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Abstract This paper gives an analytic existence proof of the Schubart
periodic orbit with arbitrary masses, a periodic orbit with singularities in the
collinear three-body problem. A “turning point” technique is introduced to
exclude the possibility of extra collisions and the existence of this orbit follows
by a continuity argument on differential equations generated by the regularized
Hamiltonian.
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1 Introduction

The collinear three-body problem is a system of three points with masses m1,
m2, and m3 on a real line attracting each other by the Newtonian gravitational
law. Mass mi locates at position xi (i = 1, 2, 3) as in Figure 1.
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Fig. 1 Mass configuration

In 1976, Schubart [17] numerically discovered a remarkable periodic orbit
with singularities in the equal mass collinear three-body problem. In each
period of this orbit, the inner mass m2 alternates between binary collisions
(BCs) with the two outer masses: m1 and m3. In 1977, Hénon [6] extended
Schubart’s numerical investigations to the case of unequal masses. Only
recently in 2008, did Moeckel [11] and Venturelli [19] analytically prove the
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existence of the Schubart periodic orbit when the two outer masses are equal
and the inner mass is arbitrary. Moeckel’s proof is topological and uses an idea
developed by Conley [5] for the restricted three-body problem. Venturelli’s
proof is variational wherein he minimizes the Lagrangian action over a well-
chosen class of paths. Later, Shibayama [18] gave a variational existence proof
for the Schubart periodic orbit with arbitrary masses.

The linear stability of the Schubart periodic orbit was determined
numerically by Hietarinta and Mikkola [7]. It revealed that linearly stable
Schubart periodic orbit only occurred for certain choices of masses. Recently,
Roberts’ method [2,3,16] and Maslov index theory [8–10] were introduced to
study the linear stability of periodic orbits, such as the Lagrange orbit [9,15]
and the figure-eight orbit [4,12] in the three-body problem. However, it is still
a big challenge to study the stability of the Schubart periodic orbit analytically
due to the existence of collision.

In this paper, we introduce a “turning point” technique [13,14] and give
a very simple and direct existence proof of the Schubart periodic orbit with
arbitrary masses. The singularity of this orbit can be regularized by a Levi-
Civita type transformation and an appropriate scaling of time, as adapted from
Aarseth and Zare [1] to this particular problem. Different from the standard
variational approach, we first study the connections between the initial
condition and the shape of the orbit. Our goal is to show that if the initial
value is restricted in a proper interval, then there is no extra collisions, such as
total collision and extra binary collisions, between every two connected BCs:
BC between m1 and m2, and BC between m2 and m3. This interval is estimated
by a “turning point” technique [14], which is crucial in this work and it can
guarantee that the shape of the orbit is exactly the Schubart periodic orbit.
Then the existence follows by an intermediate theorem.

The paper is organized as follows. The setting of this problem is introduced
in Section 2 and the Hamiltonian is regularized by the Aarseth-Zare method.
In Section 3, the “turning point” technique is applied to estimate the value of
A so that we can exclude the possibility of extra collisions. Section 4 shows the
existence of the Schubart periodic orbit with arbitrary masses in the regularized
Hamiltonian system.

2 Preliminaries

As in Fig. 1, we number the three bodies by 1, 2, and 3 from left to right
and denote their masses and coordinates on the real line by mi and xi with
i = 1, 2, and 3, respectively. Thus, x1 � x2 � x3 holds naturally. The
Newtonian equations of this system are

ẍ1 =
m2

(x2 − x1)2
+

m3

(x3 − x1)2
, (1)

ẍ2 = − m1

(x2 − x1)2
+

m3

(x3 − x2)2
, (2)
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ẍ3 = − m1

(x3 − x1)2
− m2

(x3 − x2)2
. (3)

The Hamiltonian for the system is

H =
1
2

[ w2
1

m1
+

w2
2

m2
+

w2
3

m3

]
−

∑
1�i<j�3

mimj

|xi − xj | , (4)

where wi = miẋi is the momenta of mi (i = 1, 2, 3).
Following the work of Hietarinta and Mikkola [7], we introduce a canonical

transformation to eliminate the center of mass and total linear momentum.
Specially, set

q1 = x2 − x1, p1 = −w1 +
m1(w1 + w2 + w3)

m1 + m2 + m3
,

q2 = x3 − x2, p2 = w3 − m2(w1 + w2 + w3)
m1 + m2 + m3

,

q3 =
m1x1 + m2x2 + m3x3

m1 + m2 + m3
, p3 = w1 + w2 + w3.

By setting q3 = 0 and p3 = 0, the transformation becomes

q1 = x2 − x1, q2 = x3 − x2, p1 = −w1, p2 = w3,

and the new Hamiltonian becomes

H =
1
2

( 1
m1

+
1

m2

)
p2
1 +

1
2

( 1
m2

+
1

m3

)
p2
2 −

p1p2

m2

− m1m2

q1
− m2m3

q2
− m1m3

q1 + q2
. (5)

The Hamiltonian (5) can be regularized by the Aarseth-Zare method [1]. We
define qi = Q2

i , and the new canonical momenta are Pi = 2Qipi (i = 1, 2). Let
the new time variable s satisfy dt/ds = q1q2. Then the regularized Hamiltonian
Γ = q1q2(H − E) becomes

Γ =
1
8

[( 1
m1

+
1

m2

)
P 2

1 Q2
2 +

( 1
m2

+
1

m3

)
P 2

2 Q2
1 −

2
m2

P1P2Q1Q2

]

−m2m3Q
2
1 − m1m2Q

2
2 − m1m3

Q2
1Q

2
2

Q2
1 + Q2

2

− Q2
1Q

2
2E, (6)

where E is the total energy.
Without loss of generality, we can assume that H = −1, m2 = 1, and

m1 � m3 in this paper.
We start at BC between m1 and m2, and set the initial conditions to be

x1(0) = x2(0), x3(0) = A > 0, ẋ1(0) = −∞, ẋ2(0) = +∞, ẋ3(0) = 0.
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Note that the center of mass at time t = 0 is

0 = m1x1(0) + m2x2(0) + m3x3(0) = x2(0)(m1 + 1) + m3A.

Then
x1(0) = x2(0) = − m3A

1 + m1
.

The corresponding coordinates in (pi, qi) (i = 1, 2) are

q1(0) = 0, q2(0) =
1 + m1 + m3

1 + m1
A, p1(0) = +∞, p2(0) = 0,

which is also a singular point. To analyze the motion nearby, it is necessary
to deal with the singularity in the regularized Hamiltonian system. The
corresponding initial conditions at s = 0 in the new coordinate system are

Q1(0) = 0, Q2(0) = R, P1(0) =
2
√

2 m1m2√
m1 + m2

=
2
√

2 m1√
m1 + 1

, P2(0) = 0, (7)

where

R =
√

1 + m1 + m3

1 + m1
A.

Note that this initial point is a regular point in the regularized Hamiltonian
system. In the next section, we will show that there exists an interval such
that for any A in this interval, there is no collision before the first BC between
bodies 2 and 3 happens.

3 Estimation of A

Intuitively, if the relative distance between bodies 2 and 3 is sufficiently large,
there will be multiple BCs between bodies 1 and 2 before the first collision of
bodies 2 and 3 happens. In order to find the Schubart periodic orbit, we will
have to give an estimation of A such that there is no extra binary collision
between bodies 1 and 2 before bodies 2 and 3 collides for the first time. In this
section, we apply a “turning point” technique [14] to estimate the value of A.

Definition 1 Let t = t∗ be the time when the velocity of a body is 0, i.e.,
v(t∗) = 0. If there exists a time interval [tm, tn], such that tm < t∗ < tn, and
v is positive for t ∈ [tm, t∗) and is negative for t ∈ (t∗, tn], or v is negative for
t ∈ [tm, t∗) and is positive for t ∈ (t∗, tn], then we call t∗ a turning time and the
position of the body at t∗ is called a turning point (Figure 2).

� � �

x1 x2 x3

turning point

Fig. 2 Turning point of body 2
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We first show that if body 2 has a turning point before it collides with body
3 for the first time, then A must have a positive lower bound.

Lemma 2 Let t1 be the first time of collision between bodies 2 and 3. If body
2 has a turning point for t ∈ (0, t1), then

A � min
{ m2

1m3

m1 + m3
,

m3(m1 + m3)
m1

}
.

Proof Assume that body 2 has a turning point before the first collision between
bodies 2 and 3 happens. Let t = t∗ < t1 be the first turning time. Then
ẋ2(t∗) = 0, ẍ2(t∗) � 0, and ẋ2(t) > 0 for any t ∈ (0, t∗). At t = t∗, we
assume that the position of body 3 is x3(t∗) = A∗ and the position of body 2
is x2(t∗) = aA∗.

Since the center of mass m1x1 + x2 + m3x3 = 0, the coordinates of three
bodies at t = 0 and t = t∗ are

x1(0) = x2(0) = − m3

1 + m1
A, x3(0) = A,

x1(t∗) = −a + m3

m1
A∗, x2(t∗) = aA∗, x3(t∗) = A∗.

Note that
x3(t∗) > x2(t∗) > x1(t∗).

Then
− m3

1 + m1
< a < 1. (8)

Since ẍ2(t∗) � 0, by the Newtonian equation (2) of x2, we have

0 � ẍ2(t∗)

=
[
− m1

(a + a+m3
m1

)2
+

m3

(1 − a)2
] 1
x2

3(t∗)

=
[m3(m1a + a + m3)2 − m3

1(1 − a)2]
(m1a + a + m3)2(1 − a)2

· 1
x2

3(t∗)
, (9)

i.e.,
m

1/2
3 (m1a + a + m3) � m

3/2
1 (1 − a). (10)

Consider the Newtonian equation (3) of x3 for t ∈ (0, t∗]:

ẍ3 = −
[ m1

(x3 − x1)2
+

1
(x3 − x2)2

]
.

Since x1 = −(x2 + m3x3)/m1, it can be rewritten as

ẍ3 = −
[ m3

1

[(m1 + m3)x3 + x2]2
+

1
(x3 − x2)2

]
.
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Let

f(y) =
m3

1

[(m1 + m3)x3 + y]2
+

1
(x3 − y)2

.

Then

f ′(y) =
−2m3

1

[(m1 + m3)x3 + y]3
+

2
(x3 − y)3

=
2[(m1 + m3)x3 + y]3 − 2m3

1(x3 − y)3

[(m1 + m3)x3 + y]3(x3 − y)3
.

Hence, f ′(y) � 0 if and only if

(m1 + m3)x3 + y � m1(x3 − y),

i.e.,
y � − m3x3

1 + m1
.

Therefore, f(y) is an increasing function when y � −m3x3/(1 + m1).
In our case, by the center of mass equal to 0 and x1 � x2, we have

(m1 + 1)x2 + m3x3 � m1x1 + x2 + m3x3 = 0,

i.e.,
x2 � − m3x3

1 + m1
.

Since −m3x3/(1 + m1) � x2 � aA∗ for t ∈ [0, t∗] and f(y) is increasing
whenever y � −m3x3/(1 + m1), we have f(x2) � f(aA∗). Therefore,

ẍ3 � −
[ m3

1

[(m1 + m3)x3 + aA∗]2
+

1
(x3 − aA∗)2

]
. (11)

Note that ẋ3 < 0 for t ∈ (0, t∗]. Multiplying both sides of inequality (11) by ẋ3,
we have

ẋ3ẍ3 � −ẋ3

[ m3
1

[(m1 + m3)x3 + aA∗]2
+

1
(x3 − aA∗)2

]
. (12)

Integrating (11) from t = 0 to t = t∗, we get

∫ t∗

0
ẋ3ẍ3dt � −

∫ t∗

0
ẋ3

[ m3
1

[(m1 + m3)x3 + aA∗]2
+

1
(x3 − aA∗)2

]
dt,

(ẋ3(t∗))2 − (ẋ3(0))2

2
� m3

1

m1 + m3
· 1
(m1 + m3)x3(t) + aA∗

∣∣∣
t∗

0
+

1
x3(t) − aA∗

∣∣∣
t∗

0
.

Note that ẋ3(0) = 0, x3(0) = A, and x3(t∗) = A∗. Then

1
2

(ẋ3(t∗))2 � 1
A∗

[ m3
1

(m1 + m3)(m1 + m3 + a)
+

1
1 − a

]
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− m3
1

(m1 + m3)[(m1 + m3)A + aA∗]
− 1

A − aA∗ . (13)

At time t = t∗, the coordinates of three bodies are

x1(t∗) = −a + m3

m1
A∗, x2(t∗) = aA∗, x3(t∗) = A∗,

and the velocities satisfy

ẋ2(t∗) = 0, ẋ1(t∗) = −m3

m1
ẋ3(t∗).

Since the total energy E is −1, the Hamiltonian H at t = t∗ satisfies

−1 =
1
2

m1(ẋ1(t∗))2 +
1
2

m3(ẋ3(t∗))2 − 1
A∗

[ m1

a + a+m3
m1

+
m3

1 − a
+

m1m3

1 + a+m3
m1

]

=
m3(m1 + m3)

2m1
(ẋ3(t∗))2 − 1

A∗
[ m2

1

m1a + a + m3
+

m3

1 − a
+

m2
1m3

m1 + a + m3

]
.

Applying inequality (13) to the above equality, we have

−1 �m3(m1 + m3)
m1A∗

[ m3
1

(m1 + m3)(m1 + m3 + a)
+

1
1 − a

]
− m2

1m3

(m1 + m3)A + aA∗

− m3(m1 + m3)
m1(A − aA∗)

− 1
A∗

[ m2
1

m1a + a + m3
+

m3

1 − a
+

m2
1m3

m1 + a + m3

]

=
m2

3(m1a + a + m3) − m3
1(1 − a)

m1(1 − a)(m1a + a + m3)A∗ − m2
1m3

(m1 + m3)A + aA∗ − m3(m1 + m3)
m1(A − aA∗)

.

Note that a satisfies inequality (10) and m1 � m3 by our assumption. Then

m2
3(m1a + a + m3) − m3

1(1 − a) � m2
3(m1a + a + m3) − m

3/2
3 m

3/2
1 (1 − a)

= m
3/2
3 [m1/2

3 (m1a + a + m3) − m
3/2
1 (1 − a)]

� 0.

Hence,

−1 � − m2
1m3

(m1 + m3)A + aA∗ − m3(m1 + m3)
m1(A − aA∗)

,

i.e.,

A � m2
1m3A

(m1 + m3)A + aA∗ +
m3(m1 + m3)A
m1(A − aA∗)

. (14)

It is clear that A > 0 and A∗ > 0. If a � 0, (14) implies

A � m3(m1 + m3)A
m1(A − aA∗)

� m3(m1 + m3)
m1

.
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If a < 0, by (14), we obtain

A � m2
1m3A

(m1 + m3)A + aA∗ � m2
1m3

m1 + m3
.

Therefore,

A � min
{ m2

1m3

m1 + m3
,

m3(m1 + m3)
m1

}
. �

Define a set ℘ = {A | body 2 has at least one turning point for t ∈ (0, t1)}.
We first show that the set ℘ is not empty.

If not, then for all positive values of A, body 2 has no turning point when
t ∈ (0, t1), that is, ẋ2(t) > 0 for any t ∈ (0, t1). By the regularization theory of
binary collision, limA→+∞ ẋ2(t) � 0 for any t ∈ (0, t1). However, when A = +∞,
the Newtonian equations (1)–(3) become

ẍ1 =
m2

(x2 − x1)2
, ẍ2 = − m1

(x2 − x1)2
, ẍ3 = 0.

In this case, bodies 1 and 2 have the same equations of motion as the one-
dimensional Kepler two-body problem. Note that the total energy is −1, the
theory of Kepler two-body problem indicates that body 2 has at least one
turning point. It contradicts with the inequality limA→+∞ ẋ2(t) � 0. Therefore,

℘ �= ∅.
Let A0 = inf ℘. By Lemma 2,

A0 � min
{ m2

1m3

m1 + m3
,

m3(m1 + m3)
m1

}
> 0.

Also, by the definition of A0, body 2 has no turning point for t ∈ (0, t1) whenever
A < A0. For each A ∈ ℘, there exists a smallest t∗ > 0 such that

ẋ2(t∗) = 0, ẍ2(t∗) � 0.

Next, we show that when A = A0, there exists some t∗ < t1 such that ẋ2(t∗) =
ẍ2(t∗) = 0. Since ẋ2(t) is continuous for t ∈ (0, t1), and limt→0+ ẋ2(t) = +∞,
the proof can be ended by the following result.

Theorem 3 For A = A0, there exists a unique t∗ ∈ (0, t1) such that ẋ2(t∗) =
ẍ2(t∗) = 0. Furthermore,

...
x 2(t∗) � 0 and the equality holds if and only if

m1 = m3.

Proof We first show that in the case A = A0, ẋ2(t) � 0 for any t ∈ (0, t1).
For a given A > 0 such that x3(0) = A and x2(0) = x1(0), the solution x2(t)

has a turning point in the interval (0, t1), by continuity of solution with respect
to initial condition, changing a bit A, the solution x2(t) still has a turning point
in (0, t1) (here t1 is a function of A). By the definition of A0, body 2 is free
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of turning point in the interval (0, t1). Therefore, t �→ x2(t) is an increasing
function in the interval (0, t1). Hence, ẋ2(t) � 0 for t ∈ (0, t1).

Consider the function

g(y) = m3(m1y + y + m3)2 − m3
1(1 − y)2.

It is easy to see that g(y) is strictly increasing for y > −m3/(1 + m1). By (9),
ẍ2(t∗) has the same sign as g(a). Let 1 > a0 > −m3/(1 + m1) be the unique
value such that g(a0) = 0. When g(a0) = 0, we solve for a0:

m
1/2
3 (m1a0 + a0 + m3) = m

3/2
1 (1 − a0),

a0[(1 + m1)m
1/2
3 + m

3/2
1 ] = m

3/2
1 − m

3/2
3 .

By our assumption, m1 � m3. Then a0 � 0 and a0 = 0 if and only if m1 = m3.
Next, we show that the function t �→ [x2(t) − a0x3(t)] has exactly one zero

t∗. Since t �→ x2(t) is an increasing function, t �→ x3(t) is a strictly decreasing
function and a0 � 0, t �→ [x2(t) − a0x3(t)] is an increasing function in (0, t1)
and d

dt [x2(t) − a0x3(t)] = 0 if and only if ẋ2(t) = 0, a0 = 0. Therefore, there
exists only one value t∗ ∈ (0, t1) such that

x2(t∗) − a0x3(t∗) = 0.

And
−m3

1 + m1
<

x2(t)
x3(t)

< a0, t ∈ (0, t∗),

x2(t)
x3(t)

> a0, t ∈ (t∗, t1).

Thus,

ẍ2(t)

⎧
⎪⎨
⎪⎩

< 0, t ∈ (0, t∗),
= 0, t = t∗,
> 0, t ∈ (t∗, t1).

Note that at A = A0, ẋ2(t) � 0 for t ∈ (0, t1). Assume now for the sake of
contradiction that ẋ2(t∗) > 0. Then by the sign of ẍ2(t), the relative minimum
of ẋ2(t) is achieved at t = t∗, and hence,

ẋ2(t) � ẋ2(t∗) > 0, ∀ t ∈ (0, t1).

By the continuity with respect to the initial conditions, this fact would persist
changing a bit A, and therefore, for A closed to A0, the corresponding solution
would be free of turning point. This contradicts the definition of A0. Hence, at
A = A0, we have

ẋ2(t∗) = ẍ2(t∗) = 0.
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Furthermore, we consider the sign of
...
x 2(t∗) in the case when A = A0. Derivative

equation (2) with respect to t evaluated at t∗ :

...
x 2(t∗) =

2m1(ẋ2(t∗) − ẋ1(t∗))
(x2(t∗) − x1(t∗))3

− 2m3(ẋ3(t∗) − ẋ2(t∗))
(x3(t∗) − x2(t∗))3

=
−2m1ẋ1(t∗)

(x2(t∗) − x1(t∗))3
− 2m3ẋ3(t∗)

(x3(t∗) − x2(t∗))3

=
2m3

1m3ẋ3(t∗)
(m1a + a + m3)3(A∗)3

− 2m3ẋ3(t∗)
(1 − a)3(A∗)3

=
2m3ẋ3(t∗)[m3

1(1 − a)3 − (m1a + a + m3)3]
(A∗)3(m1a + a + m3)3(1 − a)3

.

Note that ẍ2(t∗) = 0. By equation (9), we obtain

m3(m1a + a + m3)2 − m3
1(1 − a)2 = 0.

Then

m3
1(1 − a)3 − (m1a + a + m3)3 =

m3
1

m
3/2
3

(1 − a)3(m3/2
3 − m

3/2
1 ).

Since ẋ3(t∗) < 0 and m1 � m3, we have

...
x 2(t∗) =

2m3ẋ3(t∗)
(A∗)3(m1a + a + m3)3(1 − a)3

m3
1

m
3/2
3

(1 − a)3(m3/2
3 − m

3/2
1 ) � 0.

When
...
x 2(t∗) = 0, we have m1 = m3. �

Remark When A = A0, m1 = m3,

x
(n)
2 (t∗) = 0, ∀ n � 1,

where x
(n)
2 means the n-th derivative of x2 with respect to t. That is, body 2

will stay at x2(t∗) forever, bodies 1 and 3 move towards to it, and they will end
up with a total collision.

Corollary 4 For A ∈ (0, A0), bodies 1 and 2 have no other collision before
bodies 2 and 3 collide at the first time.

Proof If bodies 1 and 2 have another binary collision at time t = t0, then

lim
t→t0

ẋ1 = +∞, lim
t→t0

ẋ2 = −∞.

(limt→t0 ẋ2 �= +∞ because the total linear momentum is 0). By continuity,
there exists some t∗, such that ẋ2(t∗) = 0 and ẍ2(t∗) � 0. It contradicts the
definition of A0. Therefore, when A ∈ (0, A0), bodies 1 and 2 have no other
collision before bodies 2 and 3 collide for the first time. �
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4 Existence of Schubart periodic orbit

Recall the regularized Hamiltonian Γ in (6), where E = −1 is the total energy.
By the assumption, m2 = 1. The initial conditions at s = 0 are as in (7).

By Theorem 3, when

0 < R =
√

1 + m1 + m3

1 + m1
A <

√
1 + m1 + m3

1 + m1
A0,

Q2
2 = x3 − x2 decreases from s = 0 to s = s1, where s1 is the time when the

first collision between bodies 2 and 3 happens.
The equations of motion from the regularized Hamiltonian Γ are

Q′
1 =

m1 + 1
4m1

P1Q
2
2 −

1
4

P2Q1Q2, (15)

Q′
2 =

m3 + 1
4m3

P2Q
2
1 −

1
4

P1Q1Q2, (16)

P ′
1 = −m3 + 1

4m3
P 2

2 Q1 +
1
4

P1P2Q2 + 2m3Q1 +
2m1m3Q1Q

4
2

(Q2
1 + Q2

2)2
− 2Q1Q

2
2, (17)

P ′
2 = −m1 + 1

4m1
P 2

1 Q2 +
1
4

P1P2Q1 + 2m1Q2 +
2m1m3Q2Q

4
1

(Q2
1 + Q2

2)2
− 2Q2Q

2
1, (18)

where (′) is the derivative with respect to s.
At the time s = s1, the coordinates of Pi and Qi (i = 1, 2) are

Q2(s1) = 0, Q1(s1) = R1 > 0, P2(s1) = − 2
√

2 m3√
1 + m3

.

To prove the existence of the Schubart periodic orbit, we need to find a
suitable value of R, such that

P1(s1) = P1(s1, R) = 0.

Corollary 5 For the differential equations (15)–(18), let the initial conditions
be

Q1(0) = 0, Q2(0) = R =
√

1 + m1 + m3

1 + m1
A,

P1(0) =
2
√

2m1√
m1 + 1

, P2(0) = 0,

where

R ∈
(

0,
√

1 + m1 + m3

1 + m1
A0

)
.

Let s1 be the time when bodies 2 and 3 have the first collision. Then P1(s1, R)
is a continuous function of R.
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Proof Since the Hamiltonian Γ is regularized, the solutions Pi = Pi(s,R) and
Qi = Qi(s,R) are continuous functions with respect to s and R. We are going
to show that s1 = s1(R) is a continuous function of R. By Theorem 3 and the
transformation, we have Q2

1(s1) > 0, Q2(s1) = 0, and also Q2
2(s) > 0 for 0 <

s < s1. In order to apply the implicit function theorem for Q2 = Q2(s1, R) = 0,
we need to show that

∂Q2

∂s
(s1, R) �= 0.

By the regularized Hamiltonian Γ, we have

∂Q2

∂s

∣∣∣
(s1,R)

=
∂Γ
∂P2

∣∣∣
(s2,R)

=
[m3 + 1

4m3
P2Q

2
1 −

1
4

P1Q1Q2

]∣∣∣
(s1,R)

.

Note that for any fixed

R ∈
(

0,
√

1 + m1 + m3

1 + m1
A0

)
,

Γ = 0 at any time s. At s = s1, we have

Q1 = Q1(s1, R) �= 0, Q2 = Q2(s1, R) = 0,

and then

P 2
2 = P 2

2 (s1, R) =
8m2

3

1 + m3
.

Therefore,

∂Q2

∂s

∣∣∣
(s1,R)

=
[m3 + 1

4m3
P2Q

2
1 −

1
4

P1Q1Q2

]∣∣∣
(s1,R)

=
m3 + 1
4m3

P2Q
2
1

∣∣∣
(s1,R)

�= 0.

By the implicit function theorem, s1 is a continuous function of R. Hence,
P1(s1, R) is also a continuous function of R. �

Theorem 6 There exists some

R ∈
(

0,
√

1 + m1 + m3

1 + m1
A0

)

such that
P1(s1) = P1(s1, R) = 0.

Proof The existence is proved by the intermediate value theorem. First, we
show that there exists an R > 0 such that P1(s1) > 0.

By equations (15)–(18), we have

(P1Q1 + P2Q2)′ = 2m1Q
2
2 + 2m3Q

2
1 +

2m1m3Q
2
1Q

2
2

Q2
1 + Q2

2

− 4Q2
1Q

2
2

= 2m1Q
2
2 + 2Q2

1

[
m3 +

2m1m3Q
2
2

Q2
1 + Q2

2

− 2Q2
2

]
.
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Note that for s ∈ [0, s1], Q2 is decreasing and 0 � Q2 � R.
Choosing

R = min
{√

m3

4
,

√
(1 + m1 + m3)

2(1 + m1)
m2

1m3

m1 + m3
,

√
(1 + m1 + m3)

2(1 + m1)
m3(m1 + m3)

m1

}
,

by Lemma 2, we have

R2 � 1 + m1 + m3

2(1 + m1)
A0 <

1 + m1 + m3

1 + m1
A0, Q2

2 � R2 � m3

4
<

m3

2
.

Thus,

(P1Q1 + P2Q2)′ = 2m1Q
2
2 + 2Q2

1

[2m1m3Q
2
2

Q2
1 + Q2

2

+ m3 − 2Q2
2

]
> 0.

From the initial conditions,

(P1Q1 + P2Q2) |s=0= 0,

hence,

P1(s1)Q1(s1) =
∫ s1

0
(P1Q1 + P2Q2)′ds > 0.

By Corollary 4, Q1(s1) � 0. For the above choice of R, there is no total
collision for s ∈ [0, s1], and then, Q1(s1) > 0. Therefore, under the above
definition of R, we have P1(s1) > 0.

Next, we show that P1(s1) < 0 for some proper choice of R. We prove it in
two cases: m1 �= m3 and m1 = m3.

Case 1 m1 �= m3. Choose R > 0, such that

R2 =
1 + m1 + m3

1 + m1
A0.

At A = A0, by Theorem 3, there exists some t∗ such that ẋ2(t∗) = 0. Then

ẋ1(t∗) = −m3

m1
ẋ3(t∗) > 0.

By equation (1), we have ẍ1 � 0 for any t ∈ (0, t1), and then ẋ1(t1) > 0. By
Corollary 4 and the continuity of Q1, we have

Q1(s1) = Q1(s1, R) > 0.

Hence,
P1(s1) = 2Q1(s1)p1(t1) = −2Q1(s1)m1ẋ1(t1) < 0.
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Case 2 m1 = m3. As we know, when A = A0, the three bodies end up at a
total collision. Therefore,

ẋ1(t) = ẋ1(t, A0) > 0, ∀ t ∈ (t∗, t1).

By the continuity with respect to A, there exists some small ε > 0 such that
when A = A0 − ε,

ẋ1(t0) = ẋ1(t0, A) > 0

for some t0 < t1. Since ẍ1 � 0 for any t ∈ (0, t1), it follows that ẋ1(t1) > 0.
Then when

R =
√

1 + m1 + m3

1 + m1
(A0 − ε),

we have

Q1(s1) = Q1(s1, R) > 0, P1(s1) = 2Q1(s1)p1(t1) = −2Q1(s1)m1ẋ1(t1) < 0.

Therefore, by the intermediate theorem, there exists an

R ∈
(

0,
√

1 + m1 + m3

1 + m1
A0

)

such that
P1(s1) = P1(s1, R) = 0. �

Theorem 7 If R satisfies

P1(s1) = P1(s1, R) = 0,

then the solution of the differential system is exactly the Schubart-like periodic
orbit.

Proof The proof follows by the uniqueness of solution of ordinary differential
equations.

At time s = 0, a BC happens between bodies 1 and 2. At time s = s1,
another BC occurs between bodies 2 and 3. Since the system is regularized,
the solutions {Pi, Qi} (i = 1, 2) are continuous.

At time s = 0,

Q1(0) = 0, Q2(0) = R, P1(0) =
2
√

2 m1√
m1 + 1

, P2(0) = 0.

At time s = s1,

Q1(s1) = R1, Q2(s1) = 0, P1(s1) = 0, P2(s1) = − 2
√

2 m3√
m3 + 1

,

where R1 is a positive number.
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From the Hamiltonian Γ, we can see that

Q′
1(s1) = 0, Q′′

1(s1) < 0, Q′
2(s1) < 0.

This means that Q1(s1) is a relative maximum of Q1.
Compare the motion for s ∈ [0, s1] with the motion for s ∈ [s1, 2s1]. By the

uniqueness of the regularized Hamiltonian system, the orbit for s ∈ [s1, 2s1] can
be generated from the orbit of s ∈ [0, s1] by the following symmetry:

Q1(2s1 − s) = Q1(s), P1(2s1 − s) = −P1(s),

Q2(2s1 − s) = −Q2(s), P2(2s1 − s) = P2(s),

where s ∈ [0, s1]. Then at the time s = 2s1 when the second BC occurs,

Q1(2s1) = 0, Q2(2s1) = −R, P1(2s1) = − 2
√

2 m1√
m1 + 1

, P2(2s1) = 0.

By the symmetry and the uniqueness again, at time s = 3s1,

Q1(3s1) = −R1, Q2(3s1) = 0, P1(3s1) = 0, P2(3s1) =
2
√

2 m3√
m3 + 1

.

At time s = 4s1,

Q1(4s1) = 0, Q2(4s1) = R, P1(4s1) =
2
√

2 m1√
m1 + 1

, P2(4s1) = 0,

which is exactly the same as the initial condition at s = 0. Then the orbit from
s = 0 to s = 4s1 generates one period.

By the symmetry of differential equations (15)–(18), we have

Qi(s + 2s1) = −Qi(s), Pi(s + 2s1) = −Pi(s), i = 1, 2.

However, since qi = Q2
i and Pi = 2Qipi, in the variables (qi, pi), i = 1, 2, and

in physical time t, the solution is periodic with period 2t1 (and not 4t1). �

Acknowledgements The author was pleased to acknowledge several valuable

conversations with Prof. Yiming Long and Prof. Tiancheng Ouyang on these and related topics.

He is also indebted to all the referees for reading the original manuscript and

suggesting improvements.

References

1. Aarseth S J, Zare K. A regularization of the three-body problem. Celest Mech, 1974,
10: 185–205

2. Bakker L, Ouyang T, Roberts G, Yan D, Simmons S. Linear stability for some
symmetric periodic simultaneous binary collision orbits in the four-body problem.
Celestial Mech Dynam Astronom, 2010, 108: 147–164



160 Duokui YAN

3. Bakker L, Ouyang T, Yan D, Simmons S. Existence and stability of symmetric
periodic simultaneous binary collision orbits in the planar pairwise symmetric four-
body problem. Celestial Mech Dynam Astronom, 2011, 110: 271–290

4. Chenciner A, Montgomery R. A remarkable periodic solution of the three-body
problem in the case of equal masses. Ann of Math, 2000, 152: 881–901

5. Conley C. The retrograde circular solutions of the restricted three-body problem via a
submanifold convex to the flow. SIAM J Appl Math, 1968, 16: 620–625

6. Hénon M. Stability and interplay motions. Celestial Mech Dynam Astronom, 1997, 15:
243–261

7. Hietarinta J, Mikkola S. Chaos in the one-dimensional gravitational three-body
problem. Chaos, 1993, 3: 183–203

8. Hu X, Sun S. Index and stability of symmetric periodic orbits in Hamiltonian system
with application to figure-eight orbit. Commun Math Phys, 2009, 290: 737–777

9. Hu X, Sun S. Morse index and stability of elliptic Lagrangian solutions in the planar
three-body problem. Adv Math, 2010, 223: 98–119

10. Long Y. Index Theory for Symplectic Paths with Applications. Basel-Boston-Berlin:
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