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Abstract By weakening or dropping the superquadraticity condition (SQC),
the existence of positive solutions for a class of elliptic equations is established.
In particular, we deal with the asymptotical linearities as well as the superlinear
nonlinearities.
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1 Introduction

Let Ω ⊂ R
N be a bounded domain whose boundary is a smooth manifold,

N � 2. As a model problem, we consider the following problem:

{
−Δu = f(x, u), x ∈ Ω,

u = 0 on ∂Ω,
(1.1)

where f(x, s) is a continuous function on Ω × R with subcritical growth, that
is,

|f(x, s)| � C1 + C2|s|p−1, ∀ s ∈ R, a.e. x ∈ Ω, (1.2)

for some constants C1, C2 > 0, where

2 < p < 2∗ =
2N

N − 2
.
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It is well known that solutions of (1.1) are precisely the critical points of the
functional

I(u) =
1
2

∫
Ω
|∇u|2dx −

∫
Ω

F (x, u)dx, (1.3)

where

F (x, s) =
∫ s

0
f(x, t)dt.

In this paper, about f(x, s) or F (x, s), we assume that
(f1) f(x, s) = 0 for all s � 0, a.e. x ∈ Ω, and f(x, s) � 0 for all s > 0,

a.e. x ∈ Ω;
(f2) 2F (x, s)/s2 → l(x) as s → ∞ uniformly for a.e. x ∈ Ω;
(f3) lim sups→0 f(x, s)/s = o(1) uniformly for a.e. x ∈ Ω.

If l(x) = ∞, it is the superquadratic situation. Almost every author
discussing superquadratic problems has made the assumption of super-
quadraticity condition (SQC) which was originally introduced in [1]. It is
usually assumed that

0 < μF (x, s) � f(x, s)s, ∀ |s| � r, uniformly a.e. x ∈ Ω, (SQC)

where μ > 2 and r > 0. In fact, SQC implies that

F (x, s) � C|s|µ, ∀ |s| � r,

for some C > 0 and r > 0. Therefore, some authors replaced the assumption of
SQC with

sf(x, s) − 2F (x, s) � (μ − 2)C|s|µ, ∀ |s| � r, uniformly a.e. x ∈ Ω. (1.4)

Although (1.4) is a more natural assumption, it is still too restrictive to be
desirable. Can SQC be weakened? Recent studies have focused on this problem,
for example, see, [3–11] and references therein.

Shen and Guo [10] proved the existence of solution for problem (1.1) with
the following condition:

sf(x, s)− 2F (x, s) � C|s|µ0 − C1, ∀ s ∈ R, uniformly a.e. x ∈ Ω, (1.5)

for some μ0 > N(m − 2)/2, C > 0, and C1 � 0, where m ∈ (2 + 2
N , 2∗) such

that
|f(x, s)| � C + C|s|m−1.

By using a weakened version of Palais-Smale type condition introduced by
Cerami [2] (we called it the CPS condition), they proved that the Cerami
sequence corresponding functional (1.3) is bounded, and then, they obtained
the existence of nontrivial solution for problem (1.1). Costa and Magalhães [4]
got the same result independently by using the methods similar to [10]. In fact,



Existence of solutions for elliptic equations without SQC 589

if μ0 � μ, then (1.4) implies (1.5). Therefore, condition (1.5) allows much more
freedom than SQC for function f(x, s).

Jeanjean [6] replaced SQC with the following conditions:

f(x, s)
s

→ ∞ (s → ∞) uniformly for x ∈ R
N . (1.6)

∃ p ∈ (2, 2∗), lim
s→∞ f(x, s)s1−p = 0 uniformly for x ∈ R

N , (1.7)

and
DH(x, s) � H(x, t), 0 � t � s, (1.8)

where D � 1 and function H(x, s) is defined by

H(x, s) = sf(x, s) − 2F (x, s).

Using these conditions, they proved that the Palais-Smale (PS) sequence was
bounded for a special mountain pass level and obtained the existence of a
nontrivial positive solution for problem (1.1). In this paper, condition (1.6)
is called the weakly superquadraticity condition (WSQC). Recently, replaced
SQC with WSQC and (1.8), Liu and Li [8] proved the Cerimi sequence was
bounded and obtained the existence of infinitely many solutions of problem
(1.1) without condition (1.7). Chen et al. [3] obtained a similar results.

Similarly, Li and Zhou [7] replaced SQC with WSQC and

f(x, s)
s

is nondecreasing for s > 0, x ∈ Ω, (1.9)

and then, they obtained the existence of nontrivial solution for problem (1.1).
Schechter and Zou [9] explored what happens when SQC was replaced by WSQC
and

μF (x, s) − sf(x, s) � C(1 + s2), |s| � r, (1.10)

for some μ > 2 and r � 0. Condition (1.10) allows much more freedom for the
function f(x, t), however, it still eliminates many superlinear problems. Hence,
they weakened (1.10) to

H(x, s) � H(x, t), t � s, (1.11)

and obtained the existence of nontrivial solution of (1.1).
In condition (f2), taking l(x) < ∞, it is easy to see that SQC cannot be

supposed. In this case, Jeanjean [6] had considered problem (1.1) replacing
SQC by (1.7) and the following condition:

H(x, s) � 0, ∀ s � 0, a.e. x ∈ R
N ,

and there is a δ > 0 such that

f(x, s)s−1 � K − δ =⇒ H(x, s) � δ. (1.12)
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Li and Zhou [7] studied the existence of positive solutions of problem (1.1) with
condition (f2) and (1.9). Huang and Zhou [5] dropped condition (1.9), and
assumed the following condition:

lim
s→0

f(x, s)
s

= a � 0, lim
s→∞

f(x, s)
s

= b > 0, (1.13)

where a < λ1 < b, λ1 is the first eigenvalue of −Δ. Then they proved that
problem (1.1) has a nontrivial positive solution. Recently, Wang and Zhou [11]
replaced (1.9) by (1.7) and some other conditions.

In this paper, if l(x) < ∞ in (f2), we drop (1.9) completely. On the other
hand, our condition “1 is not the eigenvalue of problem (1.14)” (see Theorem
1 below) is necessary. If l(x) = ∞, the SQC replaced only by WSQC. It is a
rather surprising result. For all these reasons, we believe that our results both
in the cases l(x) < ∞ and l(x) = ∞ that we treat in a unified way, strongly
generalize the previous existence results. That is, we allow much more freedom
for the function f(x, s).

The main results of this paper are the following theorems.

Theorem 1 Assume that (1.2) and (f1)–(f3) with l(x) < ∞ hold, and
moreover, suppose that 1 is not the eigenvalue of problem{

−Δu = λl(x)u, x ∈ Ω,

u = 0 on ∂Ω.
(1.14)

Then problem (1.1) has at least one nontrivial solution.

Theorem 2 Assume that (1.2) and (f1)–(f3) with l(x) = ∞ hold. Then
problem (1.1) has at least one nontrivial solution.

2 Preliminaries and some basic properties of f(x, s)

In this paper, we denote the norms of u in H1
0 (Ω) and in Lp(Ω) by

‖u‖ =
(∫

Ω
|∇u|2dx

)1/2

, |u|p =
(∫

Ω
|u|pdx

)1/p

,

respectively. u+ and u− denote the positive and negative parts of u, respectively.

Lemma 1 Assume that (1.2), (f1), and (f2) with l(x) < ∞ hold. Then the
functional I(u) satisfies CPS condition (see [2]) if 1 is not the eigenvalue of
problem {

−Δu = λl(x)u, x ∈ Ω,

u = 0 on ∂Ω.

Proof By the compactness of Sobolev embedding, it suffices to show that
{un} ⊂ H1

0 (Ω) is bounded. By contradiction, we assume ‖un‖ → ∞ and c ∈ R
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such that I(un) → c and I ′(un) → 0, that is,

I(un) → c, 〈I ′(un), ϕ〉 → 0, 〈I ′(un), un〉 → 0, (2.1)

for all ϕ ∈ H1
0 (Ω). Set vn = un/‖un‖ and let v be such that (up to a sub-

sequence) {vn} converges weakly to v in H1
0 (Ω) and strongly in L2(Ω) almost

everywhere.
Dividing (2.1) by ‖un‖, we have∫

Ω
∇vn∇ϕdx −

∫
Ω

f(x, u+
n )

u+
n

v+
n ϕdx → 0. (2.2)

If v(x) > 0, it is easy to know un(x) → ∞. Hence, from (f2), using the Vitali
theorem and Lebesgue dominated convergence theorem, as [10], it is easy to
obtain that

f(x, u+
n )

u+
n

v+
n ϕ → l(x)v+ϕ in L1(Ω) (2.3)

for all ϕ ∈ H1
0 (Ω), and

F (x, u+
n )

(u+
n )2

(v+
n )2 → 1

2
l(x)(v+)2 in L1(Ω). (2.4)

(2.4) together with (2.1) gives

1
2

∫
Ω
|∇vn|2dx − 1

2

∫
Ω

l(x)(v+)2dx → c. (2.5)

From (2.2), (2.3), and (2.5), it is easy to obtain that vn → v in H1
0 (Ω). Then

we have ∫
Ω
∇v∇ϕdx −

∫
Ω

l(x)v+ϕdx = 0.

Taking ϕ = v− in the above formulate, we have∫
Ω
|∇v−|2dx = 0,

which implies v− ≡ 0. Therefore,

v = v+ � 0 (�= 0)

since
‖v‖ = lim

n→∞ ‖vn‖ = 1.

It shows that 1 is an eigenvalue of (1.14), which is a contradiction. �
Remark 1 If 1 is the ith eigenvalue of (1.14), taking un = nei(l(x)), where
ei(l(x)) > 0 is the eigenfunction corresponding eigenvalue 1, then we can deduce
that

‖I ′(u)‖ ‖u‖ = 0.
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This indicates that it does not satisfy CPS condition. Hence, that the condition
1 is not the eigenvalue of (1.14) is necessary.

Lemma 2 Assume that (1.2) and (f1)–(f3) with l(x) = ∞ hold. Then the
functional I(u) satisfies PS condition.

Proof Since the embedding H1
0 (Ω) ↪→ L2(Ω) is compact, it suffices to show

that {un} ⊂ H1
0 (Ω) is bounded. Assume the contrary, ‖un‖ → ∞ and {un}

satisfies
1
2

∫
Ω
|∇un|2dx −

∫
Ω

F (x, un)dx → c, (2.6)
∫

Ω
∇un∇ϕdx −

∫
Ω

f(x, un)ϕdx = o(1)‖ϕ‖, ∀ ϕ ∈ H1
0 (Ω). (2.7)

Set
vn =

un

‖un‖ ,

and let v be such that (up to a subsequence) {vn} converges weakly to v in
H1

0 (Ω) and strongly in L2(Ω) almost everywhere.
Dividing (2.6) by ‖un‖2, we have∫

Ω

F (x, un)
u2

n

v2
ndx → 1

2
. (2.8)

Set
Ω1 = {x ∈ Ω: v(x) �= 0}, Ω2 = Ω \ Ω1.

From (f2), we have
F (x, un)

u2
n

v2
n → ∞, x ∈ Ω1.

If Ω1 has positive measure, then∫
Ω

F (x, un)
u2

n

v2
ndx =

∫
Ω1

F (x, un)
u2

n

v2
ndx +

∫
Ω2

F (x, un)
u2

n

v2
ndx → ∞,

which contradicts with (2.8).
Dividing (2.7) by ‖un‖ and taking n → ∞, we can obtain∫

Ω

f(x, un)
‖un‖ ϕdx → 0, ∀ ϕ ∈ H1

0 (Ω). (2.9)

Set
Tn(ϕ) =

∫
Ω

f(x, un)
‖un‖ ϕdx, ∀ ϕ ∈ H1

0 (Ω).

Then it is easy to see that {Tn} is a family of bounded linear functionals defined
on H1

0 (Ω). From (2.9) and the Resonance Theorem, we know that {|Tn|} is
bounded, where |Tn| is the norm of Tn(ϕ) defined on H1

0 (Ω). It means that

|Tn| � C. (2.10)
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Since H1
0 (Ω) ⊂ Lp(Ω), using the Hahn-Banach Theorem, there exists a

continuous linear functional T̂n defined on Lp(Ω) such that T̂n is an extension
of Tn, and

T̂n(ϕ) = Tn(ϕ), ∀ ϕ ∈ H1
0 (Ω), (2.11)

‖T̂n‖p′ = |Tn|, (2.12)

where ‖T̂n‖p′ is the norm of T̂n(ϕ) in Lp′(Ω) which is defined on Lp(Ω).
From the definition of the functional on Lp(Ω), we know that there is a

function hn(x) ∈ Lp′(Ω) such that

T̂n(ϕ) =
∫

Ω
hn(x)ϕ(x)dx, ∀ ϕ ∈ Lp(Ω). (2.13)

From (2.11) and (2.13), we have∫
Ω

hn(x)ϕ(x)dx =
∫

Ω

f(x, un)
‖un‖ ϕdx, ∀ ϕ ∈ H1

0 (Ω),

which means that∫
Ω

(
hn(x) − f(x, un)

‖un‖
)
ϕ(x)dx = 0, ∀ ϕ ∈ H1

0 (Ω).

Using the basic lemma of variational, we can obtain

hn(x) =
f(x, un)
‖un‖ a.e. x ∈ Ω.

Using (2.10) and (2.12), we have

‖T̂n‖p′ = ‖hn(x)‖p′ = |Tn| < C. (2.14)

From (2.7), (2.9), and taking ϕ = vn − v, we have∫
Ω
|∇vn −∇v|2dx −

∫
Ω

f(x, un)
‖un‖ vndx = 0. (2.15)

From the Hölder inequality and (2.14), we can deduce that∫
Ω

f(x, un)
‖un‖ vndx → 0.

Then from (2.15), we can deduce that

vn → v in H1
0 (Ω).

This is a contradiction since ‖vn‖ = 1 and v ≡ 0. Thus, {un} is bounded in
H1

0 (Ω). �
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Example 1 Let

f(x, s) =

⎧⎨
⎩ 2q(x)s log(1 + |s|) +

q(x)s2

1 + |s| , s � 0,

0, s < 0.

It is obvious that f(x, s) does not satisfy SQC, but it satisfies (1.5) for μ0 = 2,
(1.7), and (1.11).

Example 2 Let

f(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

2q(x)s log(1 + |s|)(2 + sin s) +
q(x)s2(2 + sin s)

1 + |s|
+ q(x)s2 log(1 + |s|) cos s, s � 0,

0, s < 0.

Then f(x, s) does not satisfy (1.5) or (1.7) or (1.11), but it satisfies WSQC.

3 Proofs of theorems

Proof of Theorem 1 A standard method gives that I(u) satisfies the mountain
pass geometry. From Lemma 1 and the Mountain Pass Theorem, (1.1) has a
nontrivial solution. �
Proof of Theorem 2 A standard method gives that I(u) � a for ρ = ‖u‖ > 0
small enough. Choosing φ ∈ C∞

0 (RN , [0, 1]) such that suppφ = B1, where B1

denote the unit ball centered at the origin, from (f2), we have

I(tφ) =
1
2

t2
∫

Ω
|∇φ|2dx −

∫
Ω

F (x, tφ)dx

=
1
2

t2
[
‖φ‖2 −

∫
Ω

2F (x, tφ)
t2φ2

φ2dx

]
→ ∞ (t → ∞).

From Lemma 2 and the Mountain Pass Theorem, (1.1) has a nontrivial solution.

Acknowledgements This work was supported in part by the National Natural Science

Foundation of China (Grant Nos. 11101418, 10771074) and the Fundamental Research Funds

for the Central Universities, South China University of Technology (No. 2009zm0014).

References

1. Ambrosetti A, Rabinewitz P H. Dual variational method in critical point theory and
applications. J Funct Anal, 1973, 14: 349–381

2. Cerami G. Un criterio de esistenza per i punti critici su varietà illimitate. Rc Ist Lomb
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