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Abstract The recently developed short-time linear response algorithm, which
predicts the average response of a nonlinear chaotic system with forcing and
dissipation to small external perturbation, generally yields high precision of
the response prediction, although suffers from numerical instability for long
response times due to positive Lyapunov exponents. However, in the case of
stochastically driven dynamics, one typically resorts to the classical fluctuation-
dissipation formula, which has the drawback of explicitly requiring the
probability density of the statistical state together with its derivative for
computation, which might not be available with sufficient precision in the case
of complex dynamics (usually a Gaussian approximation is used). Here, we
adapt the short-time linear response formula for stochastically driven dynamics,
and observe that, for short and moderate response times before numerical
instability develops, it is generally superior to the classical formula with
Gaussian approximation for both the additive and multiplicative stochastic
forcing. Additionally, a suitable blending with classical formula for longer
response times eliminates numerical instability and provides an improved
response prediction even for long response times.

Keywords Fluctuation-dissipation theorem, linear response, stochastic
processes
MSC 37N10

1 Introduction

The fluctuation-dissipation theorem (FDT) is one of the cornerstones of
modern statistical physics. Roughly speaking, the fluctuation-dissipation
theorem states that for dynamical systems at statistical equilibrium the
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average response to small external perturbations can be calculated through
the knowledge of suitable correlation functions of the unperturbed dynamical
system. The fluctuation-dissipation theorem has great practical use in a variety
of settings involving statistical equilibrium of baths of identical gas or liquid
molecules, Ornstein-Uhlenbeck Brownian motion, motion of electric charges,
turbulence, quantum field theory, chemical physics, physical chemistry, and
other areas. The general advantage provided by the fluctuation-dissipation
theorem is that one can successfully predict the response of a dynamical system
at statistical equilibrium to an arbitrary small external perturbation without
ever observing the behavior of the perturbed system, which offers great
versatility and insight in understanding behavior of dynamical processes near
equilibrium in numerous scientific applications [10,16]. In particular, there has
been a profound interest among the atmospheric/ocean science community to
apply the fluctuation-dissipation theorem to predict global climate changes
responding to variation of certain physical parameters [6–8,11–15,18,22], where
the FDT has been used largely in its classical formulation [25]. A vivid
demonstration of high predictive skill in low-frequency climate response despite
structural instability of statistical states is given in [21].

Recently, Majda and the author [3–5] developed and tested a novel
computational algorithm for predicting the mean response of nonlinear
functions of states of a chaotic dynamical system to small change in external
forcing based on the FDT. The major difficulty in this situation is that the
probability measure in the limit as time approaches infinity in this case is
typically a Sinai-Ruelle-Bowen probability measure which is supported on a
large-dimensional (often fractal) set and is usually not absolutely continuous
with respect to the Lebesgue measure [9,29]. In the context of Axiom A
attractors, Ruelle [27,28] has adapted the classical calculations for FDT to
this setting. The geometric algorithm (also called the short-time FDT, or
ST-FDT algorithm in [3–5]) is based on the ideas of [26,28] and takes into
account the fact that the dynamics of chaotic nonlinear forced-dissipative
systems often reside on chaotic fractal attractors, where the classical FDT
formula of the fluctuation-dissipation theorem often fails to produce satisfactory
response prediction, especially in dynamical regimes with weak and moderate
chaos and slower mixing. It has been discovered in [3–5] that the ST-FDT
algorithm is an extremely precise response approximation for short response
times, and can be blended with the classical FDT algorithm with Gaussian
approximation of the state probability density (quasi-Gaussian FDT algorithm,
or qG-FDT) for longer response times to alleviate undesirable effects of
expanding Lyapunov directions (which cause numerical instability in ST-FDT
for longer response times). Further developing the ST-FDT response algorithm
for practical applications, in [1] the author designed a computationally
inexpensive method for ST-FDT using the reduced-rank tangent map, and in
[2] the ST-FDT algorithm is adapted for the response on slow variables of multi-
scale dynamics, which improves its computational stability and simultaneously
reduces computational expense.
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However, dynamical systems describing real-world processes are often driven
by a stochastic forcing. In this setting, the traditional approach is to use the
classical FDT algorithm, which computes the linear response to small external
forcing as a correlation function along a single long-term trajectory. Typically,
it is assumed that the single long-term trajectory samples the statistical
equilibrium state of the model, however, suitable generalizations for dynamics
with time-periodic forcing can also be made [23,24]. A significant drawback
of the classical FDT approach is that its computational algorithm requires the
statistical state probability density together with its derivative to be explicitly
computed, which is typically not possible for complex nonlinear systems.
Usually, an approximation is used, such as the Gaussian approximation with
suitable mean state and covariance matrix [3–5]. In this case, if the actual
statistical state is far from the Gaussian, the predicted response is usually
considerably different from what is observed by direct model perturbation (so
called ideal response [3–5]). The reason why the Gaussian approximation is
used, is because it is the simplest approximation to use for systems with many
degrees of freedom, as only the mean state and covariance matrix should be
known to define a Gaussian probability density. Besides, in the absence of
any further information the Gaussian probability density maximizes Shannon
entropy among all densities with the same mean and covariance, minimizing
statistical bias [22].

On the other hand, the ST-FDT response algorithm is observed to be
consistently superior to the classical FDT with Gaussian approximation for
deterministic chaotic dynamical systems with strongly non-Gaussian statistical
states for response times before the numerical instability occurs. In this work,
we adapt the ST-FDT linear response algorithm to be used with stochastically
forced dynamics (further called stochastic ST-FDT, or SST-FDT). Below,
we observe that the SST-FDT response algorithm, adapted to stochastically
driven dynamics and blended with the qG-FDT algorithm to avoid numerical
instability, is also generally superior to the classical FDT with Gaussian
approximation of the statistical state for both the additive and multiplicative
noise, just as the ST-FDT algorithm in [3–5] for chaotic deterministic systems.

This paper is organized as follows. In Section 2, we develop the SST-FDT
formula for general time-dependent stochastically forced dynamics, and
design a practical computational algorithm for autonomous dynamics with
invariant probability measure. In Section 3, we test the new algorithm for the
stochastically driven Lorenz 96 model [19,20]. Section 4 summarizes the results
of this work.

2 Fluctuation-dissipation theorem for stochastically driven systems

Here, we consider an Itô stochastic differential equation (SDE) of the form

dx = fα(x, t)dt + σ(x, t)dW t, (2.1)
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where x = x(t) ∈ R
N , fα : [RN × T ] → R

N , σ : [RN×K × T ] → R
N are

smooth nonlinear functions, and W t is the K-dimensional Wiener process.
Additionally, f depends on a scalar parameter α. We say that the SDE in (2.1)
is unperturbed if α = 0, or perturbed otherwise. We also adopt the notation
f ≡ f0, with the assumption

∂

∂α
fα(x, t)|α=0 = B(x)η(t), (2.2)

where B(x) is an N ×L matrix-valued function, and η(t) is an L-vector valued
function. The practical meaning of the above assumption will become clear
below.

Let A(x) be a nonlinear function of x, and let E
t0,t
x,α[A], where t > 0 is

the elapsed time after t0, denote the expectation of A at time t0 + t over all
realizations of the Wiener process in (2.1), under the condition that x(t0) = x

(with the short notation E
t0,t
x,0[A] = E

t0,t
x [A]). Let A at the time t0 be distributed

according to a probability measure ρt0 , that is, the average value of A at time
t0 is

〈A〉(t0) = ρt0(A) =
∫

RN

A(x)dρt0(x), (2.3)

where dρt0(x) denotes the measure of the infinitesimal Lebesgue volume dx
associated with x. Then, for time t0 + t, the average of A for the perturbed
system in (2.1) is given by

〈A〉α(t0 + t) = ρt0(E
t0,t
x,α[A]) =

∫
RN

E
t0,t
x,α[A]dρt0(x). (2.4)

In general, for the same initial distribution ρt0 , the average value 〈A〉α(t0 + t)
depends on the value of α. Here, we define the average response δ〈A〉α(t0 + t)
as

δ〈A〉α(t0 + t) =
∫

RN

(Et0,t
x,α[A] − E

t0,t
x [A])dρt0(x). (2.5)

The meaning of the average response in (2.5) is the following: for the same
initial average value of A, it provides the difference between the future average
values of A for the perturbed and unperturbed dynamics in (2.1).

If α is small, we can formally linearize (2.5) with respect to α by expanding
in Taylor series around α = 0 and truncating to the first order, obtaining the
following general linear fluctuation-response formula:

δ〈A〉α(t0 + t) = α

∫
RN

∂αE
t0,t
x [A]dρt0(x), (2.6)

where we use the short notation

∂α• ≡ ∂•
∂α

∣∣∣
α=0

. (2.7)
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2.1 Stochastic short-time linear response

To compute the general linear fluctuation-response formula in (2.6), we need a
suitable algorithm for ∂αE

t0,t
x [A]. Let

x(t0 + t) = φt0,t
α x

be the trajectory of (2.1) starting at x at t0 for a particular realization of the
Wiener process W [t0...t0+t]. Then, the expectation E

t0,t
x,α[A] is given by

E
t0,t
x,α[A] = E[A(φt0,t

α x)], (2.8)

where the expectation in the right-hand side is taken with respect to all Wiener
paths. Therefore,

∂αE
t0,t
x [A] = E[DA(φt0,tx)∂αφt0,tx], (2.9)

where DA denotes the derivative of A with respect to its argument. For
∂αφt0,tx, by taking the difference between the perturbed and unperturbed
versions of (2.1) and linearizing with respect to α at α = 0, we have

d∂αφt0,tx = (Df (φt0,tx, t0 + t)dt + Dσ(φt0,tx, t0 + t)dW t0+t)

· ∂αφt0,tx + ∂αf(φt0,tx, t0 + t)dt, (2.10)

where Df and Dσ are Jacobians of f and σ, respectively. The above equation
is a linear stochastic differential equation for ∂αφt0,tx with zero initial condition
(as at t0 both perturbed and unperturbed solutions start with the same x). It
can be solved as follows: let us first introduce the integrating factor T t0,t

x (an
N × N matrix) given by the solution of the equation

dT t0,t
x = (Df (φt0,tx, t0 + t)dt + Dσ(φt0,tx, t0 + t)dW t0+t)T

t0,t
x , T t0,0

x = I,
(2.11)

and represent ∂αφt0,tx as a product

∂αφt0,tx = T t0,t
x yt0,t

x , (2.12)

where yt0,t
x is an N -vector. Then, for the Itô differential of ∂αφt0,tx we obtain

d∂αφt0,tx = dT t0,t
x yt0,t

x + T t0,t
x dyt0,t

x + dT t0,t
x dyt0,t

x

= (Df (φt0,tx, t0 + t)dt + Dσ(φt0,tx, t0 + t)dW t0+t)

· T t0,t
x (yt0,t

x + dyt0,t
x ) + T t0,t

x dyt0,t
x

= (Df (φt0,tx, t0 + t)dt + Dσ(φt0,tx, t0 + t)dW t0+t)

· ∂αφt0,tx + (I + Dσ(φt0,tx, t0 + t)dW t0+t)T
t0,t
x dyt0,t

x . (2.13)

Comparing the right-hand sides of (2.10) and (2.13), we find that dyt0,t
x should

satisfy the identity

(I + Dσ(φt0,tx, t0 + t)dW t0+t)T
t0,t
x dyt0,t

x = ∂αf(φt0,tx, t0 + t)dt, (2.14)
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which holds only if dyt0,t
x does not have a diffusion term. As a result, we obtain

dyt0,t
x = (T t0,t

x )−1∂αf(φt0,tx, t0 + t)dt, yt0,0
x = 0, (2.15)

with the formal solution

yt0,t
x =

∫ t

0
(T t0,τ

x )−1∂αf(φt0,τx, t0 + τ)dτ. (2.16)

Therefore, ∂αφt0,tx is given by

∂αφt0,tx =
∫ t

0
T t0,t

x (T t0,τ
x )−1∂αf(φt0,τx, t0 + τ)dτ. (2.17)

At this point, observe that the solution T t0,t
x of (2.11) can be represented as a

product
T t0,t

x = T t0+τ,t−τ
φt0,τx T t0,τ

x , τ � t, (2.18)

due to the fact that a solution of (2.11) can be multiplied by an arbitrary
constant matrix on the right and still remains the solution. Then, (2.17)
becomes

∂αφt0,tx =
∫ t

0
T t0+τ,t−τ

φt0,τx ∂αf(φt0,τx, t0 + τ)dτ. (2.19)

For smooth fα and σ in (2.1), φt0,tx smoothly depends on x [17], and the
integrating factor T t0,t

x is in fact the tangent map for the trajectory φt0,tx :

T t0,t
x =

∂

∂x
φt0,tx. (2.20)

With (2.19), (2.9) becomes

∂αE
t0,t
x [A] =

∫ t

0
E[DA(φt0 ,tx)T t0+τ,t−τ

φt0,τx ∂αf(φt0,τx, t0 + τ)]dτ. (2.21)

Recalling (2.2), we write the above formula as

∂αE
t0,t
x [A] =

∫ t

0
E[DA(φt0 ,tx)T t0+τ,t−τ

φt0,τx B(φt0,τx)]η(t0 + τ)dτ. (2.22)

Then, the general linear response formula in (2.6) can be written as

δ〈A〉α(t0 + t) = α

∫ t

0
RSST(t0, t, τ)η(t0 + τ)dτ, (2.23)

where the linear response operator RSST(t0, t, τ) is given by

RSST(t0, t, τ) = E

∫
RN

DA(φt0,tx)T t0+τ,t−τ
φt0,τx B(φt0,τx)dρt0(x). (2.24)
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Further, we refer to (2.24) as the stochastic short-time fluctuation-dissipation
theorem algorithm, or SST-FDT algorithm. The reason is that in practice
the computation of the tangent map in (2.11) for large t becomes numerically
unstable because of exponential growth due to positive Lyapunov exponents
(just as observed in [2–5] for deterministic chaotic dynamics). Note that if
the stochastic forcing is removed from (2.1), the SST-FDT response operator
becomes the usual ST-FDT from [2–5]. Apparently, (2.24) requires the average
with respect to ρt0 . If ρt0 is not known explicitly, there are some opportunities
to replace the ρ-average with time average, particularly for the autonomous
dynamics with ρt0 being the invariant probability measure, and also for non-
autonomous dynamical systems with explicit time-periodic dependence (as done
in [23,24] for classical FDT response).

2.2 Classical linear response

The standard way to derive the classical linear response formula is through
the Fokker-Planck equation (or, as it is also called, the forward Kolmogorov
equation) for the perturbed system in (2.1) by neglecting the terms of higher
order than the perturbation, as it is done in [3–5,22,24,25]. However, for the
sake of clarity, here we show the derivation of the classical FDT directly from
(2.6). Under the assumption of continuity of ρt0 with respect to the Lebesgue
measure, that is,

dρt0(x) = pt0(x)dx,

where pt0 is the probability density, we can also obtain a formal general
expression for the classical fluctuation-response formula. Using the notations

LFP,α(x, t) = − ∂

∂x
· (fα(x, t)•) +

( ∂

∂x
⊗ ∂

∂x

)
· (σσT(x, t)•),

LFP,α(x, t0, t) = T exp
(∫ t

0
dτLFP,α(x, t0 + τ)

)
,

(2.25)

which are, respectively, the Fokker-Planck operator and its ordered
exponential (which is the formal solution of the Fokker-Plank equation), we
write the expectation E

t0,t
x,α[A] in the form

E
t0,t
x,α[A] =

∫
RN

A(y)LFP,α(y, t0, t)δ(x − y)dy

=
∫

RN

L †
FP,α(y, t0, t)A(y)δ(x − y)dy

= L †
FP,α(x, t0, t)A(x), (2.26)

where δ(x) is the Dirac delta-function, and the adjoint is taken with respect to
the standard inner product under the integral. Below, we use the notations



206 Rafail V. ABRAMOV

LFP(x, t) ≡ LFP,0(x, t), ∂αLFP(x, t) ≡ ∂LFP,α(x, t)
∂α

∣∣∣
α=0

,

(2.27)

LFP(x, t0, t) ≡ LFP,0(x, t0, t), ∂αLFP(x, t0, t) ≡ ∂LFP,α(x, t0, t)
∂α

∣∣∣
α=0

.

Then, the general response formula with

dρt0(x) = pt0(x)dx

becomes

δ〈A〉α(t0 + t) = α

∫
RN

∂αE
t0,t
x [A]pt0(x)dx

= α

∫
RN

∂αL †
FP(x, t0, t)A(x)pt0(x)dx

= α

∫
RN

A(x)∂αLFP(x, t0, t)pt0(x)dx. (2.28)

It is not difficult to show that the parametric derivative of an ordered
exponential of a linear operator Lα(x, t) is computed as

∂

∂α
T exp

(∫ t

t0

dτLα(x, τ)
)

=
∫ t

t0

dτT exp
(∫ t

τ
dsLα(x, s)

)
∂Lα(x, τ)

∂α
T exp

(∫ τ

t0

ds Lα(x, s)
)

. (2.29)

As a result, we obtain

δ〈A〉α(t0 + t) = α

∫ t

0
dτ

∫
RN

L †
FP(x, t0 + τ, t − τ)

· A(x)∂αLFP(x, t0 + τ)LFP(x, t0, τ)pt0(x)dx

= α

∫ t

0
dτ

∫
RN

E
t0+τ,t−τ
x [A]∂αLFP(x, t0 + τ)pt0+τ (x)dx, (2.30)

where pt0+τ (x) is given by

pt0+τ (x) = LFP(x, t0, τ)pt0(x). (2.31)

Recalling (2.2), we recover the classical linear fluctuation-response formula in
the form

δ〈A〉α(t0 + t) = α

∫ t

0
dτ

∫
RN

E
t0+τ,t−τ
x [A]∂αLFP(x, t0 + τ)pt0+τ (x)dx

= α

∫ t

0
Rclass(t0, t, τ)η(t0 + τ)dτ, (2.32)

where the classical linear response operator Rclass is given by

Rclass(t0, t, τ) = −E

∫
RN

A(φt0+τ,t−τx)
∂

∂x
· (B(x)pt0+τ (x))dx. (2.33)
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Observe that, unlike (2.24), in (2.33) one has to know pt0+τ (x) for all response
times explicitly to perform differentiation with respect to x. Usually, an
approximation is used, such as the Gaussian approximation [3–5].

2.3 Special case for autonomous dynamics with ergodic invariant probability
measure

Here, we consider the case where f and σ in (2.1) do not explicitly depend
on t (although fα does with α �= 0), and we choose ρt0 = ρ to be an ergodic
invariant probability measure for (2.1). In this situation, one can replace the
averaging with respect to the measure ρ with averaging over a single long-term
trajectory which starts with an initial condition x in the support of ρ :

RSST(t0, t, τ) = E lim
r→∞

1
r

∫ r

0
DA(φt0 ,tφt0−s,sx)

·T t0+τ,t−τ
φt0,τ φt0−s,sxB(φt0,τφt0−s,sx)ds, (2.34)

where, without loss of generality, the starting is time t0−s, that is, the averaging
occurs over the endpoints of φt0−s,sx. Combining the solution operators, we
obtain

RSST(t0, t, τ) = E lim
r→∞

1
r

∫ r

0
DA(φt0−s,s+tx)T s+τ,t−τ

φt0−s,s+τxB(φt0−s,s+τx)ds.

(2.35)
Since the averaging over all independent realizations of the Wiener process
is needed, we can average over many statistically independent chunks of the
Wiener path along a single long-time trajectory by setting t0 = s − τ :

RSST(t, τ) = lim
r→∞

1
r

∫ r

0
DA(φ−τ,s+tx)T s,t−τ

φ−τ,s+τxB(φ−τ,s+τx)ds. (2.36)

Finally, replacing x with φ0,−τx (which for finite τ is also in the support of ρ),
we find that

RSST(t, τ) = lim
r→∞

1
r

∫ r

0
DA(φ0,s+t−τx)T s,t−τ

φ0,sxB(φ0,sx)ds, (2.37)

or, denoting x(s) = φ0,sx,

RSST(t, τ) = lim
r→∞

1
r

∫ r

0
DA(x(s + t − τ))T s,t−τ

x(s) B(x(s))ds. (2.38)

Now, the linear response formula in (2.23) and the response operator in (2.24)
become, respectively,

δ〈A〉α(t0 + t) = α

∫ t

0
RSST(t − τ)η(t0 + τ)dτ,

RSST(t) = lim
r→∞

1
r

∫ r

0
DA(x(s + t))T s,t

x(s)B(x(s))ds.

(2.39)
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In a similar fashion, for the classical linear response in (2.32), we note that
the Fokker-Planck operator LFP does not depend on t, and both LFP and its
adjoint do not depend on t0. Taking into account that pt0+τ (x) = p(x), where
p(x) is the invariant probability density, we write

Rclass(t) = −E

∫
RN

A(φt0,tx)
∂

∂x
· (B(x)p(x))dx, (2.40)

or, after replacing the p-average with the average over the long-term trajectory,

Rclass(t) = −E lim
r→∞

1
r

∫ r

0
A(x(s + t))

∂
∂x · (B(x(s))p(x(s)))

p(x(s))
ds. (2.41)

Here, the expectation can be removed since the averaging over different Wiener
paths will automatically occur as the long time average is computed. As a
result, we obtain

Rclass(t) = − lim
r→∞

1
r

∫ r

0
A(x(s + t))

∂
∂x · (B(x(s))p(x(s)))

p(x(s))
ds. (2.42)

3 Application for stochastically driven Lorenz 96 model

The 40-mode deterministic Lorenz 96 model (L96) has been introduced by
Lorenz and Emanuel [19,20] as a simple model with large scale features of
complex nonlinear geophysical systems. The deterministic Lorenz 96 (L96)
model is given by

Ẋn = Xn−1(Xn+1 − Xn−2) − Xn + F, 1 � k � N, (3.1)

with periodic boundary conditions given by Xn±N = Xn, where N = 40, and
F being a constant forcing parameter. The model in (3.1) is designed to mimic
midlatitude weather and climate behavior (in particular Rossby waves), so
periodic boundary conditions are appropriate. It is demonstrated in [22, Chap. 2]
that the dynamical regime of the L96 model varies with changing the value of
constant forcing F : weakly chaotic dynamical regimes with F = 5, 6, strongly
chaotic regime with F = 8, and turbulent regimes F = 12, 16, 24 with self-
similar time autocorrelation decay.

Here, we apply the stochastic forcing to the L96 model as

dXk = [Xk−1(Xk+1 − Xk−2) − Xk + F ]dt + (σ(X))k(dW t)k, (3.2)

where σ : R
N → R

N is a vector-valued function of X, W is an N -dimensional
Wiener process, and (dW t)k is the k-th component of dW (that is, effectively
σ is a diagonal matrix multiplying the vector dW ). As the stochastic Lorenz 96
(SL96) model above does not depend explicitly on time (except for the Wiener
noise), we can assume that it has an invariant probability measure ρ.
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In this work, we perturb the SL96 model in (3.2) by a small parameter α as

dXk = [Xk−1(Xk+1 − Xk−2) − Xk + F + αηk]dt + (σ(X))k(dW t)k, (3.3)

where η ∈ R
N is a constant forcing vector perturbation, which is “turned on”

at time t0 = 0. With the invariant probability state ρ, and the perturbation
given in (3.3), the general response formula in (2.6) becomes

δ〈A〉α(t) = αR(t)η,

R(t) =
∫ t

0
R(τ)dτ,

(3.4)

where subscripts for R and R are omitted as both the SST-FDT and classical
response operators apply. We also set the observable A(x) = x, that is, the
response of the mean state is computed. As an approximation for the invariant
probability density for the classical response, we choose the Gaussian
distribution with the same mean and covariance as the actual invariant
probability measure, which are determined by averaging along the long-term
time series of unperturbed (3.2), and thus, further call it quasi-Gaussian FDT
(qG-FDT) as in [3–5]. In this setting, the short-time and quasi-Gaussian linear
response operators become

RSST(t) = lim
r→∞

1
r

∫ r

0
T s,t

x(s)ds,

RqG(t) = lim
r→∞

1
r

∫ r

0
x(s + t)C−1(x(s) − x)ds,

(3.5)

where x and C are the mean state and covariance matrix of the long-time series
of unperturbed (3.2).

3.1 Blended SST/qG-FDT response

Following [3,5], we also compute the blended SST/qG-FDT response as

RSST/qG(t) = [1 − H (t − tcutoff)]RSST(t) + H (t − tcutoff) RqG(t), (3.6)

where the blending function H is the Heaviside step-function. The cut-off time
tcutoff is chosen as

tcutoff =
3
λ1

, (3.7)

where λ1 is the largest Lyapunov exponent (for details, see [3,5]). This cut-off
time allows to switch to the RqG just before the numerical instability occurs
in RSST, and thus, avoid the numerical instability. For constant external
forcing and the Heaviside blending step-function, the blended response
operators become

RSST/qG(t) =
∫ tcutoff

0
RSST(τ)dτ +

∫ t

tcutoff

RqG(τ)dτ. (3.8)
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3.2 Computational experiments

Below, we perform computational experiments in the following setting:
• The number of variables (model size) N = 40.
• Constant forcing F = 6. The L96 model is observed to be weakly chaotic

in this regime [3–5,22], and we would like to compare the responses for weakly
chaotic deterministic dynamics and the stochastically driven dynamics.

• The tangent map T t0,t
x in (2.11) is computed in the same fashion as in

[2–5].
• Forward Euler numerical scheme with time step Δt = 0.001 for both

(2.11) and (3.2).
• The linear response is tested for the following settings of the stochastic

term σ :
– σk = 0 (fully deterministic regime without stochastic forcing);
– σk = 1 (additive noise);
– σk = 0.2Xk, σk = 0.5Xk (multiplicative noise).
• We compute the linear response operators RSST, RqG, and RSST/qG,

which are given by (3.4) and (3.8), and compare them with the ideal response
operator Rideal, which is computed through the direct model perturbations
[2–5].

• The time-averaging is done along a time series of 10000 time units.
• The ideal response operator Rideal is computed via direct perturbations

a 10000-member statistical ensemble.
• The comparison of the FDT response operators with the ideal response

operator is carried out by evaluating the L2 relative error

L2-error =
‖RFDT − Rideal‖

‖Rideal‖ , (3.9)

and the correlation function

Corr =
(RFDT,Rideal)
‖RFDT‖ ‖Rideal‖ , (3.10)

where (·, ·) denotes the standard Euclidean inner product. Observe that the L2

error shows the general difference between the FDT and ideal responses, while
the correlation function shows the extent to which the responses are collinear
(that is, how well the location of the response is determined, without considering
its magnitude).
Here, we would like to mention that, unlike the previous works [1–5], where
systems of ordinary differential equations studied, here we sample the
correlation functions from a stochastic Monte Carlo process, which must also
include many realizations of a Wiener process. In practice, this leads to much
longer time averaging windows than for systems of ordinary differential
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equations. However, as can be observed in the results below, the time averaging
window of 10000 time units seems to be sufficient to provide adequate statistical
sampling for the 40-mode Lorenz model.

In Fig. 1, we display the L2 relative errors between the ideal response
operator and the FDT response operators, together with the intrinsic error
in the ideal response operator (which is the result of slight nonlinearity in the
ideal response due to small but finite perturbations). Observe that in the fully
deterministic regime (F = 6, σk = 0) the SST-FDT response provides a very
precise prediction until the time t ≈ 3, and then the errors in the SST-FDT
grow exponentially rapidly, which is due to the positive Lyapunov exponents
and numerical instability in the tangent map. On the other hand, the qG-FDT
response is not precise (reaching about 80% by the time t = 1.5), due to the
fact that the invariant probability measure associated with the deterministic
regime is highly non-Gaussian, and most probably not continuous with respect
to the Lebesgue measure (that is, it does not even possess a density). Remark-
ably, if we look at the stochastically driven regimes σk = 1 (additive noise)
and σk = 0.2Xk , σk = 0.5Xk (multiplicative noise), we see that the behavior of
both the SST-FDT and qG-FDT responses is qualitatively the same as in the
fully deterministic regime, even though the dynamics is qualitatively different.
Apparently, the level of noise in the two stochastically driven regimes σk =
1 and σk = 0.2Xk is insufficient to “smooth out” the invariant probability

qG
qG

qG
qG

qG
qG

qG
qG

Fig. 1 L2-errors of response operators for SL96 model, N = 40, F = 6, (a) σk = 0;
(b) σk = 1; (c) σk = 0.2Xk; (d) σk = 0.5Xk. Straight dotted vertical line denotes

blending cut-off time for SST/qG-FDT. Rideal denotes intrinsic error in ideal

response due to slight nonlinearity.
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measure enough for it to resemble the Gaussian state and to destabilize the
computation of the tangent map. However, in the σk = 0.5Xk multiplicative
noise regime, the errors in the initial qG-FDT response are reduced to about
40%, which is due to the fact that in this regime the invariant probability
measure is closer to the Gaussian state because of strong noise. The blended
SST/qG-FDT response yields the lowest errors in all cases, due to its explicit
design to avoid numerical instability in the SST-FDT algorithm.

In Fig. 2, we show the correlation functions for the same simulations.
Observe that, although significant L2-errors were observed for the qG-FDT
algorithm for the fully deterministic regime σk = 0, its correlations with the
ideal response are generally on the level of around 0.7, which is remarkable.
Also, the correlations of the SST-FDT response with the ideal response are
roughly 1 (nearly perfect correlation) before the numerical instability manifests
itself. As for the blended SST/qG-FDT response, the best correlations are
achieved in the stochastically forced regimes σk = 1 (additive noise) and σk =
0.2Xk, σk = 0.5Xk (multiplicative noise), were the correlations do not become
lower than 0.95 for all response times. For the fully deterministic case σk = 0,
the correlations of the blended SST/qG-FDT response are about 0.8.

Fig. 2 Correlations of FDT response operators with ideal response operator for SL96
model, N = 40, F = 6, (a) σk = 0; (b) σk = 1; (c) σk = 0.2Xk; (d) σk = 0.5Xk.

Straight dotted vertical line denotes blending cut-off time for SST/qG-FDT.

In addition to displaying the errors and correlations between the FDT
response operators and the ideal response operator, in Figs. 3–5, we show the
instantaneous snapshots of the linear response operators at times T = 1, T = 2
(which are before the SST/qG-FDT cutoff time), and T = 5 (which is after the
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Fig. 3 Snapshots of response operators for SL96 model at T = 1, N = 40, F = 6,

(a) σk = 0; (b) σk = 1; (c) σk = 0.2Xk ; (d) σk = 0.5Xk .

Fig. 4 Snapshots of response operators for SL96 model at T = 2, N = 40, F = 6,

(a) σk = 0; (b) σk = 1; (c) σk = 0.2Xk ; (d) σk = 0.5Xk .
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Fig. 5 Snapshots of response operators for SL96 model at T = 5, N = 40, F = 6,

(a) σk = 0; (b) σk = 1; (c) σk = 0.2Xk ; (d) σk = 0.5Xk .

SST/qG-FDT cutoff time). Although the linear response operator at a given
time is a 40 × 40 matrix, it has the property of translational invariance (just
like the L96 model itself), and thus, can be averaged along the main diagonal
with wrap-around aliasing of rows (or columns) into a single vector. These
averaged vectors are displayed in Figs. 3–5. Observe that for the early times of
the response T = 1, 2, the SST/qG-FDT response is virtually indistinguishable
from the ideal response. As for the qG-FDT response, its best performance
is observed in the case of strong multiplicative noise σk = 0.5Xk, where the
discrepancies between the qG-FDT and ideal response are not much larger
than those between the SST/qG-FDT response and the ideal response. This
is probably the consequence of the fact that the strong multiplicative noise
changes the invariant probability density of the SL96 model to the point where
it is relatively close to the Gaussian. For other regimes, by the response time
T = 2, significant errors develop in the qG-FDT response to the right of the
main response diagonal. For the longer response time T = 5 and all regimes,
the blended SST/qG-FDT response is very similar to the ideal response, while
the qG-FDT response again develops large discrepancies to the right of the
main response diagonal for σk = 0, 1, and 0.2Xk . For the strong multiplicative
noise regime, σk = 0.5Xk, and response time T = 5, the qG-FDT yields lower
errors than in the other regimes, but is still less precise than the SST/qG-FDT
response.
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4 Summary

The classical fluctuation-dissipation theorem, by its design, is suitable for
computing the linear response for stochastically driven systems, as it
assumes the continuity of the probability measure of the statistical ensemble
distribution with respect to the Lebesgue measure (which is guaranteed in
many stochastically driven systems). However, the drawback of the classical
fluctuation-response formula is that it requires the probability density together
with its derivative (or their suitable approximations) explicitly in the response
formula. Unfortunately, for complex systems with many variables such an
approximation might not be necessarily available with required precision.

In this work, we develop the stochastic short-time fluctuation-dissipation
formula (SST-FDT) for stochastically driven systems which does not require
the probability measure of the statistical state of the system to be known
explicitly. This formula is the analog of the general linear response formula
[3–5,9,28] for chaotic (but not stochastically driven) nonlinear systems. We
demonstrate that, before the numerical instability due to positive Lyapunov
exponents occurs, the SST-FDT for the stochastically driven Lorenz 96 model
is generally superior to the classical FDT formula where the probability density
of the statistical state is approximated by the Gaussian density with the same
mean and covariance (qG-FDT). We test the new SST-FDT formula for the L96
model with stochastic forcing for both the additive and multiplicative noise,
and observe that the SST-FDT response formula is generally better than the
qG-FDT in both the error and correlation comparison, before the numerical
instability develops in the SST-FDT response. Additionally, the blended SST/
qG-FDT response with a simple Heaviside blending function clearly performs
on top of both the qG-FDT and SST-FDT in all studied regimes. The results
of this work suggest that the SST/qG-FDT algorithm can be used in practical
applications with stochastic parameterization, such as the climate change
prediction.
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