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1 Introduction

Let Xi (i � 1) and X be real-valued random variables (r.v.s) with distributions
Fi (i � 1) and F, and finite mean μi (i � 1) and μ, respectively. The partial
sums are denoted by

Sn =
n∑

i=1

Xi, n � 1.

This paper will investigate the precise large deviations for these partial sums
Sn, n � 1, with heavy-tailed and widely dependent increments. The main
results will be given after some heavy-tailed distribution classes and wide
dependence structures are introduced.

We first give some notions and notation. For a proper distribution V on
(−∞,∞), let V = 1 − V be its tail. For two positive functions a(x) and
b(x), we write a(x) ∼ b(x) if limx→∞ a(x)/b(x) = 1; write a(x) � b(x) if
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lim supx→∞ a(x)/b(x) � 1; write a(x) � b(x) if lim infx→∞ a(x)/b(x) � 1;
write a(x) = o(b(x)) if limx→∞ a(x)/b(x) = 0; and write a(x) = O(b(x)) if
lim supx→∞ a(x)/b(x) < ∞. Furthermore, for two positive bivariate functions
a(t, x) and b(t, x), we write a(t, x) ∼ b(t, x) uniformly for all x from some
nonempty set Δ as t → ∞, if

lim
t→∞ sup

x∈Δ

∣∣∣∣
a(t, x)
b(t, x)

− 1
∣∣∣∣ = 0;

write a(t, x) � b(t, x) uniformly for all x ∈ Δ as t → ∞, if

lim sup
t→∞

sup
x∈Δ

a(t, x)
b(t, x)

� 1;

and write a(t, x) � b(t, x) uniformly for all x ∈ Δ as t → ∞, if

lim inf
t→∞ inf

x∈Δ

a(t, x)
b(t, x)

� 1.

The indicator function of a set A is denoted by 1A, and for some real number
a, let a− = −min{a, 0}.
1.1 Heavy-tailed distribution classes

In this subsection, we will introduce some subclasses of heavy-tailed distribution
classes. An r.v. ξ (or its corresponding distribution V ) is called heavy-tailed if
for all β > 0, ∫ ∞

−∞
eβxV (dx) = ∞,

otherwise, we say that the r.v. ξ (or V ) is light-tailed. One of the heavy-tailed
subclasses is the class D with dominatedly varying tails. Say that a distribution
V on (−∞,∞) belongs to the class D , if for any y ∈ (0, 1),

V (xy) = O(V (x)), x → ∞.

A smaller class is the class C with consistently varying tails. Say that a
distribution V on (−∞,∞) belongs to the class C , if

lim
y↗1

lim sup
x→∞

V (xy)
V (x)

= 1,

or equivalently,

lim
y↘1

lim inf
x→∞

V (xy)
V (x)

= 1.

Another important subclass of the heavy-tailed distribution class is the class
L with long tails. Say that a distribution V on (−∞,∞) belongs to the class
L , if for any y > 0,

V (x + y) ∼ V (x), x → ∞.
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It is well known that these distribution classes have the following relationships:

C ⊂ L ∩ D ⊂ L

(see, e.g., [5,8,9]).
For a distribution V, denote its upper Matuszewska index by

J+
V = − lim

y→∞
log V ∗(y)

log y
,

where

V ∗(y) := lim inf
x→∞

V (xy)
V (x)

, y > 1,

and let
LV = lim

y↘1
V ∗(y).

From [1, Chapter 2.1], we know that the following assertions are equivalent:
(i) V ∈ D ;
(ii) 0 < LV � 1;
(iii) J+

V < ∞.

From the definition of the class C , it holds that V ∈ C if and only if LV = 1.

1.2 Wide dependence structures

In this paper, we will mainly discuss the case that the increments {Xi, i � 1}
of the partial sums Sn, n � 1, have a wide dependence structure and may
not be independent. The wide dependence structures are introduced by Wang
et al. [23].

Definition 1 For the r.v.s {ξn, n � 1}, if there exists a finite real sequence
{gU (n), n � 1} satisfying for each integer n � 1 and for all xi ∈ (−∞,∞),
1 � i � n,

P

( n⋂

i=1

{ξi > xi}
)

� gU (n)
n∏

i=1

P (ξi > xi), (1)

then we say that the r.v.s {ξn, n � 1} are widely upper orthant dependent
(WUOD) with dominating coefficients gU (n), n � 1; if there exists a finite
real sequence {gL(n), n � 1} satisfying for each integer n � 1 and for all
xi ∈ (−∞,∞), 1 � i � n,

P

( n⋂

i=1

{ξi � xi}
)

� gL(n)
n∏

i=1

P (ξi � xi), (2)

then we say that the r.v.s {ξn, n � 1} are widely lower orthant dependent
(WLOD) with dominating coefficients gL(n), n � 1; if they are both WUOD
and WLOD, then we say that the r.v.s {ξn, n � 1} are widely orthant
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dependent (WOD). The WUOD, WLOD, and WOD r.v.s are called by a joint
name wide dependent (WD) r.v.s.

Definition 1 shows that the wide dependence structures contain some
common negative dependence structures. Indeed, if

gL(n) = gU (n) ≡ 1

for any integer n � 1 in (1) and (2), then the r.v.s {ξn, n � 1} are called
negatively upper orthant dependent (NUOD) and negatively lower orthant
dependent (NLOD), respectively. The r.v.s {ξn, n � 1} are called negatively
orthant dependent (NOD) if {ξn, n � 1} are both NUOD and NLOD (see,
e.g. [2,7]). If there exists a positive constant M such that for all integer n � 1,
both (1) and (2) hold with

gL(n) = gU (n) ≡ M,

then the r.v.s {ξn, n � 1} are called extendedly negatively orthant dependent
(ENOD) (see, e.g. [3,4,14]). Wang et al. [23] also gave some examples to show
that the WUOD and WLOD structures can contain some positively dependent
r.v.s.

1.3 Motivation and main results

For the precise large deviations of the partial sums Sn, n � 1, when {Xi, i � 1}
are independent and identically distributed (i.i.d.) r.v.s, some earlier work can
be found in [6,10–12,16–19], among others. The recent result is [20], which
investigated the case that {Xi, i � 1} are i.i.d. nonnegative r.v.s and obtained
the following result.

Theorem A Let {Xi, i � 1} be a sequence of i.i.d. nonnegative r.v.s with
common distribution F1 ∈ C and finite mean μ1. Then for any γ > 0,

lim
n→∞ sup

x�γn

∣∣∣∣
P (Sn − nμ1 > x)

nF1(x)
− 1

∣∣∣∣ = 0. (3)

Now, many studies of precise large deviations are devoted to the dependent
r.v.s. Wang et al. [24] and Liu [15] considered the nonnegative negatively
associated (NA) (for the definition, see [13]) r.v.s. Tang [21] considered a weaker
dependence structure than the NA dependence structure and investigated the
precise large deviations for real-valued r.v.s.

Theorem B Let {Xi, i � 1} be a sequence of NOD identically distributed
real-valued r.v.s with common distribution F1 ∈ C and finite mean μ1 = 0
satisfying

xF1(−x) = o(F1(x)), x → ∞.

If there exists some r > 1 such that E(X−
1 )r < ∞, then for any γ > 0, relation

(3) holds.
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On the basis of [21], Liu [14] discussed a more general case that {Xi, i � 1}
are real-valued ENOD and nonidentically distributed r.v.s with consistently
varying tails. Yang and Wang [25] extended Liu’s results to the dominatedly-
varying-tailed distribution class by adding the following two assumptions.

Assumption 1 For some T > 0,

0 < lim inf
n→∞ inf

x�T

∑n
i=1 Fi(x)
nF (x)

� lim sup
n→∞

sup
x�T

∑n
i=1 Fi(x)
nF (x)

< ∞,

0 < lim inf
n→∞ inf

x�T

∑n
i=1 Fi(−x)
nF (−x)

� lim sup
n→∞

sup
x�T

∑n
i=1 Fi(−x)
nF (−x)

< ∞.

Assumption 2 For all i � 1, Fi ∈ D . Furthermore, assume that for any
ε > 0, there exist some w1 = w1(ε) > 1 and x1 = x1(ε) > 0, irrespective of i,
such that for all i � 1, 1 � w � w1, and x � x1,

Fi(wx)
Fi(x)

� LFi − ε,

or, equivalently, for any ε > 0, there exist some 0 < w2 = w2(ε) < 1 and
x2 = x2(ε) > 0, irrespective of i, such that for all i � 1, w2 � w � 1, and
x � x2,

Fi(wx)
Fi(x)

� L−1
Fi

+ ε.

Theorem C Let {Xi, i � 1} be a sequence of ENOD real-valued r.v.s with
finite mean μi = 0, i � 1. If Assumptions 1 and 2 hold, then for any γ > 0,

lim sup
x→∞

sup
x�γn

P (Sn > x)
∑n

i=1 L−1
Fi

Fi(x)
� 1. (4)

Furthermore, if
F (−x) = o(F (x)), x → ∞, (5)

and there exists some r > 1 such that E(X−
i )r < ∞, i � 1, and E(X−)r < ∞,

then for any γ > 0,

lim inf
x→∞ inf

x�γn

P (Sn > x)
∑n

i=1 LFiFi(x)
� 1. (6)

In this paper, we still investigate the precise large deviations of the partial
sums Sn, n � 1, and consider the case that {Xi, i � 1} are real-valued and
nonidentically distributed r.v.s with dominatedly varying tails, but have a wider
dependence structure (i.e., wide dependence structure) than the above results.
Under Assumptions 1 and 2, the upper bound of the precise large deviations of
the partial sums Sn, n � 1, can be obtained.
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Theorem 1 Let {Xi, i � 1} be a sequence of real-valued r.v.s with μi = 0 (i �
1) and satisfying Assumptions 1 and 2. If {Xi, i � 1} are WUOD r.v.s with
dominating coefficients gU (n) (n � 1) satisfying for any fixed 0 < α < 1,

lim
n→∞ gU (n)(nF (n))α = 0, (7)

then relation (4) holds.

In order to obtain the lower bound of the precise large deviations of the
partial sums Sn, n � 1, we will use a stronger assumption than Assumption 2.

Assumption 3 For all i � 1, Fi ∈ D . Furthermore, assume that for any
δ ∈ (0, 1), there exist some v1 = v1(δ) > 1 and x1 = x1(δ) > 0, irrespective of
i, such that for all i � 1, 1 � v � v1, and x � x1,

Fi(vx)
Fi(x)

� δLFi ,

or, equivalently, for any δ > 1, there exist some 0 < v2 = v2(δ) < 1 and
x2 = x2(δ) > 0, irrespective of i, such that for all i � 1, v2 � v � 1, and
x � x2,

Fi(vx)
Fi(x)

� δL−1
Fi

.

Remark 1 (i) It is noted that, generally, Assumption 3 is stronger than
Assumption 2. In fact, for any ε ∈ (0, 1), taking some fixed δ ∈ (1 − ε, 1),
since 0 < LFi � 1, by Assumption 3, there exist some v1 = v1(δ) > 1 and
x1 = x1(δ) > 0, irrespective of i, such that for all i � 1, 1 � v � v1, and
x � x1,

Fi(vx)
Fi(x)

� δLFi > (1 − ε)LFi � LFi − ε.

This shows that Assumption 2 holds.
However, in some particular case, for example, if there exists a positive

constant a, such that for any i � 1, LFi � a, then Assumption 2 can imply
Assumption 3. Indeed, for any δ ∈ (0, 1), taking some fixed ε ∈ (0, (1 − δ)a),
by Assumption 2, there exist some w1 = w1(ε) > 1 and x1 = x1(ε) > 0,
irrespective of i, such that for all i � 1, 1 � w � w1, and x � x1,

Fi(wx)
Fi(x)

� LFi − ε > LFi − (1 − δ)a � δLFi ,

which is Assumption 3.
(ii) Assumptions 2 and 3 actually require the distributions of Xi, i � 1, do

not differ too much from each other. Especially, if there exists a positive integer
i0 such that for all i � i0, Fi = Fi0 , then by Fi ∈ D , we know that Assumptions
2 and 3 are satisfied.
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Under Assumptions 1 and 3, the lower bound of the precise large deviations
of the partial sums Sn, n � 1, can be given.

Theorem 2 Let {Xi, i � 1} be a sequence of real-valued r.v.s with μi = 0 (i �
1) and satisfying Assumptions 1 and 3. Suppose that E(X−

i )r < ∞, i � 1,
E(X−)r < ∞ for some r > 1, and relation (5) holds. If {Xi, i � 1} are WOD
r.v.s with dominating coefficients gU (n) (n � 1) and gL(n) (n � 1) satisfying
(7) and for any α ∈ (0, 1),

lim
n→∞ gL(n)n−α = 0. (8)

Then relation (6) holds.

If {Xi, i � 1} and X are identically distributed r.v.s with common
distribution F ∈ D , then Assumptions 1–3 are satisfied. Hence, from Theorems
1 and 2, the following two corollaries can be obtained.

Corollary 1 Let {Xi, i � 1, X} be identically distributed real-valued r.v.s
with common distribution F ∈ D and finite mean μ1 = 0. If {Xi, i � 1} are
WUOD r.v.s with dominating coefficients gU (n) (n � 1) satisfying (7), then for
any γ > 0,

lim sup
x→∞

sup
x�γn

P (Sn > x)
nF (x)

� L−1
F .

Corollary 2 Let {Xi, i � 1, X} be identically distributed real-valued r.v.s
with common distribution F ∈ D and finite mean μ1 = 0. Suppose that E(X−

1 )r

< ∞ for some r > 1 and relation (5) holds. If {Xi, i � 1} are WOD r.v.s with
dominating coefficients gU (n) (n � 1) and gL(n) (n � 1) satisfying (7) and (8),
then for any γ > 0,

lim inf
x→∞ inf

x�γn

P (Sn > x)
nF (x)

� LF .

Remark 2 (i) When {Xi, i � 1} are i.i.d. nonnegative r.v.s with common
distribution F1 ∈ C , let Yi = Xi − μ1, i � 1. Then EYi = 0, i � 1, and

P (Sn − nμ1 > x) = P

( n∑

i=1

Yi > x

)
.

Let G be the distribution of Yi, i � 1. Since F1 ∈ C ⊂ L , it knows that
G(x) ∼ F1(x) as x → ∞. From this, we get G ∈ C ⊂ D and LG = 1. Hence,
{Yi, i � 1} satisfy the conditions of Corollaries 1 and 2, and Theorem A can be
obtained from Corollaries 1 and 2.

(ii) For Theorem B, since F1 ∈ C ⊂ D , the NOD structure is stronger than
the WOD structure and satisfies (7) and (8), the conditions of Corollaries 1 and
2 are satisfied. Therefore, Corollaries 1 and 2 extend Theorem B.

(iii) Since the ENOD structure is stronger than the WUOD structure,
Theorem 1 extends result (4) in Theorem C.
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2 Proofs of main results

Before proving Theorems 1 and 2, we first give some lemmas. The following
lemma is similar to [14, Lemma 3.3]. We omit the proof here.

Lemma 1 Assume that E(X−
i )q < ∞ (i � 1) and E(X−)q < ∞ for some

q � 1. If Assumption 1 holds, then there exists some finite constant μ̂−
q such

that for all integer n � 1,

n∑

i=1

E(X−
i )q � nμ̂−

q .

The following lemma can be obtained by [22, Lemma 3.5].

Lemma 2 If V ∈ D , then it holds for any p > J+
V that limx→∞ x−p/V (x) = 0.

Wang et al. [23] obtained the following properties for the WUOD and
WLOD r.v.s, which also can be proved by the argument of the proof of
[3, Lemma 2.2].

Lemma 3 (i) Let {ξn, n � 1} be WLOD (resp. WUOD) with dominating co-
efficients gL(n) (n � 1) (resp. gU (n) (n � 1)). If {fn(·), n � 1} are
non-decreasing, then {fn(ξn), n � 1} are still WLOD (resp. WUOD) with
dominating coefficients gL(n) (n � 1) (resp. gU (n) (n � 1)); If {fn(·), n � 1}
are nonincreasing, then {fn(ξn), n � 1} are WUOD (resp. WLOD) with
dominating coefficients gL(n) (n � 1) (resp. gU (n) (n � 1)).

(ii) If {ξn, n � 1} are nonnegative and WUOD with dominating coefficients
gU (n) (n � 1), then for each n � 1,

E

n∏

i=1

ξi � gU (n)
n∏

i=1

Eξi.

In particular, if {ξn, n � 1} are WUOD with dominating coefficients gU (n)
(n � 1), then for each n � 1 and any s > 0,

E exp
{

s
n∑

i=1

ξi

}
� gU (n)

n∏

i=1

E exp{sξi}.

Proof of Theorem 1 In the sequel, C always represents some finite and positive
constant whose value may vary in different places.

Since Fi ∈ D , i � 1, by Assumption 1, we have F ∈ D . Relation (4) will be
shown by using the line of [14], whose idea is from [21]. For any fixed positive
integer m and any fixed v ∈ (0,m/(m + 1)), we set

X̃i = min{Xi, vx}, i � 1.
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By Lemma 3, {X̃i, i � 1} are still WUOD. Let

S̃n =
n∑

i=1

X̃i, n � 1.

A standard argument shows that

P (Sn > x) �
n∑

i=1

Fi(vx) + P (S̃n > x). (9)

By Assumption 1, there exists a constant C > 0 such that for all large n and
all x � γn,

P (S̃n > x)∑n
i=1 Fi(vx)

� P (S̃n > x)
CnF (vx)

.

Write
a = max{−m−1 log(nF (vx)), 1}.

Then
lim inf
n→∞ inf

x�γn
a = ∞.

Thus, for any fixed h > 0, by Markov’s inequality and Lemma 3, when n is
sufficiently large, we have

P (S̃n > x)
nF (vx)

� gU (n)e−hx+ma
n∏

i=1

EehX̃i

= gU (n)e−hx+ma
n∏

i=1

{∫ vx

−∞
(ehy − 1)Fi(dy) + (ehvx − 1)Fi(vx) + 1

}

� gU (n) exp
{
− hx + ma

+
n∑

i=1

∫ vx

−∞
(ehy − 1)Fi(dy) + (ehvx − 1)

n∑

i=1

Fi(vx)
}

. (10)

For any fixed k > 1 and some ρ > J+
F , let

h =
ma − kρ log a

vx
.

Then
lim

n→∞ sup
x�γn

h = 0.

By the proof of [14, Lemma 3.6], for all large n and all x � γn, it holds that

exp
{
− hx + ma +

n∑

i=1

∫ vx

−∞
(ehy − 1)Fi(dy)

}

� exp{−hx + ma + (ehvx/ak − 1)μ̂−
1 nh + o(nh) + C}

= exp{−hx + ma + o(nh) + C}
= exp{m(1 − v−1)a + o(a)}. (11)
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By Assumption 1, for all large n and all x � γn, we have

(ehvx − 1)
n∑

i=1

Fi(vx) � C(ehvx − 1)nF (vx)

= C(a−kρ − e−ma)

= o(1). (12)

Thus, by (10)–(12), for all large n and all x � γn, we have

P (S̃n > x)
nF (vx)

� gU (n)e−α exp{m(1 − v−1)a + o(a) + o(1) + a}

= gU (n)(nF (vx))1/m exp{m(1 − v−1)a + o(a) + o(1) + a}.
By (7) and F ∈ D , we get

lim sup
n→∞

sup
x�γn

gU (n)(nF (vx))1/m � lim sup
n→∞

gU (n)(nF (n))1/m
(F (vγn)

F (n)

)1/m

= 0.

Thus,

lim sup
n→∞

sup
x�γn

P (S̃n > x)
nF (vx)

= 0,

which, together with (9), yields that

lim sup
n→∞

sup
x�γn

P (Sn > x)
∑n

i=1 Fi(vx)
� 1. (13)

From Assumption 2, for any ε > 0, take positive integer m such that m/(m +
1) > w2. Then for all v ∈ (w2,m/(m + 1)), x � γn, and n � γ−1x2, we have

n∑

i=1

Fi(vx) �
n∑

i=1

(L−1
Fi

+ ε)Fi(x) � (1 + ε)
n∑

i=1

L−1
Fi

Fi(x),

which, combining with (13) and letting ε ↓ 0, yields that (4) holds. �
Proof of Theorem 2 We will prove (6) by the line of the proof of [14, Lemma
3.7]. For every 1 � i � n and any fixed w > 1, let

Ai = {Xi > wx, max
1�j �=i�n

Xj � wx},

which are pairwise disjoint sets. Thus,

P (Sn > x) � P

(
Sn > x,

n⋃

i=1

Ai

)
=

n∑

i=1

P (Ai) −
n∑

i=1

P (Sn � x,Ai) =: I1 − I2.

(14)
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Since {Xi, i � 1} are WUOD, we have

I1 �
n∑

i=1

Fi(wx) − gU (n)
( n∑

i=1

Fi(wx)
)2

.

It follows from (7), F ∈ D , and Assumption 1, that

lim sup
n→∞

sup
x�γn

gU (n)
n∑

i=1

Fi(wx)

� lim sup
n→∞

gU (n)nF (n) lim sup
n→∞

F (wγn)
F (n)

lim sup
n→∞

sup
x�γn

∑n
i=1 Fi(wx)
nF (wx)

= 0.

Thus,

lim inf
n→∞ inf

x�γn

I1∑n
i=1 Fi(wx)

� 1. (15)

Now, we estimate I2. For any fixed u ∈ (0, 1), we write

Yi = −Xi, Ỹi = min{Yi, ux}, i � 1.

Then

I2 �
n∑

i=1

P

(∑

j �=i

Yj � (w − 1)x,Ai

)

�
n∑

i=1

P

(
Ai,

⋃

j �=i

{Yj > ux}
)

+
n∑

i=1

P

(∑

j �=i

Ỹj � (w − 1)x
)

�
n∑

j=1

P (Yj > ux) +
n∑

i=1

P

(∑

j �=i

Ỹj � (w − 1)x
)

=: I21 + I22. (16)

By Assumption 1, for all large n and all x � γn, it holds that

I21 �
n∑

j=1

Fj(−ux) � CnF (−ux).

Therefore, by (5) and F ∈ D , we can get

lim sup
n→∞

sup
x�γn

I21

nF (x)
= 0. (17)
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For I22, since {Xi, i � 1} are WLOD, by Lemma 3, {Ỹi, i � 1} are WUOD.
For any 1 � i � n and any fixed h > 0, we obtain from Markov’s inequality
and Lemma 3 that

P

(∑

j �=i

Ỹj � (w − 1)x
)

� gL(n)e−h(w−1)x
∏

j �=i

{∫ ux

−∞
(ehy − 1)FYj (dy) + (ehux − 1)FYj (ux) + 1

}

� gL(n) exp
{
− h(w − 1)x

+
∑

j �=i

(∫ ux

−∞
(ehy − 1)FYj (dy) + (ehux − 1)Fj(−ux)

)}
. (18)

Take

h =
1
ux

log
(uq−1xq

nμ̂−
q

+ 1
)
.

Then
lim

n→∞ sup
x�γn

h = 0.

By the proof of [14, Lemma 3.7], for any fixed q ∈ (1,min{r, 2}), when n is
sufficiently large, for all x � γn, it holds that

exp
{
− h(w − 1)x +

∑

j �=i

∫ ux

−∞
(ehy − 1)FYj (dy)

}

� eu−1
(uq−1xq

nμ̂−
q

)−(w−1)/(2u)

� eu−1
(γuq−1

μ̂−
q

)−(w−1)/(2u)
x−(q−1)(w−1)/(2u)

= C1x
−(q−1)(w−1)/(2u), (19)

where

C1 = eu−1
(γuq−1

μ̂−
q

)−(w−1)/(2u)
.

It follows from Assumption 1 and E(X−)q < ∞ that there exists a constant
C2 > 0 such that when n is sufficiently large, for all x � γn, it holds that

exp
{∑

j �=i

(ehux − 1)Fj(−ux)
}

� exp{C(ehux − 1)nF (−ux)}

= exp
{
C

uq−1xq

μ̂−
q

F (−ux)
}

� C2,
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which, together with (18) and (19), yields that for any fixed α > 0, when n is
sufficiently large, for all x � γn, it holds that

P

(∑

j �=i

Ỹj � (w − 1)x
)

� gL(n)n−αC1C2γ
−αx− (q−1)(w−1)

2u
+α. (20)

For any fixed w > 1, we take sufficiently small u > 0 such that

(q − 1)(w − 1)
2u

− α > J+
F .

Thus, from (16), (17), (20), (8), and Lemma 2, we obtain

lim sup
n→∞

sup
x�γn

I2

nF (x)
� C1C2γ

−α lim sup
n→∞

gL(n)n−α lim sup
x→∞

x− (q−1)(w−1)
2u

+α

F (x)
= 0.

Since 0 < LFi � 1, i � 1, by Assumption 1, it holds that

lim sup
n→∞

sup
x�γn

I2∑n
i=1 L−1

Fi
Fi(x)

� lim sup
n→∞

sup
x�γn

I2

nF (x)
lim sup

n→∞
sup
x�γn

nF (x)
∑n

i=1 Fi(x)

= 0,

that is, for any ε > 0, when n is sufficiently large, for all x � γn,

I2 � ε

n∑

i=1

L−1
Fi

Fi(x). (21)

Again by Assumption 3, for any δ ∈ (0, 1), there exist constants v1 > 1 and
x1 > 0 such that for any w ∈ (1, v1), all x � γn, and n � γ−1x1,

n∑

i=1

Fi(wx) � δ

n∑

i=1

LFiFi(x),

which, combining with (14), (15), (21), and the arbitrariness of δ and ε, yields
that (6) holds. �
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