @ eq + Z bstfs®1®ft>
1<p,g<m 1<s,t<n

_ a, .. .
= g Cipa,]apqea ®e; ®eq
1<i,7,p,q,a<m
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+ Z Z Czbsaijbstfb ®e; ® fi

10,5 Sm 1<s,t,b<n

+ D D Chapbufe® fide,

1<p,qsm 1<k, lesn

— Z Z Cgsbklbsted & fl ® fta

1<k, s, t<n 1<d<m.

7“137"23_( Z ajje; @1 ®ej + Z bszk®1®fl>

Ii,j<m 1<k I<n
< Z apgl ® e, D eq + Z bst1®fs®ft>
1<p,g<m 1<s,t<n

= E quawapqez ®ep® eq

1<i,5,p,q,a<m

+ Z Z le‘)taijbstei X fs & fb

10,5 Sm 1<s,t,b<n

t Z Z Clytpbrife ® ep @ fe

1<p,qsm 1<k, lesn

o Z Z Cl%bklbstfk ® fs ® eq,

1<k, s, t<n 1<d<m.

?“127"23—( Y oagei®e @1+ Y bklfk®fl®1>

1<i,j<m 1<k,I<n
( E apgl ® e, @ eq + E b5t1®fs®ft>
1<p,gsm 1<s,t<n

p— a .. .
= g ija,]apqe, ® eq ® g
1<i,5,p,q,a<m

+ Z Z C;?saijbstei@fb@ft

1<4,j<m 1<s,t,b<n

+ Y > Chmbufi® fe®e

1<p,qsm 1<k Lesn

+ Y > Cloubafi®eq® fi,

1<k, s,t<n 1<d<m

where C’Z«k-’s are the structure coefficients of Jordan superalgebra J on the basis
{e1,...,em, f1,..., fn}. Then r is a solution of super JYBE in J if and only if

a q J
E (Cipaijapg + Cpilaptji — Cz’paaiapq)ea ®ejQeq
1<i,psm

+ ( SN Claiba+ > Chajibys — > Cl];bblbst> fo®e; @ fi

i=1 s=1 i=1 s=1 1<l,s<n
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m n m n
+ < SN Crapgba— D> Clbabi — > > C,Qpa,,qbck> fo® fi®e,
p=1 k=1 1<k, t<n p=1 k=1
m n m n
+( - Z C]?Sbklbst + Z Z Cﬁsadjbls - Z Z C]l-sadjbst> eq ® fl ® ft = 0.
1<k, s<n j=1s=1 j=1s=1

On the other hand, by (4), we get
m n
r(ef) == ajiei, r(fi)=-Y brsfs, 1<j<m, 1<k<n,
i=1 s=1

We prove the conclusion in the following four cases.

Casel z*=¢jandy” =e¢

By (5), we have

*
q-

a q J —
E (Cipaijapg + Cpiaapaji — C’ipaaiapq)ea =0.
1<i,p<m

Case 2 z* = ¢ and y* = f.

By (5), we have

m

<Z Z C,‘jpaqukl - Z C]gtbckblt — Z Z C]lgpaquck> fl =0.

p=1k=1 1<k, t<n p=1 k=1

Case 3 z* = f and y* = €].
By (5), we have

<Z Z Cyaijbse + Z Z Cliajibys — Z Cljsbblbst> Jt =0.

i=1 s=1 i=1 s=1 1<l,s<n

Case 4 z* = f/ and y* = f/.
By (5), we have

( > b =D Cliagbis +> 0> cj-sadjbst> eq = 0.

1<k,s<n j=1s=1 7j=1s=1

Therefore, it is easy to see that r is a solution of super JYBE in J if and only
if r satisfies (5). O

Now, we introduce the notion of super &-operator of a Jordan superalgebra.

Definition 2 Let J be a Jordan superalgebra, and let (p,V) be a
J-representation. A linear map T: V — J with |T| = 0 is called a super
O-operator associated to p if T satisfies

T()T(v) = T(p(T (W) + (~D)" P p(T(@)u), VuveV. (6
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In the case (p, V) = (L, J), the super 0-operator is called a super Rota-Bazter
operator.

Let J be a Jordan superalgebra, and let (p, V) be a J-representation. A
linear map 7': V — J with |T'| = 0 can be identified as an element in

J®V* C (J D(IO* V*)®(J D(p* V*)

as follows. Let {e1,...,em, f1,..., fn} beabasisof J. Let {uy,...,up,v1,...,04}
be a basis of V, and let {uf,...,uy,v],...,v;} be its dual basis. Since [T = 0,
we set

z) :Zaiaea (1 <Z<p)7 T(vs) :stbfb (1 <3<Q)-
a=1 b=1

Since as vector space,
Hom(V,J) = J@ V™,

we have
p

q
T=> T(w)@u;+» T(vs) ® v}
i=1 s=1

P m q n
= Zzamea ®Ur + Zzbsbfb ®U;k C ('] D<,0* V*) ® (J Ixﬂ* V*) (7)

i=1 a=1 s=1b=1

Theorem 2 We have r = T — o(T) is a skew-supersymmetric solution of
super JYBE in the Jordan superalgebra J X, V* if and only if T is a super
O -operator associated to p.

Proof From (7), we have

p

r=T—0o(T) =) T(uw)@u+» T()@vi—> u@T(u)+Y vi®T(vy).

i=1 s=1 i=1 s=1
Thus,

rioriz = Y (T(w)T(wy) ® uf @ uf — p*(T(ws))uf @ uf @ T(uy)
1<i,j<p

p q
— P (T(uj))uf @ T(wy) @uf) + > Y (T(ui)T(v) @ uf @ v}
=1 t=

7 1
+ 07 (T(wi))v; @ ui @ T(ve) = p* (T (ve))ui @ T(ui) @ vy)

+ 3 DI (T ()T (wy) ® vk @ w) — p*(T(vs) )} @ v} @ T(uy)
s=1 j=1
+ o (T(uy)); @ T(vs) @ui) + Y (=T (vs)T(ve) @ v} @ vf

1<s,t<q
= P (T(vs))vf @ vg @ T (vr) + p™(T(v))vg @ T(vs)) © 7).
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By the definition of dual representation, we have

Therefore,

o (@)l @uf @T(u) = > wi(p(T (ug))up)uf, @ uj @ T(u;)

1<i,j<p 1<,5,k<p
p
=Y dou @T(Zu; >]>
1<i,k<p Jj=1
> uj @ uf @ T(p(T (ui))ug)-
1<i,k<p
Then we get

T19T13 = Z (T(u)T(uj) @ uj @uj —u; @u; @T(p(T(uy))ui)

1,5 <p

—u;‘®T(p(T(uj))ui)®u;)+ii T(v) @u; @ vy
+uj @ vf @ T (p(T(vr))ui) — u:é; ;(;(T(vt))w) ® vf)
+§q:121 ) @ vk @ul + vk @ s @ T(p(T(uy))vs)
+ o @;T(p(T(uj))vs) ® u}) + 1<§;< (=T(vs)T (ve) ® v; @ vy

—vs @ vy @T(p(T(ve))vs)) — vg @ T(p(T (v1))vs) @ vy),

rigray = Y (=T(p(T(w))uy) ® uf @ wf +uf @ uj @ T(u)T (uy)
1<i,g<p

—u; @ T (p(T(ui) +ZZ i))ve) ® uy @ vf

7 t

=1 t=
—U*®Uf®T(uz‘)T( t) = u; @ T(p(T (ui))vr) @ vy)

—_

—i—ZZ T'(vs))uj) @ vy @ uj —vg @ uj @ T(vs)T (uy)
s=1 j=1
+ ol @ T(p(T(vs))uy) @ i)+ > (T(p(T(vs))vy) ® v} @
1<s,t<q

— vy @ vy @T(ws)T(ve) + v5 @ T(p(T (vs))ve) @ vy),
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—rrs = Y (T (p(T(w)))us) @ ui @ uf —uf ©uf @ T(p(T (us))uy)

I<i,j<p

oy @ T(u)T(uy) @ uf) + Z(—T(p(T(w))ui) ® uf ® v}

—i—ZZ 3))vs) ® vg @ uj +vg @ u; @ T (p(T(vs))uy
s=1 j=1
— 0} @ T()T(wy) @uf) + Y (=T (p(T(ve))vs) ® v} @ vf
1<s,t<q

+ 05 @ @ T(p(T (vs))vr) — v @ T (vs)T (vr) @ 7).

Therefore,

712713 + 113723 — 712723

S (T ()T (uz) — T(p(T(w)g) — T(p(T(uy)us)] © uf &

1<e,5<p
+u; @u; @ [T(u)T(uj) —T(p(T(ui))uj) — T (p(T(uj))ui)]
+uf @ [T(wi)T(uz) — T(p(T (i) )uy) — T(p(T (uj))u;)] @}

+ 3> AT @)T(0) = T(p(T (ws))ve) = T(p(T(ve))us)] @ uf @ v

i=1 t=1
—ui @ vf @ [T(ug)T(vr) = T(p(T(ui))ve) = T(p(T (vr))ui)]
+ui @ [T(wi)T(ve)) = T(p(T (ui))ve) = T(p(T (ve))us)] © vg'}

+ 20 PO w) = T(p(T (0)) =TT 3] @ & 3

— vy @ uj @ [T(vs)T(uz) — T(p(T(vs))uj) — T(p(T(u;))vs)]
— 0y @ [T(vs)T (u ) (p(T(vs))uj)— T(p(T(uj))vs)] @ uj}
)

+ > {7y = T(p(T(vs))ve) + T(p(T (ve))vs)] @ v © vy
1<s,t<q

—vs @ vy @ [T(vs)T (ve) = T(p(T (vs))ve) + T (p(T (ve))vs)]

— 03 ® [T(vs)T (ve) = T(p(T(vs))ve) + T (p(T (v))vs)] © v}

Obviously, r is a solution of super JYBE in .J x ,« V* if and only if 7" is a super

U-operator associated to p.

g

In fact, Theorem 2 gives a relation between super &-operator and super

JYBE. Then, we get a direct conclusion from Theorems 1 and 2.

Corollary 1 Let J be a Jordan superalgebra, and let (p,V)

be a
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J-representation. Set

j:pr* V*.

Let T:V — J be a linear map with |T| = 0. Then the following three conditions
are equivalent:

(i) T is a super O-operator of J associated to p;
(ii) T —o(T) is a skew-supersymmetric solution of the super JYBE in J;

(iti) T — o(T) is super O-operator of the Jordan superalgebra J associated
to L*.

4 Super C-operators of Jordan superalgebras and pre-Jordan superalgebras

In this section, we introduce the notion of pre-Jordan superalgebras. Then we
study the relations among Jordan superalgebras, pre-Jordan superalgebras, and
dendriform superalgebras.

Definition 3 A pre-Jordan superalgebra A is a super vector space
A=A,0 A,
equipped with a bilinear product (z,y) — x - y satisfying
Ao A CAnip, Y a,B€Zs,
and the following equations (V z,y,z,u € A):

z- [y (z-u)]+ (_1)\Z\(Ir|+\y|)+lr| vl , . ly - (z-u)] + (_1)|z| Iy\[(x oz)oy|-u
=x-[(yoz) ul+ (_1)Ir|(\y|+\z\)y. [(zox)-u]+ (_1)\Z\(Ir|+\y|)z N(zoy)-ul, (8)

(oy)-(z-u)+ (=DPIWWHED (y o 2) . (2 w) + (=)FIEFD (20 2) - (y - w)
=x-[(yoz) -ul+ (_1)Ix|(\y|+\z\)y. [(zox) u]+ (_1)\2\(|w|+\y|)z N(zoy)-ul, (9)

where
zoy=x-y+(-1)Wy. 2

In fact, (8) and (9) are equivalent to the following equations:

(@,y,2 - u) = (=)@ - 2,9, u)
+ (_1)Ix|(\y|+\2\)(y, Z, @, ) + (_1)|:v| \yl(y,% Z,u)2
+ (_1)Ix| lyl+lz|[z]+]yl ‘Z‘(z,y,x ) — (_1)\1’\ |z|+\yIIZI(Z xz,y,u) =0, (10)
(z,y,2,u)1 + (_1)\w\(|y\+IZI)(y’ z,,u)1
+ (_1)|2|(\:v\+|y\)(zjw’y’ u)p + (_1)Ir| \yl(yyx, Z,u)1
+ (_1)\y| IZI(Q;’ Z,y,u) + (_1)|~'v| lyl+]a| |2])+]y] ‘Z‘(z,y,x,u)l =0, (11)
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where
(@,y,2) =(x-y)-z—x-(y-2),
(l’,y,Z,U)l = ($y) : (Z’LL) - [(yz) 'u]’
(@,y,z,u)2 = (z-y) - (z-u) = [z-[(y - 2)] - w
Definition 4 A dendriform superalgebra D is a super vector space
equipped with two bilinear products denoted by
= <:D®D —D
satisfying
DaDﬁ - Da_,_g, v Oé,ﬁ S ZQ,
and the following equations (V z,y,z € D):

T - (y-z)=(zxy) >z
(x=y)<z=z> (y<2),
(r<y)<z=x<(yx*2),
where
rxy=x>y+xr<1y.

Analogous to the connection between associative superalgebras and Jordan
superalgebras, dendriform superalgebras are closely related to pre-Jordan
superalgebrs.

Proposition 1 Let (D, >, <) be a dendriform superalgebra. Then the product
roy=z>=y+ (—D)Wy <2 vayeD,

defines a pre-Jordan superalgebra structure on D.
Proof It can be straightforward proved by (10) and (11). O

Let (A,-) be a pre-Jordan superalgebra. Then it is easy to see that the
product
zoy=xz-y+ (—DPWy. 2 vV yeA, (12)

defines a Jordan superalgebra (J(A), o), which is called the associated Jordan
superalgebra of (A,-) and (A4, ) is called a compatible pre-Jordan superalgebra
structure on the Jordan superalgebra (J(A), o). Next, we give a sufficient and
necessary condition for a Jordan superalgebra with a compatible pre-Jordan
superalgebra structure.

Proposition 2 A superalgebra (J,-) is a pre-Jordan superalgebra if and only
if (J,0) is a Jordan superalgebra and (L, J) is a representation of (J, o), where

zoy=x-y+ (=DWy . 2 v yel
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Summarizing the above study, we have the following commutative diagram
of categories:

dendriform superalgebra % associative superalgebra
L+ L+
pre-Jordan superalgebra % Jordan superalgebra

Furthermore, we can construct pre-Jordan superalgebras from super &-operators
of Jordan superalgebras.

Theorem 3 Let J be a Jordan superalgebra and (p, V') be its representation.
Let T:V — J be a super O-operator of J associated to p. Then there exists a
pre-Jordan superalgebra structure on V given by

uxv=p(T(w)v, YuwveV. (13)

Proof Let u,v,w,a € V. Set

and
wov=uxv+ (1)l sy

Hence, we have

(v w) ] = p(T(u))p(T(0))p(T(w))a = p()p(y)p(2)a,
[(wow)ov]xa= p{T[p(T(wow))w+ (~) DI (T (0)) (w0 w)]}a
— p{T(uow) o T(v)}a
— p{TIp(T(w))w + (~1)" ¥ p(T (w)u] 0 T(v)}a
— p{(T(w) o T(w)) 0 T(v)}a
Yy

Then

s [ (wx a)] + (=1)wiFRDFRlvly, 4 Ty % (u % a)]

+ (=)Mo w) o v xa
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(2)p(y)p(2)a + (~)HWHEDTBE () p(y) p)a + (1) p((z 0 2) 0 y)a

P
= (DFEHD () p(z 0 y)a + pla)oly o )+ (1)FIWHEDp(y)p(z o )a
= (- )\wl(\UIHv\

* [(uwov)*al+ux*[(vow)xal

+ (=Dl Dy s [(w o w) * a],
(wov) s (wx*a) + (—=1)PIFD 4 o w) % (u )

+ (_1)\w|(\UI+\U\)(w ou)* (v*a)
= (=)D (2 0 y)p(2)a + (=) IFHED p(y 0 2)p(2)a

+ (—)FIEHD o2 0 2) p(y)a
= (=)D p(2) p(@ 0 y)a + p(a)ply © 2)a + (=1)FEHD o) p(z 0 2)a
(—1)‘w|(‘“|+‘”‘)w * (wow)*xa+ux*[(vou)x*al

+ (=Dl Dy s [(w 0 w) * a).

Thus, (V, %) is a pre-Jordan superalgebra. U

Therefore, there exists a Jordan superaglebra structure on V' given by (12)
and T is a homomorphism of Jordan superalgebras. Furthermore, there is an
induced pre-Jordan superalgebra structure on T'(V') given by

Tw) -T(w)=T(uxv), YuveV. (14)

Moreover, the corresponding associated Jordan superalgebra structure on 7'(V)
given by (12) is just a Jordan supersubalgebra structure of J and 7" becomes a
homomorphism of pre-Jordan superalgebra.

Corollary 2 Let (J,0) be a Jordan superalgebra, and let R be a super Rota-
Baxter operator. Then there is a pre-Jordan superalgebra given by

x-y=R(x)oy, VYax,yel

Corollary 3 Let (J,0) be a Jordan superalgebra. Then there is a compatible
pre-Jordan superalgebra structure on J if and only if there is an invertible super
O -operator of J.

Proof Let T be an invertible super O-operator of J associated to a
representation (p, V). From (13) and (14), letting

z=T(u), y=T(v),
we can get a pre-Jordan superalgebra structure on J defined by
z-y=T(px)T '(y), Vayel

Conversely, let (J,-) be a pre-Jordan superalgebra, and let (J,0) be the
associated Jordan superalgebra. Then the identity map id: J — J is a super
O-operator of (J,0) associated to the representation (L, J). Il
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Corollary 4 Let (A,-) be a pre-Jordan superalgebra. Then

n

T:Z(ei(@ef—ef@ei)

i=1

s a skew-supersymmetric solution of super Jordan Yang-Baxter equation in the
Jordan superalgebra J(A) xp« J(A*), where {e1,...,en} is a basis of A and
{e1,... e’} is the dual basis.

Proof Since id is an O-operator of the associated Jordan superalgebra (J(A), o)
associated to the representation (L, A), the conclusion follows from Theorem 2.
O
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